Minimal planes in asymptotically flat three-manifolds - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Geometry Année : 2022

Minimal planes in asymptotically flat three-manifolds

Résumé

In this paper, we improve a result by Chodosh and Ketover. We prove that, in an asymptotically flat $3$-manifold $M$ that contains no closed minimal surfaces, fixing $q\in M$ and a $2$-plane $V$ in $T_qM$ there is a properly embedded minimal plane $\Sigma$ in $M$ such that $q\in\Sigma$ and $T_q\Sigma=V$. We also prove that fixing three points in $M$ there is a properly embedded minimal plane passing through these three points.
Fichier principal
Vignette du fichier
min_plane.pdf (354.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01768219 , version 1 (14-12-2022)

Identifiants

Citer

Laurent Mazet, Harold Rosenberg. Minimal planes in asymptotically flat three-manifolds. Journal of Differential Geometry, 2022, 120 (3), ⟨10.4310/jdg/1649953568⟩. ⟨hal-01768219⟩
58 Consultations
36 Téléchargements

Altmetric

Partager

More