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Abstract

We propose a fast and scalable algorithm to project
a given density on a set of structured measures. The
measures can be discrete or supported on curves for
instance. The proposed principle and algorithm are
a natural generalization of previous results revolving
around the generation of blue-noise point distributions,
such as Lloyd’s algorithm or more advanced techniques
based on power diagrams. We provide a comprehen-
sive convergence theory together with new approaches
to accelerate the generation of point distributions. We
also design new algorithms to project curves onto spaces
of curves with bounded length and curvature or speed
and acceleration. We illustrate the algorithm’s inter-
est through applications in advanced sampling theory,
non-photorealistic rendering and path planning.

1 Introduction

The aim of this paper is to approximate a target mea-
sure p with probability density function p : Q@ — R,
with probability measures possessing some structure.
This problem arises in a large variety of fields including
finance (Pages and Wilbertz, 2012), computer graphics
(Solomon et al., 2015), sampling theory (Boyer et al.,
2016) or optimal facility location (Gastner and New-
man, 2006). An example in non photo-realistic render-
ing is shown in Figure 1, where the target image in Fig.
la is approximated by an atomic measure in Fig. 1b,
by a smooth curve in Fig. 1c and by a set of segments
in Fig. 1d. Given a set of admissible measures M (i.e.
atomic measures, measures supported on smooth curves
or segments), the best approximation problem can be
expressed as follows:

i 1
min D(v, p), (1)

where D is a distance between measures.

1.1 Contributions
Our main contributions in this article are listed below.

e Develop a few original applications for the proposed
algorithm.

e Develop a fast numerical algorithm to solve prob-
lem (1), when D is the W; transportation distance
and Q = [0,1]2.

e Show its connections to existing methods such
as Lloyd’s (1982) algorithm or optimal transport
halftoning (De Goes et al., 2012).

e Design algorithms specific to the case where the
space of admissible measures M consists of mea-
sures supported on curves with geometric con-
straints (e.g. fixed length and bounded curvature).

e Generate a gallery of results to show the versatility
of the approach.

In the next section, we put our main contributions in
perspective.

1.2 Related works

1.2.1 Projections on measure spaces

To the best of our knowledge, the generic problem (1)
was first proposed by Chauffert et al. (2017) with a dis-
tance D constructed through a convolution kernel. For-
mulation (1) covers a large amount of applications that
are often not formulated explicitly as optimization prob-
lems. We review a few of them below.

Finitely supported measures A lot of approaches

have been developed when M is the set of finitely sup-
ported measures

1 n N
Mfm:{l/:n;(sx“(mi)iEQ }, (2)



(a) Original (b) Stippling

(d) Dashing

(¢) Curvling

Figure 1: Approximating an image with a measure supported on points (stippling, 100k, 202”), curve (curvling,
100k, 313”) or segments (dashing, 33k, 237”). In each case, the iterative algorithm starts from a set of points drawn

uniformly at random.

where n is the support cardinality, or the set of atomic
measures defined by:
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where A,y = {1, wli] =1,w[i| >0, Vi} is the
canonical simplex.

For these finitely supported measure sets, solving
problem (1) yields nice stippling results, which is the
process of approximating an image with a finite set of
dots (see Fig. 1b). This problem has a long history and
a large amount of methods were designed to find dots
locations and radii that minimize visual artifacts due
to discretization (Floyd, 1976; Lloyd, 1982; Ulichney,
1987; Balzer et al., 2009). Lloyd’s algorithm is among
the most popular. We will see later that this algorithm
is a solver of (1), with M = M, ,. Lately, explicit
variational approaches (Schmaltz et al., 2010; De Goes
et al., 2012) have been developed. The work of De Goes
et al. (2012) is closely related to our paper since they
propose solving (1), where D is the Wy transportation
distance and M = M ,. This sole problem is by no
means limited to stippling and it is hard to provide a
comprehensive list of applications. Xin et al. (2016) give
a few of them in their introduction.

Best approximation with curves Another problem
that is met frequently is to approximate a density by a
curve. This can be used for non photorealitistic render-
ing of images or sculptures (Kaplan et al., 2005; Akle-
man et al., 2013). It can also be used to design trajec-

tories of the nozzle of 3D printers (Chen et al., 2017).
It was also used for the generation of sampling schemes
(Boyer et al., 2016).

Apart from the last application, this problem is usu-
ally solved with methods that are not clearly expressed
as an optimization problem.

Best approximation with arbitrary objects
Problem (1) encompasses many other applications such
as the optimization of networks (Gastner and Newman,
2006), texture rendering or non photorealistic rendering
(Hertzmann, 2003; Hiller et al., 2003; Schlechtweg et al.,
2005; Kim et al., 2009; Du, 2017), or sampling theory
(Boyer et al., 2014).

Overall, this paper unifies many problems that are
often considered as distinct with specific methods.

1.2.2 Numerical optimal transport

In order to quantify the distance between the two mea-
sures, we use transportation distances (Monge, 1781;
Kantorovich, 1942; Villani, 2003). In our work, we are
interested mostly in the semi-discrete setting, where one
measure is a density and the other is discrete. In this
setting, the most intuitive way to introduce this dis-
tance is via Monge’s transportation plan and alloca-
tion problems. Given an atomic measure v € M, ,
and a density p, a transport plan T € T(x,w) is a
mapping T : Q — {x[1],...,x[n]} such that V1 < i <
n, w(T~1(x[i])) = wli]. In words, the mass at any point
x € Q is transported to point T'(x). In this setting, the



Wy transportation distance is defined by:

W2 (.U’a - inf

TS
€T (x,w)

and the minimizing mapping 7T describes the optimal
way to transfer u to v.

Computing the transport plan T and the distance
W5 is a challenging optimization problem. In the semi-
discrete setting, Aurenhammer et al. (1998) have pro-
vided an efficient method based on “power diagram”

r “Laguerre diagram”. This framework was recently
further improved and analyzed (De Goes et al., 2012;
Mérigot, 2011; Lévy, 2015; Kitagawa et al., 2016). The
idea is to optimize a convex cost function with second-
order algorithms. We will make use of those results in
the paper, and improve them by stabilizing them while
keeping the second-order information.

o)|3pu(x) dz,  (4)

1.2.3 Numerical projections on curve spaces

Projecting curves on admissible sets is a basic brick for
many algorithms. For instance, mobile robots are sub-
ject to kinematic constraints (speed and acceleration),
while steel wire sculptures have geometric constraints
(length, curvature).

While the projection on kinematic constraints is quite
easy, due to convexity of the underlying set (Chauf-
fert et al., 2014), we believe that this is the first time
projectors on sets defined through intrinsic geometry
are designed. Similar ideas have been explored in the
past. For instance, curve shortening with mean curva-
ture motion (Evans et al., 1991) is a long-studied prob-
lem with multiple applications in computer graphics and
image processing (Yezzi, 1998; Moisan, 1998; Tagliasac-
chi et al., 2012). The proposed algorithms allow ex-
ploring new problems such as curve lengthening with
curvature constraints.

1.3 Paper outline

The rest of the paper is organized as follows. We first
outline the overarching algorithm in Section 2. In Sec-
tions 3 and 4, we describe more precisely and study
the theoretical guarantees of the algorithms used re-
spectively for computing the Wasserstein distance, and
for optimising the positions and weights of the points.
We describe the relationships with previous models in
Section 5. The algorithms in Sections 3 and 4 are
enough for, say, halftoning, but do not handle con-
straints on the points. In Section 6, we add those con-

straints and design algorithms to make projections onto
curves spaces with bounded speed and acceleration, or
bounded length and curvature. Finally some applica-
tion examples and results are shown in Section 7.

2 Global approach

In this section, we show how to numerically solve the
best approximation problem:

: 2
Jnf W2 (v, ), (5)

where M is an arbitrary set of measures supported on
Q=10,12

2.1 Discretization

Problem (5) is infinite-dimensional and first needs to
be discretized to be solved using a computer. We pro-
pose to approximate M by a subset M,, C M, ,, of the
atomic measures with n atoms. The idea is to construct

M, as
M, ={v(x,w),x € X,,w € W, }, (6)

where the mapping v : (Q" x A,_1) = Mg, is defined
by

v(x,w) = Zw[i]éx[i]. (7)

The constraint set X,, C Q™ describes interactions be-
tween points and the set W, C A,,_; describes admis-
sible weights.

Chauffert et al. (2017) have shown that for any sub-
set M of the probability measures, it is possible to con-
struct a sequence of approximation spaces (M, )nen of
type (6), such that the solution sequence (), ¢cn of the
discretized problem

,dof W3 (v, ), (8)

converges weakly along a subsequence to a global min-
imizer v* of the original problem (5). We will show
explicit constructions of constraint sets X,, and W, for
measures supported on curves in Section 6.

The discretized problem (8) can now be rewritten in
a form convenient for numerical optimization:

KEXWEW F(x,w), )



where we dropped the index n to simplify the presenta-
tion and where

Flox,w) = W3 (v, w), 1) (10)

2.2 Overall algorithm

In order to solve (9), we propose to use an alternat-
ing minimization algorithm: the problem is minimized
alternatively in x with a variable metric projected gra-
dient descent and then in w with a direct method. Al-
gorithm 1 describes the procedure in detail.

A few remarks are in order. First notice that we are
using a variable metric descent algorithm with a metric
Y = 0. Hence, we need to use a projector defined in
this metric by:

H)E(’c (x0) := Arger)réin Ix — x0||22k with
Ix —x0ll%, = (Zk(x —x%0), (x = %0)).

Second, notice that X may be nonconvex. Hence, the
projector H)E(’“ on X might be a point-to-set mapping.
In the x-step, the usual sign = is therefore replaced by
€.

There are five major difficulties listed below to imple-
ment this algorithm:

1 step: How to compute efficiently and robustly
F(x,w)?

w step: How to compute argmin F'(x, w)?
weWw

x step: How to compute the gradients V4 F and the
metric X7

IT step: How to implement the projector H)E(’“?

Generally: How to accelerate the convergence given
the specific problem structure?

The next four sections provide answers to these ques-
tions.

Note that if there are no constraints like in halftoning
or stippling, there is no projection and the Il-step is
trivial: Xg4+1 = Yi+1-

Algorithm 1 Alternating projected gradient descent to
solve (1).

Require: Oracle that computes F

Require: Projectors IIx on X.

Inputs:

Initial guess xg

Target measure g

Number of iterations Nit.

Outputs:

An approximation (X, w) of the solution of (1).

for k=0 to Nit —1 do
W1 = argmin(F (xy, w))

weWw

> 1)-step.

> w-step

9: Choose a positive definite matrix Y.
10: Yi+1 = Xg — ElzlvxF(Xlw Wit1)-

11: Xi4+1 € Hik (yk+1)

12: end for

13: Set X = xpni: and W = Wy¢.

> x-step
> II-step

3 Computing the Wassertein dis-
tance I’ : i-step

3.1 Semi-discrete optimal transport

In this paragraph, we review the main existing results
about semi-discrete optimal transport and explain how
this can be achieved. Finally we provide algorithms that
proved to be more efficient than existing approaches.
We work under the following hypotheses.

Assumption 1.

e The space §2 is a compact convex polyhedron, typi-
cally the hypercube.

e 1 is an absolutely continuous probability density
function w.r.t. the Lebesgue measure.

e v is an atomic probability measure supported on n
points.

Let us begin by a theorem stating the uniqueness of
the optimal transport plan, which is a special case of
Theorem 10.41 in the book by Villani (2008).

Theorem 1. Under Assumption 1, there is a unique
optimal transportation plan T, solution of problem (4).

Before further describing the structure of the optimal
transportation plan, let us introduce a fundamental tool
from computational geometry (Aurenhammer, 1991).



Definition 1 (Laguerre diagram). Let x € Q" denote
a set of point locations and ¢ € R™ denote a weight
vector. The Laguerre cell L; is a closed convex polygon
set defined as

Li(p,x)={xeQV1<j<nj#i,
l = x[i]|[5 = [i] < llo —x[]|5 — ]} (11)

The Laguerre diagram generalizes the Voronoi dia-
gram, since the latter is obtained by taking @ = 0 in
equation (11).

The set of Laguerre cells partitions 2 in polyhedral
pieces. It can be computed in O(nlog(n)) operations
for points located in a plane (Aurenhammer, 1991). In
our numerical experiments, we make use of the CGAL
library to compute them (The CGAL Project, 2016).
We are now ready to describe the structure of the opti-
mal transportation plan 7%, see (Gangbo and McCann,
1996, Example 1.9).

Theorem 2. Under Assumption 1, there exists a vector
P* € R™, such that

(T)~H(xli]) = Li(y*,x). (12)

In words, Theorem 2 states that each point x[i] is
spread over a convex polygon. When transporting mass
1 to v, the physical interpretation of 4*[i] is the cost
of displacement of the mass at point x[i]. From a nu-
merical point of view, it allows transforming the infinite
dimensional problem (4) into the following finite dimen-
sional problem:

Wa(p,v) = max g(t, x, w), (13)
where
,X, W) = l x[i] — z||” — [i] ) du(x
9(4p.x,w) ;/W) (i) — 2] — 2603} () +

The last problem is to find vector ¥*. This is the
subject of numerous recent papers, and we suggest an
original approach in the next section.

3.2 Solving the dual problem

In this paragraph, we focus on the resolution of (13),
i.e. computing the transportation distance numerically.

The following proposition summarizes the nice proper-
ties of the function g. The derivative formula were al-
ready given in various papers (De Goes et al., 2012;
Lévy, 2015). We refer the interested reader to the work
by Kitagawa et al. (2016) for a rigorous proof of the
result.

Proposition 1. Under Assumption 1, function g is
concave with respect to variable 1, it is also twice dif-
ferentiable and its derivatives are given by:

)
aTi = wli] — p(L(h,x)), (15)

Py _ )
OOy /azi(w,x)ﬂaﬁjw,x) Iaelil =[]l . 7&5. )
16

The formula for the diagonal term % s given by
the closure relation

- dvioY;

Proposition 1 suggests a way to compute the opti-
mal vector 1*: well-chosen first- or second-order as-
cent methods should converge to the global maximizer
of problem (13), since the problem is concave. Many
methods have been proposed in the literature, with the
latest references providing strong convergence guaran-
tees (Aurenhammer et al., 1998; De Goes et al., 2012;
Mérigot, 2011; Lévy, 2015; Kitagawa et al., 2016). This
may give the false impression that the problem has
been fully resolved: in practice the conditions guaran-
teeing convergence are often unmet. For instance, it
is well-known that the convergence of first-order meth-
ods depends strongly on the Lipschitz constant of the
gradient (Nesterov, 2013b, Thm 2.1.7). Unfortunately,
this Lipschitz constant may blow up depending on the
geometry of the point set x and the regularity of the
density p, see Remark 1. On the other hand, second-
order methods heavily depend on the Holder regularity
of g (Jarre and Toint, 2016; Grapiglia and Nesterov,
2017). Unfortunately, it can be shown that g is Holder
with respect to ¢ only under certain circumstances. In
particular, the mass of the Laguerre cells u(L;(9,x))
should not vanish (Kitagawa et al., 2016, Remark 4.2).
Hence, only first-order methods should be used in the
early step of an optimization algorithm, and the initial
guess should be well-chosen due to slow convergence.
Then, second-order methods should be the method of
choice. In this paper, we make use of a trust-region
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(a) Example with 5 points (b) Example with 25 points

Figure 2: Configurations of points generating a high
Lipschitz constant for the gradient of ¢ in .

method (Wright and Nocedal, 1999), which interpolates
between first- and second- order methods automatically,
initialized with the multi-scale approach suggested in
(Mérigot, 2011). In particular, this method is guaran-
teed to converge and to have quadratic convergence in
a neighborhood of the global minimizer (Conn et al.,
2000). In our case, trust-region methods allow to sta-
bilize the algorithm especially when a point x[i] has a
Laguerre cell with zero p-mass, that is u(£;) = 0. In-
deed, in this case, the corresponding line of the Hessian
cancels and standard Newton methods fail to converge.
We observed numerically that our algorithm always con-
verges, where the classical algorithm may fail to achieve
convergency.

Remark 1 (High Lipschitz constant of the gradient).
In this example illustrated by Figure 2, we show that
the Lipschitz constant of the gradient can be arbitrarily
large. We consider that u is the uniform measure on )
and that v is an atomic measure supported on n points
aligned vertically and equispaced i.e. x[i] = (5, £2)
on Q = [0,1)2. In this case the Hessian is a multiple of
the matriz of the 1d Laplacian with Neumann boundary
conditions and the largest eigenvalue of H scales as 4n.
The Lipschitz constant hence blows up with the dimen-
ston since. Notice that this situation s typical when it
comes to approximating a density with a curve.

3.3 Numerical integration

The algorithm requires computing the integrals (14) and
(16). In all our numerical experiments, we use the fol-
lowing strategy. We first discretize the density p as-
sociated to the target measure p using a bilinear or a
bi-cubic interpolation on a regular grid. Then, we ob-
serve that the volume integrals in Equation (14) can be

replaced by integrals of polynomials along the edges of
the Laguerre diagram by using Green’s formula. Hence
computing the cost function, the Hessian or the gradient
all boil down to computing edge integrals.

Then, since the underlying density is piecewise poly-
nomial, it is easy to see that only the first moments of
the measure p along the edges are needed to compute all
formula. We pre-evaluate the moments by using exact
quadrature formulas and then use linear combinations
of the moments to finish the evaluation.

To the best of our knowledge, this is a mnovel
lightweight procedure. It significantly speeds up the
calculations compared to former works (Mérigot, 2011;
De Goes et al., 2012), which enables discretization of the
density p over an arbitrary 3D mesh. After finishing this
paper, we realized that the idea of using Green formu-
las was already suggested by Xin et al. (2016), although
not implemented. It is to be noted that this idea is par-
ticularly well suited to Cartesian grid discretization of
the target density p. Indeed in this case, we takes ad-
vantage of the fact that the intersection of the Laguerre
cells and the grid can be computed analytically without
search on the mesh.

4 Optimizing the weights and
computing the gradient wrto
the positions : w and x steps

4.1 Computing the optimal weights

In this section, we focus on the numerical resolution of
the following subproblem

argmin F'(x, w). (18)
weW

4.1.1 Totally constrained w

When W = {w} is reduced to a singleton, the solution
of (18) is obviously given by w* = w.

4.1.2 Unconstrained minimization in w

When W is the simplex, the unconstrained minimiza-
tion problem (18) can be solved analytically.

Proposition 2. If W = A,,_1, the solution w* of (18)
s given for all 1 <1 <n by

w[i] = p(L£:(0, %)), (19)



that is the volume (w.r.t. the measure ) of the i-th
Laguerre cell with zero cost 1, i.e. the i-th Voronoi
cell.

Proof. In expression (14), the vector 1 can be inter-
preted as a Lagrange multiplier for the constraint

(T~ (x[i])) = wlil.

Since the minimization in w removes this constraint,
the Lagrange multiplier might be set to zero. O

4.2 Gradient V, F and the metric X,

The following proposition allows to compute
VxF(x,w). It can be found in (De Goes et al.,
2012) for instance.

Proposition 3. Let ©* denote the maximizer of (13).
The gradient V«F(x,w) is given by the following for-
mula.

OF (x,w)

o = Wil (<l = bii) (20)

where bli] is the barycenter of the i-th Laguerre cell

ACl(’lﬁ*, X).‘

S A0(@)
fﬁi(‘l/’* ,X) du(l‘) .

Now, we discuss how to choose the metric (Xj) in
Algorithm 1. This choice is critical but complex and
we will only provide a good heuristic here. Notice that
line searches should be used with caution here, since an
evaluation of the cost function requires itself the reso-
lution of a complicated convex programming problem
described in paragraph 3.2.

Let us first recollect a few typical theorems about
the convergence of first-order optimization algorithms
(Nesterov, 2013a; Attouch et al., 2013).

bli] = b(x)i] (21)

Theorem 3. Let X C R™ denote a closed set, ¥ €
R™ "™ denote a positive definite matriz and f: R™ — R
denote a C' function with Lipschitz continuous gradi-
ent:

V(z1,22) € R"XR™, [V f(21)=V f(z2)|g1 < Ll|lz1—22]]5.

(22)
Consider the following projected gradient descent

Tp41 € H%é (:L’k - iﬁ)lVf(xk)) . (23)

Then the sequence (xk)ken converges along subsequences
and satisfies

1
o = onla =0 (1) (24)

under either of the following additional assumptions.
e X is convex and compact.
e X =R? and f is coercive.

o f+.1x is Kurdyka-Lojasiewicz, where vx is the in-
dicator function of X. !

This theorem basically states that for a well-chosen
constant metric dependent on the global Lipschitz con-
stant, two consecutive iterates will vanish with the it-
erates. The step-size % together with the Lipschitz as-
sumption is the key here. In particular, the sequence
(zx)ken can diverge to oo whenever the step-size is
larger than % The last Kurdyka-Lojasiewicz assump-
tion is very general. Unfortunately, it is unclear whether
the Wasserstein distance in the semi-discrete setting sat-
isfies it.

Theorem 3 shows that it is critical to evaluate the
Lipschitz constant of Vi F. By equation (20), we need
to evaluate the variations of the Laguerre cells centers of
mass with respect to the Dirac mass locations. Unfor-
tunately, the Lipschitz constant can be arbitrarily large
for sites x in arbitrary position, or singular densities p,
see Remark 1. Hence, we can only hope for a local result
describing the Lipschitz constant. Du et al. (1999) have
studied a very closely related question, namely the vari-
ations of Laguerre cells with respect to the positions x.
This result together with Theorem 3 yields the following
result.

Proposition 4. Assume that VxF(x*) = 0, i.e. that
x*[i] = b(x*)[i] for all i. Set

¥ = diag(pu(Li(¥*, X)) 1<i<n)-

Then the mapping b(x) is locally Lipschitz (see defini-
tion (22)) at x* with constant 1.

This proposition suggests that a variable metric
gradient descent with a metric depending only on
w(Li(*,x*)) may perform well in practice for X = Q"

1We skip the technical definition of Kurdyka-Lojasiewicz func-
tions and refer to the paper by Attouch et al. (2013) for more
details.



at least around critical points. This result is particu-
larly attractive, since this choice does not require any
line-search and has a low computational complexity.

However, notice that this choice should be consid-
ered as a heuristic for two reasons. First, the chosen
metric Yy, varies in space and Theorem 3 cannot be ap-
plied directly. Second, notice that whenever X # Q"
the optimality conditions for x do not simply read
VxF(x*) = 0, hence Proposition 4 does not hold. The
only case when Proposition 4 proves local convergence
is for the approximation with a finitely supported mea-
sure (the blue noise problem). In this case ¥ is inde-
pendent of k (totally constrained w) and there are no
constraints.

5 Links with other models

5.1 Special cases of the framework
5.1.1 Lloyd’s algorithm

Lloyd’s (1982) algorithm is well-known to be a specific
solver for problem (5), with X = Q and W = A,,_1, i.e.
to solve the quantization problem with variable weights.
We refer to the excellent review by Du et al. (1999) for
more details. It is easy to check that Lloyd’s algorithm
is just a special case of Algorithm 1, with the specific
choice of metric

Xy, = diag (u(£i(0,x))) . (25)

5.1.2 Blue noise through optimal transport

De Goes et al. (2012) has proposed to perform stippling
by using optimal transport distance. This application
can be cast as a special case of problem (5), with X = Q
and W = {%} The algorithm proposed therein is also
a special case of algorithm 1 with

S = ding (4(Li(6 (). ) = (26)

and the step-size 7 is optimized through a line search.
Note however the extra cost of applying a line-search
might not worth the effort, since a single function eval-
uation requires solving the dual problem (13).

5.2 Comparison with electrostatic

halftoning

An alternative to the Wy distance was proposed, im-
plemented and studied (Schmaltz et al., 2010; Teuber

et al., 2011; Fornasier et al., 2013; Chauffert et al., 2017).
Namely, the distance D in (1) is defined by

1
D(v, ) = 5llh* (v = 1) 720, (27)

where h is a smooth convolution kernel and x denotes
the convolution product. This distance can be inter-
preted intuitively as follows: the measures are first
blurred by a regularizing kernel to map them in L?(Q)
and then compared using a simple L? distance.

In some cases, the two approaches are actually quite
similar from a theoretical point of view. Indeed, it can
be shown that the two distances are strongly equivalent
under certain assumptions (Peyre, 2016).

The two approaches however differ significantly from
a numerical point of view. Table 1 provides a quick
summary of the differences between the two approaches.
We detail this table below.

e The theory of optimization is significantly harder in
the case of optimal transport since it is based on a
subtle mix between first and second order methods.

e The convolution-based algorithms require the use
of methods from applied harmonic analysis dedi-
cated to particle simulations such as fast multiple
methods (FMM) (Greengard and Rokhlin, 1987)
or non uniform Fast Fourier Transforms (NUFFT)
(Potts and Steidl, 2003). On their side, the opti-
mal transport based approaches require the use of
computational geometry tools such as Voronoi or
Laguerre diagrams.

e The examples provided here are only two dimen-
sional. Many applications in computer graphics re-
quire dealing with 3D problems or larger dimen-
sional problems (e.g. clustering problems). In that
case, the numerical complexity of convolution based
problems seems much better controlled: it is only
linear in the dimension d (i.e. O(dnlog(n))), while
the exact computation of Laguerre diagrams re-
quires in O([n%?]) operations. Hence, for a large
number of particles, the approach suggested here is
mostly restricted to d = 2.

e In terms of computational speed for 2D applica-
tions, we observed that the optimal transport based
approach was usually between 1 and 2 orders of
magnitude faster.

e Finally, we did not observe significant differences in
terms of approximation quality from a perceptual
point of view.



Convolution | Optimal transport
Optimization | 1st order Mix of 1st and 2nd
Computation | FMM/NUFFT | Power diagram
Scaling to d Linear Polynomial
Speed in 2d Slower Faster
Quality Good Good

Table 1: A comparison between convolution and opti-
mal transport based approximation of measures.

6 Projections on curves spaces

In this section, we detail a numerical algorithm to eval-
uate the projector IIx, for spaces of curves with kine-
matic or geometric constraints.

6.1 Discrete curves

A discrete curve is a set of points x € Q" with con-
straints on the distance between successive points. Let

x[2] — x[1]
A i x — :
x[n] — x[n — 1]
x[1] — x[n]
and
x[2] — X[;]
AL x — x[3) ==t

x[n] — x[n — 1]

denote the discrete first order derivatives operators with
or without circular boundary conditions. From hereon,
we let A; denote any of the two operators. In order
to control the distance between two neighboring points,
we will consider two types of constraints: kinematic ones
and geometrical ones.

6.1.1 Kinematic constraints

Kinematic constraints typically apply to vehicles: a
car for instance has a bounded speed and acceleration.
Bounded speeds can be encoded through inequalities of
type

1(Ax)[i]ll2 < o, Vi. (28)

Similarly, by letting A5 denote a discrete second order
derivative, which can for instance be defined by Ay =
AT A1, we may enforce bounded acceleration through

([ (A2x)[i][2 < a2, Vi. (29)
The set X is then defined by
X ={xecQ" [|[Aix][cc2 < 01, [|A2X][[00,2 < a2}, (30)

where, for y = (y[1],...,¥[n]),

SUPj<i<n Iy [l p-

[Ylloow =

6.1.2 Geometrical constraints

Geometrical constraints refer to intrinsic features of
a curve such as its length or curvature. In order to
control those quantities using differential operators, we
need to parameterize the curve with its arc length. Let
s :[0,T] — R? denote a C? curve with arc length pa-
rameterization, i.e. ||$(t)|l2 = 1,Vt € [0, T]. Its length is
then equal to T. Its curvature at time ¢ € [0, 7] is equal
to w(t) = |5(t) -

In the discrete setting, constant speed parameteriza-
tion can be enforced by imposing

[(Arx)[i] |2 = a1, Vi. (31)
The total length of the discrete curve is then equal to
(7’L — 1)0&1.
Similarly, when (31) is satisfied, discrete curvature
constraints can be captured by inequalities of type
[(A2x)[i][|2 < az,Vi. (32)
Indeed, at a index 2 < i <n — 1, we get:
1(A2x)[i]113 = [I(x[d] — x[i — 1]) — (x[i + 1] — x[a]) 3
= [lx[i] — x[i — 113 + lIx[i + 1] = x[q]]13
= 2(x([i] — x[i — 1], x[i + 1] — x[i])
= 202(1 — cos (6;)),
where 6; = £ (x[i] — x[¢ — 1], x[i + 1] — x][d]) is the angle
between successive segments of the curve. Hence, by
imposing (31) and (32), the angle 6, satisfies

|6;] < arccos <1 - a%) (33)
"= 203 )"

In order to fix the length and bound the curvature,
we may thus choose the set X as

X = {xe Q" [[(Aix)[i]ll2 = on, [[A2x[[oc 2 < a2}
(34)
Let us note already that this set is nonconvex, while
(30) was convex.



6.1.3 Additional linear constraints

In applications, it may be necessary to impose other
constraints such as passing at a specific location at a
given time, closing the curve with z; = z,, or having a
specified mean value. All those constraints are of form

Bx =b, (35)

where B € RP*2” and b € RP are a matrix and vector
describing the p linear constraints.

6.1.4 Summary

In this paper, we will consider discrete spaces of curves
X defined as follows:

X = {x such that A;x € Y;,1 <1i <m, Bx = b},
(36)
The operators A; may be arbitrary, but in this paper,
we will focus on differential operators of different orders.
The set Y; describes the admissible set for the i-th con-
straint. For instance, to impose a bounded speed (28),

we may choose
Y, = {y S RnXQ, HyZHQ < Ozl,Vi}. (37)

In all the paper, the set of admissible weights W will
be either the constant {1/n} or the canonical simplex
JAVREE

6.2 Numerical projectors
The Euclidean projector IIx : R™ — X is defined for all
z € Q" by

1
Ix (z) = Argmin - ||x — z||
xeX 2

= Argmin
Apx€Y,1<k<m
Bx=b

1
Slx—al} ()

When X is convex, IIx(z) is a singleton. When it is
not, there exists z such that IIx(z) contains more than
one element. The objective of this section is to design
an algorithm to find critical points of (38).

The specific structure of (38) suggests using splitting
based methods (Combettes and Pesquet, 2011), able
to deal with multiple constraints and linear operators.
The sparse structure of differential operator makes the
Alternating Direction Method of Multipliers (ADMM;
Glowinski, 2014), particularily suited for this problem.
Let us turn (38) into a form suitable for the ADMM.
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Let v1,...,vm denote positive reals used as precondi-
tionners. Define
1A yi
A= : , y=1: (39)
YmAm Ym
and
Y = ’YlYl X ... X ’)/mYm (40)
Problem (38) then becomes
1
Ix (z) = Argmin - ||x — z||3
Bx=b 2
Ax=y
yeY
= Argmin Hi(x) + fa(y), (41)
x=y

where fi(x) = 3lx — z[[ + (%), fo(y) = t¥(y), L =
{x,Bx = b} denotes the set of linear constraints and
the indicator ty of Y is defined by:

ifyey,

{0 . (42)
+o00  otherwise.

vy (y) =
The ADMM for solving (41) is given in Algorithm 2.
Specialized to our problem, it yields Algorithm 3. The
linear system can be solved with a linear conjugate gra-
dient descent.

Algorithm 2 Generic ADMM.
Inputs:
functions f; and fo, matrix A, initial guess (xq, Ao),
parameter 3 > 0.
1: while Stopping criterion not met do

Vi1 = Argmin fo(y) + 5 |14x — i + Al
y

i1 = Argmin (%) + 5 4% — i + el

Ait1 = A + AXpg1 — Yit1-
2: end while

Convergence issues The convergence and rate of
convergence of the ADMM is a complex issue that de-
pends on the properties of functions f; and fo and on
the linear transform A. In the convex setting (30), the
sequence (xy)x converges to IIx(z) linearly (see Corol-
lary 2 of Giselsson and Boyd (2017)). The behavior in a
nonconvex setting (34) is still mostly open despite recent
advances in Li and Pong (2015). Nevertheless, we re-
port that we observed convergence empirically towards
critical points of Problem (38).



Algorithm 3 ADMM to solve the projection problem.

Inputs:
Vector to project z, initial guess (Xo, Ag), matrices
A and B, projector (Ily), 5 > 0.
1: while Stopping criterion not met do
Vi1 = Iy (Axg + Ag).

Solve
ﬂATA + 1 BT Xk4+1\ ﬂAT(y]H_l — )\k) + z
B 0 w )= b :
Akl = A+ AXp 1 — Vi1
2: end while
Choosing the coefficients 5 and (7;) Despite re-

cent advances (Nishihara et al., 2015), a theory to se-
lect good values of 5 and (7;) still seems lacking. In this
paper, we simply set v; = || A;]|2, the spectral norm of
A;. In practice, it turns out that this choice leads to
stable results. The parameter 5 is set manually to ob-
tain a good empirical behavior. Notice that for a given
application, it can be tuned once for all.

6.3 Numerical examples

To illustrate the proposed method, we project the sil-
houette of a cat onto spaces of curves with fixed length
and bounded curvature in Fig. 3. In the middle, we
see how the algorithm simplifies the curve by making
it smaller and smoother. On the right, we see how the
method is able to make the curve longer, by adding loops
of bounded curvature, while still keeping the initial cat’s
shape.

6.4 Multi-resolution implementation

When X is a set of curves, the solution of (9) can be
found more efficiently by using a multi-resolution ap-
proach. Instead of optimizing all the points simultane-
ously, it is possible to only optimize a down-sampled
curve, allowing to get cheap warm start initialization
for the next resolution.

In our implementation, we use a dyadic scaling. We
up-sample the curve by adding mid-points in between
consecutive samples. The weights from one resolution
to the next are simply divided by a factor of 2.
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7 Applications

7.1 Non Photorealistic Rendering with
curves

In the following subsections we exhibit a few rendering
results of images using different types of measures sets

M.

7.1.1 Gray-scale images

A direct application of the proposed algorithm allows
to approximate an arbitrary image with measures sup-
ported on curves. An example is displayed in Fig. 4
with curves satisfying different kinematic constraints.

7.1.2 Color images

There are different ways to render color images with
the proposed idea. Wei (2010) and Chauffert et al.
(2015) provide two different examples. In this section,
we propose a simple alternative idea to give a color to
the dots or curves. Given a target vectorial density
o = (pr,pc,pB) : @ — [0,1], the algorithm we pro-
pose simply reads as follows:

1) We first construct a gray level image defined by:

p=(pr+pc + pB)/3. (43)

2) Then, we project the density p onto the set of con-
straints M with Algorithm 1. This yields a se-
quence of points x € Q™.

3) Then, for each point x[¢] of the discretized measure,
p(x[i])
p(x[])) "

we select a color as

We use only saturated colors, explaining the division
in step 3). The parallel for gray-scale images, is that
we represent stippling results with disks taking only the
maximal intensity. Then, the mean in step 1) is used to
attract the curve towards the regions of high luminance
of the image. An example of result of the proposed
algorithm is shown in Figure 5.

7.1.3 Dynamic examples

The codes can also be used to approximate videos. The
principle is simple: first we approximate the first se-
quence of the frame with our projection algorithm start-
ing from an arbitrary initial guess. Then, the other



Figure 3: Examples of projections of a curve (in red) on spaces of curves with constraints (in blue). Center: projection
on sets of curves with smaller length and bounded curvature. Right: projection on sets of curves with longer length

and bounded curvature.

Curve length [

(a) Original

(b)

l
(d) Curve length 75

(¢) Curve length é

Figure 4: Examples of Curvling (stippling 4+ curve projection, 256k, ~~ 107),

frames are obtained with the projection algorithm, tak-
ing as an initial guess, the result of the previous itera-
tion. This ensures some continuity of the dots or curves
between consecutive frames. Some videos are given in
the supplementary material.

7.2 Path planning

In this section, we provide two applications of the pro-
posed algorithm to path planning problems.

7.2.1 Videodrone

Drone surveillance is an application with increasing in-
terest from cities, companies or even private individ-
uals. In this paragraph, we show that the proposed
algorithms can be used to plan the drone trajectories
for surveillance applications. We use the criminal data
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provided by the City of Philadelphia (2017) to create a
density map of crime in Philadelphia, see Fig. 6a. We
give different weights to different types of crimes. By
minimizing (1), we can design an optimal path, in the
sense that it satisfies the kinematic constraints of the
drone and passes close to dangerous spots more often
than in the remaining locations. In this example, we
impose a bounded speed, a maximal yaw angular veloc-
ity and also to pass at a given location at a given time
to recharge the drone to satisfy autonomy constraints.

7.2.2 Railway design

In this example, we give an example of application of
railway design. Assuming that trains drive at constant
speed, it is necessary to bound the curvature of the rail-
way. In addition, we would like the train to be pass
nearby the most populated areas and to avoid some lo-



(a) Target color image

(b) Approximate color measure

Figure 5: Examples of color curvling, 512k, ~ 24’),

| Small crimes

- 'Homicide

(a) The crime density u

Figure 6: The data super imposed on a map of Philadelphia. A possible drone trajectory made. In this

Robbet Fireajjm g

example,

the drone passes 4 times to its recharging location, explaining the different colors of the trajectory. In this example,
the trajectory was discretized with 8k points and optimized in 30”.

cations such as the sea an the mountains. The speed,
curvature and location constraints can all be imposed
within the ADMM Algorithm 3. A density map of pop-
ulation can be used as a target density. The result of
the algorithm is displayed in Fig. 7. On this example, it
can be seen that the rail favors the east and west coast
of USA.
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7.2.3 Sampling in MRI

Like Boyer et al. (2016), we propose to generate com-
pressive sampling schemes in MRI (Magnetic Resonance
Imaging), using the proposed algorithm.

In MRI, images are probed indirectly through their
Fourier transform. Fourier transform values are sam-
pled along curves with bounded speed and bounded ac-



dundant wavelet transform.

(a) Target density p (b) Sampling scheme

AW
BRR { anhe

(c) Optimal Railway

. . . . (c¢) True image (d) Reconstructed image
Figure 7: Example of a railway design in the US. The
railway should pass in dense areas and satisfy a few Figure 8: Example of sampling scheme generation and
geometrical constraints. image reconstruction in MRI. The target density p is

shown in 8a. The sampling scheme generated by our
algorithm is shown in 8b. The background shows the
Fourier transform of u in log-scale. It contains one
fourth of the total number of Fourier transform values.
The true image and the reconstructed one are shown in
Fig. 8c and 8&d.

celeration, which exactly corresponds to the set of con-
straints defined in (30). The latest compressed sens-
ing theories suggest that a good way of subsampling
the Fourier domain, consists in drawing points indepen-
dently at random according to a certain distribution
1, that depends on the image sparsity structure in the
wavelet domain (Boyer et al., 2016; Adcock et al., 2017).
Unfortunately, this strategy is impractical in MRI due Acknowledgments

to physical constraints. To simulate such a sampling

scheme, we therefore propose to project p onto the set The authors wish to thank Alban Gossard warmly for

of admissible trajectories. his help in designing numerical integration procedures.
Let u : [0,1]> — R denote a magnetic resonance im-

age. The sampling process yields a set of Fourier trans-
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