Classification of Point Cloud for Road Scene Understanding with Multiscale Voxel Deep Network
Résumé
In this article we describe a new convolutional neural network (CNN) to classify 3D point clouds of urban scenes. Solutions are given to the problems encountered working on scene point clouds, and a network is described that allows for point classification using only the position of points in a multi-scale neighborhood. This network enables the classification of 3D point clouds of road scenes necessary for the creation of maps for autonomous vehicles such as HD-Maps. On the reduced-8 Semantic3D benchmark [Hackel et al., 2017], this network, ranked second, beats the state of the art of point classification methods (those not using an additional regularization step as CRF). Our network has also been tested on a new dataset of labeled urban 3D point clouds for semantic segmentation.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...