Minimax rate of testing in sparse linear regression
Résumé
We consider the problem of testing the hypothesis that the parameter of linear regression model is 0 against an s-sparse alternative separated from 0 in the 2-distance. We show that, in Gaussian linear regression model with p < n, where p is the dimension of the parameter and n is the sample size, the non-asymptotic minimax rate of testing has the form sqrt((s/n) log(1 + sqrt(p)/s)). We also show that this is the minimax rate of estimation of the 2-norm of the regression parameter. MSC 2010 subject classifications: 62J05, 62G10.
Domaines
Statistiques [stat]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...