Root systems, symmetries and linear representations of Artin groups - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Root systems, symmetries and linear representations of Artin groups

Résumé

Let $\Gamma$ be a Coxeter graph, let $W$ be its associated Coxeter group, and let $G$ be a group of symmetries of $\Gamma$. Recall that, by a theorem of Hée and M\"uhlherr, $W^G$ is a Coxeter group associated to some Coxeter graph $\hat \Gamma$. We denote by $\Phi^+$ the set of positive roots of $\Gamma$ and by $\hat \Phi^+$ the set of positive roots of $\hat \Gamma$. Let $E$ be a vector space over a field $\K$ having a basis in one-to-one correspondence with $\Phi^+$. The action of $G$ on $\Gamma$ induces an action of $G$ on $\Phi^+$, and therefore on $E$. We show that $E^G$ contains a linearly independent family of vectors naturally in one-to-one correspondence with $\hat \Phi^+$ and we determine exactly when this family is a basis of $E^G$. This question is motivated by the construction of Krammer's style linear representations for non simply laced Artin groups.
Fichier principal
Vignette du fichier
180418GeHePaV3.pdf (400.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01770502 , version 1 (19-04-2018)

Identifiants

Citer

Olivier Geneste, Jean-Yves Hée, Luis Paris. Root systems, symmetries and linear representations of Artin groups. 2018. ⟨hal-01770502⟩
54 Consultations
75 Téléchargements

Altmetric

Partager

More