Level sets of certain Neumann eigenfunctions under deformation of Lipschitz domains \\ Application to the Extended Courant Property - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Level sets of certain Neumann eigenfunctions under deformation of Lipschitz domains \\ Application to the Extended Courant Property

Pierre Bérard

Résumé

In this paper, we prove that the Extended Courant Property fails to be true for certain $C^{\infty}$ domains with Neumann boundary condition: there exists a linear combination of a second and a first Neumann eigenfunctions, with three nodal domains. For the proof, we revisit a deformation argument of Jerison and Nadirashvili (J. Amer. Math. Soc. 2000, vol. 13). This argument being interesting in itself, we give full details. In particular, we carefully control the dependence of the constants on the geometry of our Lipschitz domains along the deformations.
Fichier principal
Vignette du fichier
berard-helffer-teq-arrondi-180501.pdf (872.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01783968 , version 1 (02-05-2018)
hal-01783968 , version 2 (07-07-2019)

Identifiants

Citer

Pierre Bérard, Bernard Helffer. Level sets of certain Neumann eigenfunctions under deformation of Lipschitz domains \\ Application to the Extended Courant Property. 2018. ⟨hal-01783968v1⟩
248 Consultations
292 Téléchargements

Altmetric

Partager

More