A LIOUVILLE PROPERTY WITH APPLICATION TO ASYMPTOTIC STABILITY FOR THE CAMASSA-HOLM EQUATION - Archive ouverte HAL
Article Dans Une Revue Archive for Rational Mechanics and Analysis Année : 2018

A LIOUVILLE PROPERTY WITH APPLICATION TO ASYMPTOTIC STABILITY FOR THE CAMASSA-HOLM EQUATION

Luc Molinet

Résumé

We prove a Liouville property for uniformly almost localized (up to translations) H 1-global solutions of the Camassa-Holm equation with a momentum density that is a non negative finite measure. More precisely, we show that such solution has to be a peakon. As a consequence, we prove that peakons are asymptotically stable in the class of H 1-functions with a momentum density that belongs to M + (R). Finally, we also get an asymptotic stability result for train of peakons.
Fichier principal
Vignette du fichier
LiouvilleCHHAL.pdf (368.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01768549 , version 1 (17-04-2018)

Identifiants

Citer

Luc Molinet. A LIOUVILLE PROPERTY WITH APPLICATION TO ASYMPTOTIC STABILITY FOR THE CAMASSA-HOLM EQUATION. Archive for Rational Mechanics and Analysis, 2018, 230 (1), pp.185-230. ⟨10.1007/s00205-018-1243-3⟩. ⟨hal-01768549⟩
106 Consultations
97 Téléchargements

Altmetric

Partager

More