Optimal Transport Approximation of Measures - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Optimal Transport Approximation of Measures

Résumé

We propose a fast and scalable algorithm to project a given density on a set of structured measures. The measures can be discrete or supported on curves for instance. The proposed principle and algorithm are a natural generalization of previous results revolving around the generation of blue-noise point distributions, such as Lloyd's algorithm or more advanced techniques based on power diagrams. We provide a comprehensive convergence theory together with new approaches to accelerate the generation of point distributions. We also design new algorithms to project curves onto spaces of curves with bounded length and curvature or speed and acceleration. We illustrate the algorithm's interest through applications in advanced sampling theory, non-photorealistic rendering and path planning.
Fichier principal
Vignette du fichier
ms.pdf (9.22 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01773993 , version 1 (23-04-2018)
hal-01773993 , version 2 (05-07-2019)

Identifiants

  • HAL Id : hal-01773993 , version 1

Citer

Frédéric de Gournay, Jonas Kahn, Léo Lebrat, Pierre Weiss. Optimal Transport Approximation of Measures. 2018. ⟨hal-01773993v1⟩
568 Consultations
543 Téléchargements

Partager

More