Level sets of certain Neumann eigenfunctions under deformation of Lipschitz domains \\ Application to the Extended Courant Property
Résumé
In this paper, we prove that the Extended Courant Property fails to be true for certain $C^{\infty}$ domains with Neumann boundary condition: there exists a linear combination of a second and a first Neumann eigenfunctions, with three nodal domains. For the proof, we revisit a deformation argument of Jerison and Nadirashvili (J. Amer. Math. Soc. 2000, vol. 13). This argument being interesting in itself, we give full details. In particular, we carefully control the dependence of the constants on the geometry of our Lipschitz domains along the deformations.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...