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University of Magdeburg∗, Modal’X, Université Paris-Nanterre†, CEREMADE, Université Paris-Dauphine‡,
CREST, ENSAE§, LIDS-IDSS, MIT¶

Abstract: We consider the problem of testing the hypothesis that the parameter of linear
regression model is 0 against an s-sparse alternative separated from 0 in the `2-distance.
We show that, in Gaussian linear regression model with p < n, where p is the dimension
of the parameter and n is the sample size, the non-asymptotic minimax rate of testing has
the form

√
(s/n) log(1 +

√
p/s). We also show that this is the minimax rate of estimation

of the `2-norm of the regression parameter.
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1. Introduction

This paper is deals with minimax testing of hypotheses on the parameter of linear regression
model under sparse alternatives. The problem of minimax testing under sparse alternatives was
first studied by Ingster (1997) and Donoho and Jin (2004) who considered the Gaussian mean
model. These papers were dealing with an asymptotic setting under the assumption that the
sparsity index scales as a power of the dimension. Non-asymptotic setting for the Gaussian mean
model was analyzed by Baraud (2002) who established bounds on the minimax rate of testing up
to a logarithmic factor. Finally, the exact non-asymptotic minimax testing rate for the Gaussian
mean model is derived in Collier, Comminges and Tsybakov (2017). In this paper, we present an
extension of the results of Collier, Comminges and Tsybakov (2017) to linear regression model
with Gaussian noise. Note that the problem of minimax testing for linear regression under sparsity
was already studied in Ingster, Tsybakov and Verzelen (2010), Arias-Castro, Candès and Plan
(2011), Verzelen (2012). Namely, Ingster, Tsybakov and Verzelen (2010), Arias-Castro, Candès
and Plan (2011) deal with an asymptotic setting under additional assumptions on the parameters
of the problem while Verzelen (2012) obtains non-asymptotic bounds up to a logarithmic factor
in the spirit of Baraud (2002). Our aim here is to derive the non-asymptotic minimax rate of
testing in Gaussian linear regression model with no specific assumptions on the parameters of
the problem. We give a solution to this problem when p < n, where p is the dimension and n is
the sample size.

We consider the model
Y = Xθ + σξ, (1)

where σ > 0, ξ ∈ Rn is a vector of Gaussian white noise, i.e., ξ ∼ N (0, In), X is a n× p matrix
with real entries, In is the n× n identity matrix, and θ ∈ Rp is an unknown parameter.

The following notation will be used below. For q > 0, we denote by ‖ · ‖q be the `q-norm,
i.e., for u = (u1, . . . , up) ∈ Rp,

‖u‖qq =

p∑
i=1

|ui|q.
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Let ‖ · ‖0 be the `0 semi-norm, i.e., for u ∈ Rp,

‖u‖0 =

p∑
i=1

1ui 6=0,

where 1{·} is the indicator function. We denote by 〈u, v〉 = uT v the inner product of u ∈
Rp, v ∈ Rp. We denote by λmin(M) and by tr[M ] the minimal eigenvalue and the trace of matrix
M ∈ Rp×p. For an integer s ∈ {1, . . . , p}, we consider the set B0(s) of all s-sparse vectors in Rp:

B0(s) := {u ∈ Rp : ‖u‖0 ≤ s}.

Given the observations (X,Y ), we consider the problem of testing the hypothesis

H0 : θ = 0 against the alternative H1 : θ ∈ Θ(s, τ) (2)

where
Θ(s, τ) = {θ ∈ B0(s) : ‖θ‖2 ≥ τ}

for some s ∈ {1, . . . , p} and τ > 0. Let ∆ = ∆(X,Y ) be a test statistic with values in {0, 1}. We
define the risk of test ∆ as the sum of the first type error and the maximum second type error:

P0(∆ = 1) + sup
θ∈Θ(s,τ)

Pθ(∆ = 0),

where Pθ denotes the joint distribution of (X,Y ) satisfying (1). The best possible value of this
risk is equal to the minimax risk

Rs,τ := inf
∆

{
P0(∆ = 1) + sup

θ∈Θ(s,τ)

Pθ(∆ = 0)
}

where inf∆ is the infimum over all {0, 1}-valued statistics. We define the minimax rate of testing
on the class B0(s) with respect to the `2-distance as a value λ > 0, for which the following two
properties hold:

(i) (upper bound) for any ε ∈ (0, 1) there exists Aε > 0 such that, for all A > Aε,

Rs,Aλ ≤ ε, (3)

(ii) (lower bound) for any ε ∈ (0, 1) there exists aε > 0 such that, for all 0 < A < aε,

Rs,Aλ ≥ 1− ε. (4)

Note that the rate λ defined in this way is a non-asymptotic minimax rate of testing as opposed to
the classical asymptotic definition that can be found, for example, in Ingster and Suslina (2003).
It is shown in Collier, Comminges and Tsybakov (2017) that when X is the identity matrix and
p = n (which corresponds to the Gaussian sequence model), the non-asymptotic minimax rate
of testing on the class B0(s) with respect to the `2-distance has the following form:

λ =

{
σ
√
s log(1 + p/s2) if s <

√
p,

σp1/4 if s ≥ √p. (5)

For the regression model with random X and satisfying some strong assumptions, the asymptotic
minimax rate of testing when n, p, and s tend to∞ such that s = pa for some 0 < a < 1 is studied
in Ingster, Tsybakov and Verzelen (2010). In particular, it is shown in Ingster, Tsybakov and
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Verzelen (2010) that for this configuration of parameters and if the matrix X has i.i.d. standard
normal entries, the asymptotic rate has the form

λ = σmin
(√s log(p)

n
, n−1/4,

p1/4

√
n

)
. (6)

Similar result for a somewhat differently defined alternative H1 is obtained in Arias-Castro,
Candès and Plan (2011).

Below we show that non-asymptotically, and with no restriction on the parameters n, p and s,
the lower bound (ii) for the minimax rate of testing is valid with

λ = σmin
(√s log(2 + p/s2)

n
, n−1/4,

p1/4

√
n

)
(7)

whenever X is a matrix with isotropic distribution and independent subgaussian rows. Further-
more, we show that the matching upper bound holds when X is a matrix with i.i.d. standard
Gaussian entries and p < n. Note that for p < n the expression (7) takes the form

λ = σmin
(√s log(2 + p/s2)

n
,
p1/4

√
n

)
(8)

It will be also useful to note that, since for s ≤ √p the function s 7→ s log(2 + p/s2) is increasing
and satisfies log(2+p/s2) ≤ 2 log(1+p/s2), the rate (8) can be equivalently (to within an absolute
constant factor) written as

λ =

 σ
√

s log(1+p/s2)
n if s <

√
p,

σ p
1/4

√
n

if s ≥ √p.
(9)

This expression is analogous to (5). Finally, note that l is also equivalent , up to a constant
factor, to the more pleasant expression√

s log(1 +
√
p/s)

n
, (10)

since this has a hidden elbow for s ≥ √p.

2. Upper bounds on the minimax rates

In this section, we assume that X is a matrix with i.i.d. standard Gaussian entries and p < n
and we establish an upper bound on the minimax rate of testing in the form (9). This will be
done by using a connexion between testing and estimation of functionals. We first introduce an
estimator Q̂ of the quadratic functional ‖θ‖22 and establish an upper bound on its risk. Then, we
deduce from this result an upper bound for the risk of the estimator N̂ of the norm ‖θ‖2 defined
as follows:

N̂ =

√
max(Q̂, 0).

Finally, using N̂ to define a test statistic we obtain an upper bound on the minimax rate of
testing.
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Introduce the notation
αs = E(Z2|Z2 > 2 log(1 + p/s2))

where Z is a standard normal random variable, and set

yi = {(XTX)−1XTY }i
where {(XTX)−1XTY }i is the ith component of the least squares estimator (XTX)−1XTY .
Note that the inverse (XTX)−1 exists almost surely since we assume in this section that X is a
matrix with i.i.d. standard Gaussian entries and p < n, so that X is almost surely of full rank.
We consider the following estimator of the quadratic functional ‖θ‖22:

Q̂ :=



p∑
i=1

y2
i − σ2tr[(XTX)−1] if s ≥ √p,

p∑
i=1

[
y2
i − σ2(XTX)−1

ii αs
]
1y2i>2σ2(XTX)−1

ii log(1+p/s2) if s <
√
p.

Here and below (XTX)−1
ij denotes the (i, j)th entry of matrix (XTX)−1.

For any integers n, p, s such that s ≤ p, set

ψ(s, p) =

{
s log(1+p/s2)

n if s <
√
p,

p1/2

n if s ≥ √p.

Theorem 1 Let n, p, s be integers such that s ≤ p, n ≥ 9, and p ≤ min(γn, n − 8) for some
constant 0 < γ < 1. Let r > 0, σ > 0. Assume that all entries of matrix X are i.i.d. standard
Gaussian random variables. Then there exists a constant c > 0 depending only on γ such that

sup
θ:‖θ‖0≤s,‖θ‖2≤r

Eθ[(Q̂− ‖θ‖22)2] ≤ c
(
σ2 r

2

n
+ σ4ψ2(s, p)

)
.

The proof of Theorem 1 is given in Section 5.
Arguing exactly in the same way as in the proof of Theorem 8 in Collier, Comminges and

Tsybakov (2017), we deduce from Theorem 1 the following upper bound on the squared risk of
the estimator N̂ .

Theorem 2 Let the assumptions of Theorem 1 be satisfied. Then there exists a constant c′ > 0
depending only on γ such that

sup
θ∈B0(s)

Eθ[(N̂ − ‖θ‖2)2] ≤ c′σ2ψ(s, p).

Theorem 2 implies that the test ∆∗ = 1{N̂>Aλ/2} where λ = σ
√
ψ(s, p) (i.e., the same λ as

in (8)) satisfies

P0(∆∗ = 1) + sup
θ∈Θ(s,Aλ)

Pθ(∆
∗ = 0)

≤ P0(N̂ > Aλ/2) + sup
θ∈B0(s)

Pθ(N̂ − ‖θ‖2 ≤ −Aλ/2)

≤ 2 sup
θ∈B0(s)

Eθ[(N̂ − ‖θ‖2)2]

(A/2)2λ2
≤ C∗A−2

for some constant C∗ > 0. Using this remark and choosing Aε = (C∗/ε)
1/2 leads to the upper

bound (i) that we have defined in the previous section. We state this conclusion in the next
theorem.
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Theorem 3 Let the assumptions of Theorem 1 be satisfied and let λ be defined by (8). Then,
for any ε ∈ (0, 1) there exists Aε > 0 depending only on ε and γ such that, for all A > Aε,

Rs,Aλ ≤ ε.

3. Lower bounds on the minimax rates

In this section, we assume that the distribution of matrix X is isotropic and has independent
σX -subgaussian rows for some σX > 0. The isotropy of X means that EX(XTX/n) = Ip where
EX denotes the expectation with respect to the distribution PX of X.

Definition 1 Let b > 0. A real-valued random variable ζ is called b-subgaussian if

E exp(tζ) ≤ exp(b2t2/2), ∀t ∈ R.

A random vector η with values in Rd is called b-subgaussian if all inner products 〈η, v〉 with
vectors v ∈ Rd such that ‖v‖2 = 1 are b-subgaussian random variables.

The following theorem on the lower bound is non-asymptotic and holds with no restriction on
the parameters n, p, s except for the inevitable condition s ≤ p.

Theorem 4 Let ε ∈ (0, 1), σ > 0, and let the integers n, p, s be such that s ≤ p. Assume that
the distribution of matrix X is isotropic and X has independent σX-subgaussian rows for some
σX > 0. Then, there exists aε > 0 depending only on ε and σX such that, for

τ = Aσmin
(√s log(2 + p/s2)

n
, n−1/4,

p1/4

√
n

)
(11)

with any A satisfying 0 < A < aε, we have

Rs,τ ≥ 1− ε.

The proof of Theorem 4 is given in Section 7. The next corollary is an immediate consequence
of Theorems 3 and 4.

Corollary 1 Let the assumptions of Theorem 1 be satisfied. Then the minimax rate of testing
on the class B0(s) with respect to the `2-distance is given by (8).

In addition, from Theorem 4, we get the following lower bound on the minimax risk of esti-
mation of the `2-norm ‖θ‖2.

Theorem 5 Let the assumptions of Theorem 4 be satisfied, and let λ be defined in (7). Then
there exists an a constant c∗ > 0 depending only on σX such that

inf
T̂

sup
θ∈B0(s)

Eθ[(T̂ − ‖θ‖2)2] ≥ c∗λ2,

where inf T̂ denotes the infimum over all estimators.

The result of Theorem 5 follows from Theorem 4 by noticing that, for τ in (11) and λ in (7) we
have τ = Aλ, and for any estimator T̂ ,

sup
θ∈B0(s)

Eθ[(T̂ − ‖θ‖2)2] ≥ 1

2

[
E0[T̂ 2] + sup

θ∈Θ(s,τ)

Eθ[(T̂ − ‖θ‖2)2]
]

≥ τ2

8

[
P0(T̂ > τ/2) + sup

θ∈Θ(s,τ)

Pθ(T̂ ≤ τ/2)
]

≥ (Aλ)2

8
Rs,τ .
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Corollary 2 Let the assumptions of Theorem 1 be satisfied and let λ be defined in (8). Then the
minimax rate of estimation of the norm ‖θ‖2 under the mean squared risk on the class B0(s) is
equal to λ2, that is

c∗λ
2 ≤ inf

T̂
sup

θ∈B0(s)

Eθ[(T̂ − ‖θ‖2)2] ≤ c′λ2,

where c∗ > 0 is an absolute constant and c′ > 0 is a constant depending only on γ.

This corollary is an immediate consequence of Theorems 2 and 5.

Remark 1 Inspection of the proofs reveals that the results of this section remain valid if we
replace the `0-ball B0(s) by the `0-sphere B̄0(s) = {u ∈ Rp : ‖u‖0 = s}.

4. Preliminary lemmas for the proof of Theorem 1

This section treats two main technical issues for the proof of Theorem 1. The first one is to
control the inverse of the smallest eigenvalue of random design matrix. The second issue is to
control the errors for identifying non-zero entries in the sparse setting. For this, we need accurate
bounds on the correlations between centred thresholded transformations of two correlated χ2

1

random variables. We first recall two general facts that we will use to solve the first issue.
In what follows, we will denote by C positive constants that can vary from line to line.

Lemma 1 [Davidson and Szarek (2001), see also Vershynin (2012).] Let λmin(Σ̂) denote the
smallest eigenvalue of the sample covariance matrix Σ̂ = 1

nX
TX. Then for any t > 0 with

probability at least 1− 2 exp(−t2/2) we have

1−
√
p

n
− t√

n
≤
√
λmin(Σ̂) ≤ 1 +

√
p

n
+

t√
n
.

Lemma 2 [(Tao and Vu, 2010, Lemma A4), see also (Bordenave and Chafäı, 2012, Lemma
4.14).] Let 1 ≤ p ≤ n, let Ri be the i-th column of matrix X ∈ Rn×p and R−i = span{Rj : j 6= i}.
If X has full rank, then

(XTX)−1
ii = dist(Ri, R−i)

−2,

where dist(Ri, R−i) is the Euclidean distance of vector Ri to the space R−i.

Lemma 3 Let n ≥ 9 and p ≤ min(γn, n− 8) for some constant γ such that 0 < γ < 1. Assume
that all entries of matrix X ∈ Rn×p are i.i.d. standard Gaussian random variables. Then there
exists a constant c > 0 depending only on γ, such that

E[λ−2
min(Σ̂)] ≤ c. (12)

Proof. Set β =
√
γ. From Lemma 1 we have

P
(
λmin(Σ̂) <

(1− β
2

)2)
≤ 2 exp

(
− n(1− β)2

8

)
.

Using this inequality we obtain

E[λ−2
min(Σ̂)] ≤

(1− β
2

)−4

+

√
E[λ−4

min(Σ̂)]
√

2 exp
(
− n(1− β)2

16

)
. (13)
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We now bound the expectation E[λ−4
min(Σ̂)]. Clearly,

λ−1
min(Σ̂) ≤ tr[Σ̂−1]. (14)

Lemma 2 implies that, almost surely,

(
tr[Σ̂−1]

)4
= n4

[ p∑
i=1

dist(Ri, R−i)
−2
]4 ≤ n4p3

p∑
i=1

dist(Ri, R−i)
−8.

Since the random variables dist(Ri, R−i) are identically distributed and p ≤ n we have

E
[(

tr[Σ̂−1]
)4] ≤ n8E[dist(R1, R−1)−8]. (15)

Finally we only need to bound E[dist(R1, R−1)−8]. If S is a p − 1 dimensional subspace of Rn
then the random variable dist(R1,S)2 has the chi-square distribution χ2

n−p+1 with n − p + 1
degrees of freedom. Hence, as R−1 is a span of random vectors independent of R1 and R−1 is
almost surely p− 1 dimensional, we have

E[dist(R1, R−1)−8] = E

[
1

(χ2
n−p+1)4

]
=

1

(n− p− 1)(n− p− 3)(n− p− 5)(n− p− 7)
≤ 1

105
. (16)

Combining (13), (14), (15) and (16) we get

E[λ−2
min(Σ̂)] ≤

(1− β
2

)−4

+
n8

105

√
2 exp

(
− n(1− β)2

16

)
,

which implies the lemma.
We now turn to the second issue of this section, that is bounds on the correlations. We will

use the following lemma about the tails of the standard normal distribution.

Lemma 4 For η ∼ N (0, 1) and any x > 0 we have

4√
2π(x+

√
x2 + 4)

exp(−x2/2) ≤ P(|η| > x) ≤ 4√
2π(x+

√
x2 + 2)

exp(−x2/2), (17)

E[η21|η|>x] ≤
√

2

π

(
x+

2

x

)
exp(−x2/2), (18)

E[η41|η|>x] ≤
√

2

π

(
x3 + 3x+

1

x

)
exp(−x2/2). (19)

Moreover, if x ≥ 1, then

E[η2 | |η| > x] ≤ 5x2. (20)

Inequalities (17) - (19) are given, e.g., in (Collier, Comminges and Tsybakov, 2017, Lemma 4)
and (20) follows easily from (17) and (18).
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Lemma 5 Let (η, ζ) be a Gaussian vector with mean 0 and covariance matrix Γ =

(
1 ρ
ρ 1

)
,

0 < ρ < 1. Set α = E[η2 | |η| > x]. Then there exists an absolute constant C > 0 such that, for
any x ≥ 1,

E[(η2 − α)(ζ2 − α)1|η|>x1|ζ|>x] ≤ Cρ2x4 exp(−x2/2).

Proof. From (20) we get that α ≤ 5x2. Thus, using (19) and the fact that x ≥ 1 we find

E[(ζ2 − α)21|ζ|>x] ≤ E
[
(ζ4 + α2)1|ζ|>x

]
≤ 26E[ζ41|ζ|>x] ≤ Cx3 exp

(
−x2/2

)
. (21)

Therefore,

E[(η2 − α)(ζ2 − α)1|η|>x1|ζ|>x] ≤ E[(η2 − α)21|η|>x] + E[(ζ2 − α)21|ζ|>x] ≤ Cx3 exp
(
−x2/2

)
.

This proves the lemma for ρ > 1/2.
Consider now the case 0 < ρ ≤ 1/2. Note that, since α ≤ 5x2, for 0 < ρ ≤ 1/2 we also have

ρ ≤ x√
α
.

The symmetry of the distribution of (η, ζ) implies

E[(η2 − α)(ζ2 − α)1|η|>x1|ζ|>x] = 2E[(η2 − α)(ζ2 − α)1|η|>x1ζ>x]. (22)

Now, we use the fact that (η, ζ)
d
= (ρζ +

√
1− ρ2Z, ζ) where

d
= means equality in distribution

and Z is a standard Gaussian random variable independent of ζ. Thus,

E[(η2 − α)(ζ2 − α)1|η|>x1ζ>x] = ρ2E[(ζ2 − α)21|ρζ+
√

1−ρ2Z|>x1ζ>x]

+ 2ρ
√

1− ρ2E[ζZ(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x1ζ>x]

+ (1− ρ2)E[(Z2 − α)(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x1ζ>x].

(23)

We now bound separately the three summands on the right hand side of (23). For the first
summand, using (21) we get the bound

ρ2E[(ζ2 − α)21|ρζ+
√

1−ρ2Z|>x1ζ>x] ≤ 26ρ2E[ζ41ζ>x] ≤ Cρ2x3 exp

(
−x

2

2

)
. (24)

To bound the second summand, we first write

E[ζZ(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x1ζ>x] = E[ζ(ζ2 − α)g(ζ)1ζ>x] (25)

where g(ζ) := E[Z1|ρζ+
√

1−ρ2Z|>x | ζ]. It is straightforward to check that

g(ζ) = exp

(
− (x− ρζ)2

2(1− ρ2)

)
− exp

(
− (x+ ρζ)2

2(1− ρ2)

)
.

Thus g(ζ) is positive when ζ > x. Therefore we have

E[ζ(ζ2 − α)g(ζ)1ζ>x] ≤ E[ζ3g(ζ)1ζ>x]. (26)
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In addition,

g(ζ) = exp

(
− (x− ρζ)2

2(1− ρ2)

)(
1− exp

(
− 2xρζ

1− ρ2

))
≤ 1− exp

(
− 2xρζ

1− ρ2

)
≤ 2xρζ

1− ρ2
. (27)

Combining (25) - (27) with (19) and the fact that ρ ≤ 1
2 , we get

2ρ
√

1− ρ2E[ζZ(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x1ζ>x] ≤ Cρ2x4 exp

(
−x

2

2

)
. (28)

We now consider the third summand on the right hand side of (23). We will prove that

E[(Z2 − α)(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x1ζ>x] ≤ 0. (29)

We have

E[(Z2 − α)(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x1ζ>x] = E[(ζ2 − α)f(ζ)1ζ>x]

where

f(ζ) := E[(Z2 − α)1|ρζ+
√

1−ρ2Z|>x | ζ]

=

∫ ∞
x−ρζ√
1−ρ2

(z2 − α) exp

(
−z

2

2

)
dz +

∫ − x+ρζ√
1−ρ2

−∞
(z2 − α) exp

(
−z

2

2

)
dz.

Note that x ≤
√
α since

α =
E[η21|η|>x]

P(|η| > x)
≥ x2.

In order to prove (29), it is enough to show that

∀ ζ ∈ [x,
√
α], f(ζ) ≥ f(

√
α). (30)

and

∀ ζ ∈ [
√
α,∞), f(ζ) ≤ f(

√
α). (31)

Indeed, assume that (30) and (31) hold. Then we have

E[(ζ2 − α)f(ζ)1x<ζ≤
√
α] ≤ E[(ζ2 − α)f(

√
α)1x<ζ≤

√
α]

= −E[(ζ2 − α)f(
√
α)1ζ>

√
α] ≤ −E[(ζ2 − α)f(ζ)1ζ>

√
α],

where the equality is due the fact that, by the symmetry of the normal distribution and the
definition of α,

E[(ζ2 − α)1ζ>x] =
1

2
E[(ζ2 − α)1|ζ|>x] = 0.

Thus, to finish the proof of the lemma, it remains to prove (30) and (31). We first establish (30),
for which it is sufficient to show that f ′(ζ) < 0 for ζ ∈ [x,

√
α]. Since 0 < ρ < x/

√
α and x <

√
α,

we have
(x− ρy)2

1− ρ2
< α for all y ∈ [x,

√
α]. (32)
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Using (32) we obtain, for all ζ ∈ [x,
√
α],

f ′(ζ) =
ρ√

1− ρ2
exp

(
−1

2

( x+ ρζ√
1− ρ2

)2
)((

(x− ρζ)2

1− ρ2
− α

)
exp

(
2ρxζ

1− ρ2

)
−
(

(x+ ρζ)2

1− ρ2
− α

))

≤ ρ√
1− ρ2

exp

(
−1

2

( x+ ρζ√
1− ρ2

)2
)((

(x− ρζ)2

1− ρ2
− α

)
−
(

(x+ ρζ)2

1− ρ2
− α

))

= − ρ√
1− ρ2

exp

(
−1

2

( x+ ρζ√
1− ρ2

)2
)

4xρζ

1− ρ2
< 0.

This implies (30). Finally, we prove (31). To do this, it is enough to establish the following three
facts:

(i) f ′ is continuous and f ′(
√
α) < 0;

(ii) the equation f ′(y) = 0 has at most one solution on [
√
α,+∞);

(iii) f(∞) = limy→∞ f(y) ≤ f(
√
α).

Property (i) is already proved above. To prove (ii), we first observe that the solution of the
equation d

dyf(y) = 0 is also solution of the equation h(y) = 0 where

h(y) :=

(
(x− ρy)2

1− ρ2
− α

)(
exp

(
2ρxy

1− ρ2

)
− 1

)
− 4ρxy

1− ρ2
.

Next, let y1 and y2 be the solutions of the quadratic equation (x−ρy)2

1−ρ2 = α :

y1 =
x−

√
α(1− ρ2)

ρ
and y2 =

x+
√
α(1− ρ2)

ρ
.

Due to (32) we have y1 <
√
α < y2. Thus, h(y) < 0 on the interval [

√
α, y2]. Next, on the interval

(y2,+∞) the function h is strictly convex and h(y2) < 0. It follows that h can vanish at most
once on (y2,+∞). Thus, (ii) is proved.

It remains to show that f(
√
α) ≥ f(∞) =

∫∞
−∞(z2 − α) exp(−z2/2)dz. Rewriting f(

√
α) as

f(
√
α) = f(∞)−

∫ x−ρ
√
α√

1−ρ2

− x+ρ
√
α√

1−ρ2

(z2 − α) exp

(
−z

2

2

)
dz

we see that inequality f(∞) ≤ f(
√
α) follows from (32). This proves item (iii) and thus (31).

Therefore, the proof of (29) is complete. Combining (22), (23), (24), (28) and (29) yields the
lemma.

5. Proof of Theorem 1

We consider separately the cases s ≥ √p and s <
√
p.

Case s ≥ √p. From (1) we get that, almost surely,

(XTX)−1XTY = θ + ε̃

where
ε̃ = σ(XTX)−1XT ξ.
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Thus, we have

Eθ

[(
Q̂− ‖θ‖22

)2]
= Eθ

(
2θT ε̃+ ‖ε̃‖22 − σ2tr

[
(XTX)−1

])2
≤ 8 Eθ

(
θT ε̃
)2

+ 2 Eθ

(
‖ε̃‖22 − σ2tr

[
(XTX)−1

])2

.
(33)

Note that, conditionally on X, the random vector ε̃ is normal with mean 0 and covariance
matrix σ2(XTX)−1. Thus, conditionally on X, the random variable θT ε̃ is normal with mean 0

and variance σ2θT (XTX)−1θ. It follows that Eθ

(
θT ε̃
)2 ≤ σ2r2E

[
λ−1

min(XTX)
]
. Hence, applying

Lemma 3 we have, for some constant C depending only on γ,

Eθ

(
θT ε̃)2 ≤ Cσ2 r

2

n
. (34)

Consider now the second term on the right hand side of (33). Denote by (λi, ui), i = 1, . . . , p,
the eigenvalues and the corresponding orthonormal eigenvectors of (XTX)−1, respectively. Set
vi =

√
λiu

T
i X

T ξ. We have

Eθ

(
‖ε̃‖22 − σ2tr

[
(XTX)−1

])2

= σ4E
( p∑
i=1

λi[v
2
i − 1]

)2

.

Conditionnally on X, the random variables v1, . . . , vp are i.i.d. standard normal. Using this
remark and Lemma 3 we get that, for some constant C depending only on γ,

Eθ

(
‖ε̃‖22 − σ2tr

[
(XTX)−1

])2

= 2σ4

p∑
i=1

λ2
i ≤ 2pσ4E

[
λ−2

min

(
XTX

)]
≤ Cσ

4p

n2
. (35)

Combining (33), (34) and (35) we obtain the result of the theorem for s ≥ √p.

Case s <
√
p. Set S = {i : θi 6= 0}. We have

Eθ

(
Q̂− ‖θ‖22

)2 ≤ 3Eθ

(∑
i∈S

(y2
i − σ2(XTX)−1

ii αs − θ
2
i )
)2

+ 3Eθ

(∑
i∈S

[
y2
i − σ2(XTX)−1

ii αs
]
1y2i≤2σ2(XTX)−1

ii log(1+p/s2)

)2

+ 3Eθ

(∑
i6∈S

[
ε̃2i − σ2(XTX)−1

ii αs

]
1y2i>2σ2(XTX)−1

ii log(1+p/s2)

)2

,

(36)

where ε̃i denotes the ith component of ε̃. We now establish upper bounds for the three terms on
the right hand side of (36). For the first term, observe that

Eθ

(∑
i∈S

(y2
i − σ2(XTX)−1

ii αs − θ
2
i )
)2

≤ 8Eθ

(∑
i∈S

θiε̃i

)2

+ 2Eθ

(∑
i∈S

(ε̃2i − σ2(XTX)−1
ii αs)

)2

. (37)

The second summand on the right hand side of (37) satisfies

Eθ

(∑
i∈S

(ε̃2i − σ2(XTX)−1
ii αs)

)2

≤ 2σ4(α2
s + 3)E

∑
i∈S

∑
j∈S

(XTX)−1
ii (XTX)−1

jj

≤ 2σ4(α2
s + 3)s2E

[
λ−2

min(XTX)
]
.

(38)
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From (20) we obtain
αs ≤ 10 log(1 + p/s2). (39)

Thus, using (37), (38) and (39) together with Lemma 3 and (34) we find

Eθ

(∑
i∈S

(y2
i − σ2(XTX)−1

ii αs − θ
2
i )
)2

≤ Cσ4s2 log2(1 + p/s2)/n2, (40)

where the constant C depends only on γ. For the second term on the right hand side of (36), we
have immediately that it is smaller, up to an absolute constant factor, than

Eσ4
∑
i∈S

∑
j∈S

(XTX)−1
ii (XTX)−1

jj (α2
s + 4 log2(1 + p/s2)).

Arguing as in (38) and applying Lemma 3 and (39) we get that, for some constant C depending
only on γ,

Eθ

(∑
i∈S

[
y2
i − σ2(XTX)−1

ii αs
]
1y2i≤2σ2(XTX)−1

ii log(1+p/s2)

)2

≤ Cσ4s2 log2(1 + p/s2)/n2. (41)

For the third term on the right hand side of (36), we have

Eθ

(∑
i 6∈S

[
ε̃2i − σ2(XTX)−1

ii αs

]
1y2i>2σ2(XTX)−1

ii log(1+p/s2)

)2

= σ4
∑
i6∈S

∑
j 6∈S

E
(

(XTX)−1
ii (XTX)−1

jj (ξ̃2
i − αs)(ξ̃2

j − αs)1|ξ̃i|>x1|ξ̃j |>x
)
,

(42)

where

x =
√

2 log(1 + p/s2), ξ̃i =
ε̃i√

σ2(XTX)−1
ii

.

Note that E(ξ̃2
i |X) = E(ξ̃2

j |X) = 1 and, conditionally on X, (ξ̃i, ξ̃j) is a centered Gaussian vector
with covariance ρij where

ρij =
(XTX)−1

ij√
(XTX)−1

ii

√
(XTX)−1

jj

.

Using Lemma 5 we obtain that, for some absolute positive constants C,∑
i 6∈S

∑
j 6∈S

E
(

(XTX)−1
ii (XTX)−1

jj (ξ̃2
i − αs)(ξ̃2

j − αs)1|ξ̃i|>x1|ξ̃j |>x
)

=
∑
i 6∈S

∑
j 6∈S

E
(

(XTX)−1
ii (XTX)−1

jj E
[
(ξ̃2
i − αs)(ξ̃2

j − αs)1|ξ̃i|>x1|ξ̃j |>x | X
])

≤ C
p∑

i,j=1

E
[
(XTX)−1

ii (XTX)−1
jj ρ

2
ij

]
x4 exp(−x2/2)

= CE
[
‖(XTX)−1‖2F

]
x4 exp(−x2/2)

≤ Cσ4E
[
‖(XTX)−1‖2F

] s2

p
log2(1 + p/s2)

≤ Cσ4E
[
λ−2

min(XTX)
]
s2 log2(1 + p/s2),
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where ‖(XTX)−1‖F is the Frobenius norm of matrix (XTX)−1. Finally, Lemma 3, (42) and the
last display imply that, for some constant C depending only on γ,

Eθ

(∑
i6∈S

[
ε̃2i − σ2(XTX)−1

ii αs

]
1y2i>2σ2(XTX)−1

ii log(1+p/s2)

)2

≤ Cσ
4s2 log2(1 + p/s2)

n2
. (43)

The proof is completed by combining (36), (40), (41) and (43).

6. Preliminary lemmas for the proof of Theorem 4

We first recall some general facts about lower bounds for the risks of tests. Let Θ be a measurable
set, not necessarily the set Θ(s, τ), and let µ be a probability measure on Θ. Consider any family
of probability measures Pθ indexed by θ ∈ Θ. Denote by Pµ the mixture probability measure

Pµ =

∫
Θ

Pθ µ(dθ).

Let

χ2(P ′, P ) =

∫
(dP ′/dP )2dP − 1

be the chi-square divergence between two probability measures P ′ and P if P ′ � P , and set
χ2(P ′, P ) = +∞ otherwise. The following lemma is a version of Le Cam’s method in proving
lower bounds (see, e.g., (Collier, Comminges and Tsybakov, 2017, Lemma 3)).

Lemma 6 Let µ be a probability measure on Θ, and let {Pθ : θ ∈ Θ} be a family of probability
measures indexed by θ ∈ Θ on X . Then, for any probability measure Q on X ,

inf
∆

{
Q(∆ = 1) + sup

θ∈Θ
Pθ(∆ = 0)

}
≥ 1−

√
χ2(Pµ, Q)

where inf∆ is the infimum over all {0, 1}-valued statistics.

Applying Lemma 6 with Q = P0, we see that it suffices to choose a suitable measure µ and
to bound χ2(Pµ,P0) from above by a small enough value in order to obtain the desired lower
bound on Rs,τ . The following lemma is useful to evaluate χ2(Pµ,P0).

Lemma 7 Let µ be a probability measure on Θ, and let {Pθ : θ ∈ Θ} be a family of probability
measures indexed by θ ∈ Θ on X . Let Q be a probability measure on X such that Pθ � Q for all
θ ∈ Θ. Then,

χ2(Pµ, Q) = E(θ,θ′)∼µ2

(∫ dPθdPθ′

dQ

)
− 1.

Here, E(θ,θ′)∼µ2 denotes the expectation with respect to the distribution of the pair (θ, θ′) where
θ and θ′ are independent and each of them is distributed according to µ.

Proof. It suffices to note that

χ2(Pµ, Q) =

∫
(dPµ)2

dQ
− 1

whereas∫
(dPµ)2

dQ
=

∫ ∫
Θ
dPθµ(dθ)

∫
Θ
dPθ′µ(dθ′)

dQ
=

∫
Θ

∫
Θ

µ(dθ)µ(dθ′)

∫
dPθdPθ′

dQ
.

We now specify the expression for the χ2 divergence in Lemma 7 when Pθ is the probability
distribution generated by model (1) and Q = P0.
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Lemma 8 Let Pθ be the distribution of (X,Y ) satisfying (1). Then,

χ2(Pµ,P0) = E(θ,θ′)∼µ2EX exp(〈Xθ,Xθ′〉/σ2)− 1.

Proof. We apply Lemma 7 and notice that, for any (θ, θ′) ∈ Θ×Θ,∫
dPθdPθ′

dP0
=

1

(2πσ)n/2
EX

∫
Rn

exp
(
− 1

2σ2
(‖y −Xθ‖22 + ‖y −Xθ′‖22 − ‖y‖22)

)
dy

=
1

(2πσ)n/2
EX

∫
Rn

exp
(
− 1

2σ2
(‖y‖22 − 2〈y,X(θ + θ′)〉+ ‖X(θ + θ′)‖22 − 2〈Xθ,Xθ′〉)

)
dy

= EX

(
exp(〈Xθ,Xθ′〉/σ2)

(2πσ)n/2

∫
Rn

exp
(
− 1

2σ2
‖y −X(θ + θ′)‖22

)
dy

)
= EX exp(〈Xθ,Xθ′〉/σ2).

Lemma 9 Let a ∈ R be a constant and let W be a random variable. Then,

E exp(W ) ≤ exp(a)
(
1 +

∫ ∞
0

etp(t)dt
)

where p(t) = P
(
|W − a| ≥ t

)
.

Proof. We have

E exp(W ) ≤ exp(a)E exp(|W − a|)

= exp(a)

∫ ∞
0

P
(

exp(|W − a|) ≥ x
)
dx

= exp(a)
[
1 +

∫ ∞
1

P
(

exp(|W − a|) ≥ x
)
dx
]

= exp(a)
[
1 +

∫ ∞
0

etp(t)dt
]
.

Lemma 10 Assume that matrix X has an isotropic distribution with independent σX-subgaussian
rows for some σX > 0. Then, for all x > 0 and all θ, θ′ ∈ Rp we have

PX

(
|〈Xθ,Xθ′〉 − n〈θ, θ′〉| ≥ ‖θ‖2‖θ′‖2x

)
≤ 6 exp(−C1 min(x, x2/n))

where the constant C1 > 0 depends only on σX .

Proof. By homogeneity, it is enough to consider the case ‖θ‖2 = ‖θ′‖2 = 1, which will be
assumed in the rest of the proof. Then we have

〈Xθ,Xθ′〉 =
‖Xθ‖22 + ‖Xθ′‖22 − ‖X(θ − θ′)‖22

2
, 〈θ, θ′〉 =

2− ‖θ − θ′‖22
2

,

which implies ∣∣ 1
n
〈Xθ,Xθ′〉 − 〈θ, θ′〉

∣∣ ≤ 1

2

(∣∣∣ 1
n
‖Xθ‖22 − 1

∣∣∣+
∣∣∣ 1
n
‖Xθ′‖22 − 1

∣∣∣
+
∣∣∣ 1
n
‖X(θ − θ′)‖22 − ‖θ − θ′‖22

∣∣∣), (44)
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By renormalization, the third summand on the right hand side of (44) is reduced to the same
form as the first two summands. Thus, to prove the lemma it suffices to show that

PX

(∣∣∣ 1
n
‖Xθ‖22 − 1

∣∣∣ ≥ v) ≤ 2 exp(−C ′1 min(v, v2)n), ∀ v > 0, ‖θ‖2 = 1, (45)

where the constant C ′1 > 0 depends only on σX .
To prove (45), we apply a standard argument, cf., e.g., Vershynin (2012). Denote by xi the

ith row of matrix X. For i = 1, . . . , n, the random variables Zi = xTi θ are independent, σX -
subgaussian and such that E(Z2

i ) = 1. Therefore, Z2
i − 1, i = 1, . . . , n, are independent centered

sub-exponential random variables, while

1

n
‖Xθ‖22 − 1 =

1

n

n∑
i=1

(Z2
i − 1).

Then (45) follows from Bernstein’s inequality for sub-exponential random variables (cf., e.g.,Vershynin
(2012), Corollary 5.17).

Lemma 11 Assume that matrix X has an isotropic distribution with independent σX-subgaussian
rows for some σX > 0. Then, there exists u0 > 0 depending only on σX such that, for all θ, θ′

with ‖θ‖2, ‖θ′‖2 ≤ un−1/4 and u ∈ (0, u0) we have

EX exp(〈Xθ,Xθ′〉) ≤ exp(n〈θ, θ′〉)(1 + C0u
2)

where the constant C0 > 0 depends only on σX .

Proof. By Lemma 10, for any x > 0 with PX -probability at least 1− 6e−C1 min(x,x2/n) we have∣∣∣〈Xθ,Xθ′〉 − n〈θ, θ′〉∣∣∣ ≤ ‖θ‖2‖θ′‖2x ≤ u2n−1/2x.

Therefore, for any t > 0 with PX -probability at least 1− 6e−C1 min(
√
nt/u2,t2/u4) we have∣∣∣〈Xθ,Xθ′〉 − n〈θ, θ′〉∣∣∣ ≤ t.

This and Lemma 9 imply that, for all u ≤ u0 := (C1/2)1/2,

EX exp(〈Xθ,Xθ′〉) ≤ exp(n〈θ, θ′〉)
(

1 + 6

∫ ∞
0

et−C1 min
(√

nt/u2,t2/u4)
)
dt
)

≤ exp(n〈θ, θ′〉)
(

1 + 6

∫ ∞
0

et(1−C1
√
n/u2)dt+ 6

∫ ∞
0

et−C1t
2/u4

dt
)

≤ exp(n〈θ, θ′〉)
(

1 + 6

∫ ∞
0

e−C1
√
nt/(2u2)dt+ 6

∫ ∞
0

e−t(C1t/u
4−1)dt

)
(as C1

√
n/u2 > 2)

≤ exp(n〈θ, θ′〉)
(

1 +
12u2

C1
√
n

+
12u4

C1
e2u4/C1 + 6

∫ ∞
2u4/C1

e−t
2C1/(2u

4)dt
)

≤ exp(n〈θ, θ′〉)
(
1 + C0u

2
)
, (46)

where the constant C0 > 0 depends only on C1, and thus only on σX .
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7. Proof of Theorem 4

For an integer s such that 1 ≤ s ≤ p and τ > 0, we denote by µτ the uniform distribution on
the set of vectors in Rp having exactly s nonzero coefficients, all equal to τ/

√
s. Note that the

support of measure µτ is contained in Θ(s, τ).
We now take τ = τ(s, n, p) defined by (11) and set µ = µτ . In view of Lemmas 6 - 8, to prove

Theorem 4 it is enough to show that

E(θ,θ′)∼µ2
τ
EX exp(〈Xθ,Xθ′〉/σ2) ≤ 1 + oA(1) (47)

where oA(1) tends to 0 as A→ 0.
Before proving (47) we proceed to some simplifications. First, note that for τ defined by (11)

the left hand side of (47) does not depend on σ. Thus, in what follows we set σ = 1 without loss
of generality. Next, notice that it is enough to prove the theorem for the case s ≤ √p. Indeed,
for s >

√
p we can use the inclusions Θ(s, τ(s, n, p)) ⊇ Θ(s′, τ(s, n, p)) ⊇ Θ(s′, τ(s′, n, p)) where

s′ is the greatest integer smaller than or equal to
√
p. Since

τ(s′, n, p) � min
(p1/4

√
n
, n−1/4

)
and the rate (11) is also of this order for s >

√
p, it suffices to prove the lower bound for s ≤ s′,

and thus for s ≤ √p. Taking onto account these simplifications, we assume in what follows
without loss of generality that s ≤ √p, σ = 1, and

τ := Amin
(√s log(1 + p/s2)

n
, n−1/4

)
. (48)

We now prove (47) under these assumptions. By Lemma 11, for any 0 < A < u0 we have

E(θ,θ′)∼µ2
τ
EX exp(〈Xθ,Xθ′〉) ≤ E(θ,θ′)∼µ2

τ
exp(n〈θ, θ′〉)(1 + C0A

2). (49)

Assume that A < 1. Arguing exactly as in the proof of Lemma 1 in Collier, Comminges and
Tsybakov (2017), we find

E(θ,θ′)∼µ2
τ

exp(n〈θ, θ′〉) = E(θ,θ′)∼µ2
τ

exp
(
nτ2s−1

p∑
j=1

1θj 6=01θ′j 6=0

)
(50)

≤
(

1− s

p
+
s

p
exp(nτ2s−1)

)s
≤

(
1− s

p
+
s

p

(
1 +

p

s2

)A2 )s
≤

(
1 +

A2

s

)s
≤ exp(A2)

where we have used the inequality (1+x)A
2−1 ≤ A2x valid for 0 < A < 1 and x > 0. Combining

(49) and (50) we obtain that, for all 0 < A < min(1, u0),

E(θ,θ′)∼µ2
τ
EX exp(〈Xθ,Xθ′〉) ≤ exp(A2)(1 + C0A

2)

with some u0 > 0 and C0 > 0 depending only on σX . This completes the proof of the theorem.
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