Classification of Point Cloud for Road Scene Understanding with Multiscale Voxel Deep Network - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Classification of Point Cloud for Road Scene Understanding with Multiscale Voxel Deep Network

Xavier Roynard
Jean-Emmanuel Deschaud
François Goulette

Résumé

In this article we describe a new convolutional neural network (CNN) to classify 3D point clouds of urban scenes. Solutions are given to the problems encountered working on scene point clouds, and a network is described that allows for point classification using only the position of points in a multi-scale neighborhood. This network enables the classification of 3D point clouds of road scenes necessary for the creation of maps for autonomous vehicles such as HD-Maps. On the reduced-8 Semantic3D benchmark [Hackel et al., 2017], this network, ranked second, beats the state of the art of point classification methods (those not using an additional regularization step as CRF). Our network has also been tested on a new dataset of labeled urban 3D point clouds for semantic segmentation.
Fichier principal
Vignette du fichier
deepmultiscale_Roynard_2018.pdf (2.5 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01763469 , version 1 (11-04-2018)
hal-01763469 , version 2 (18-12-2018)

Identifiants

Citer

Xavier Roynard, Jean-Emmanuel Deschaud, François Goulette. Classification of Point Cloud for Road Scene Understanding with Multiscale Voxel Deep Network. PPNIV'2018, Oct 2018, Madrid, Spain. ⟨hal-01763469v1⟩
350 Consultations
2459 Téléchargements

Altmetric

Partager

More