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Abstract

In this article we describe a new convolutional neural network (CNN) to classify 3D point clouds of urban or indoor scenes.
Solutions are given to the problems encountered working on scene point clouds, and a network is described that allows for
point classification using only the position of points in a multi-scale neighborhood.

On the reduced-8 Semantic3D benchmark [Hackel et al., 2017]], this network, ranked second, beats the state of the art of
point classification methods (those not using a regularization step).

Figure 1: Example of classified point cloud on Semantic3D test set (blue: man-made terrain, cerulean blue: natural ter-
rain, green: high vegetation, light green: low vegetation, chartreuse green: buildings, yellow: hard scape, orange: scanning
artefacts, red: cars).

1 INTRODUCTION

Autonomous systems need 3D maps of the world for perception and navigation tasks. These maps can be represented as 3D
point clouds with all semantic information needed like lane borders, traffic signs...

Mobile Laser Scanning (MLS) systems can now scan large areas, like cities or even countries. The produced 3D point
clouds can be used as maps for autonomous systems. To do so, the automatic classification of the data is necessary and is still
challenging, regards to the number of objects present in an urban scene.



For the object classification task, deep-learning methods work very well on 2D images. The easiest way to transfer these
methods to 3D is to use 3D grids. It works well when the data is just one single object [Wu et al., 2015]].

But it is much more complicated for the task of point classification of a complete scene (e. g. an urban cloud) made up of
many objects of very different sizes and potentially interwoven with each other (e. g. a lamppost passing through vegetation).
Moreover, in this kind of scene, there are classes more represented (floor and buildings) than others (pedestrians, traffic signs).

This article proposes both a training method that balances the number of points per class during each epoch, and a 3D
CNN capable of effectively learning how to classify scenes containing objects at multiple scales.

2 STATE OF THE ART

2.1 Shallow and Multi-Scale Learning for 3D point cloud classification

There is a great variety of work for classifying 3D point cloud scenes by shallow learning methods or without learning.
Methods can generally be classified into one of the two approaches: classify each point, then group them into objects, or
conversely, divide the cloud into objects and classify each object.

The first approach is followed by [Weinmann et al., 2015]] which classifies each point by calculating simple descriptors
such as dimensionality attributes on an optimal neighborhood (minimizing some entropy depending on dimensionality at-
tributes). [Hackel et al., 2016] introduced multi-scale features, computing the same kind of features at different scales to
capture both context and local shape around the point. After classifying each point, the points can be grouped into objects by
CREF [Zhang et al., 2015]] or by regularization methods [Landrieu et al., 2017]].

The segmentation step of the second approach is usually heuristic-based and contains no learning. [Aijazi et al., 2013|] seg-
ments the cloud using super-voxels, [[Serna and Marcotegui, 2014 uses mathematical morphology operators and [[Roynard et al., 2016|]
makes a region growth to extract the soil, then groups the points by related component. After segmentation, objects are classi-
fied by computing global descriptors that can be simple geometrical descriptors [Serna and Marcotegui, 2014]], shape functions
[Wohlkinger and Vincze, 2011]] or histograms of distribution of normals [[Aldoma et al., 2011]].

2.2 Deep-Learning for 3D point cloud classification

Over the past three years, there has been a growing body of work that attempts to adapt deep learning methods or introduces
new "deep" approaches to classifying 3D point clouds.

This is well illustrated by the ShapeNet Core55 challenge [Y1 et al., 2017]], which involved 10 research teams and resulted
in the design of new network architectures on both voxel grids and point cloud. The best architectures have beaten the state of
the art on the two proposed tasks: part-level segmentation of 3D shapes and 3D reconstruction from single view image.

2.2.1 on 2D Views of the cloud

The most direct approach is to apply 2D networks to images obtained from the point cloud. Among other things, we can
think of the following projections:

RGB image rendered from a virtual camera,

depth-map, from a virtual camera,
e range image, directly from the sensor,

e panorama image([Sfikas et al., 2017]],

elevation-map.

These methods can be improved by taking multiple views of the same object or scene, and then voting or fusing the results
[Boulch et al., 2017] (ranked 5th on reduced-8 Semantic benchmark). In addition, these methods greatly benefit from existing
2D expertise and pre-trained networks on image datasets [[Deng et al., 2009, |[Lin et al., 2014]] that contain much more data than
point cloud datasets.



2.2.2 on Voxel Grid

The first deep networks used to classify 3D point clouds date from 2015 with VoxNet [Maturana and Scherer, 20135]],
this network transforms an object instance by filling in an occupancy or density grid and then applies a Convolutional Neural
Network (CNN). Later [Huang and You, 2016] applied the same type of network to classify clouds of urban points, the network
then predicts the class of a point from the occupancy grid of its neighborhood. However, we cannot compare with this
architecture because the experimental data has not been published. Best results on ModelNet benchmarks are obtained using
deeper CNNs [Brock et al., 2016] based on the architecture of Inception-resnet [Szegedy et al., 2017] and voting on multiple
3D view of objects.

2.2.3 on Graph

Another approach is to use graphs, indeed the raw point cloud having no structure, it is very difficult to derive general
information from it. Whereas a graph gives relations of neighborhoods and distances between points and allows for example to
make convolutions as in SPGraph [Landrieu and Simonovsky, 2017] or to apply graph-cut methods on CRF as in SEGCloud
[Tchapmi et al., 2017]].

2.2.4 on Point Cloud

For the time being, there are still quite a few methods that take the point cloud directly as input. These methods have the
advantage of working as close as possible to the raw data, so we can imagine that they will be the most efficient in the future.
The first method of this type is PointNet [Qi et al., 2016|] which gets fairly good results on ModelNet for object instance
classification. PointNet is based on the observation that a point cloud is a set and therefore verifies some symmetries (point
switching, point addition already in the set...) and is therefore based on the use of operators respecting these symmetries like
the global Pooling, but these architectures lose the hierarchical aspect of the calculations that make the strength of the CNN.
This gap has been filled with PointNet++ [Q1 et al., 2017] which extracts neighborhoods in the cloud, applies PoinNet and
groups the points hierarchically to gradually aggregate the information as in a CNN. Two other approaches are proposed by
[Engelmann et al., 2017] to further account for the context. The first uses PointNet on multiscale neighborhoods, the second
uses PointNet on clouds extracted from a 2D grid and uses recurrent networks to share information between grid boxes.

3 APPROACH

3.1 Learning on fully annotated registered point clouds

Training on scenes point cloud leads to some difficulties not faced when the point cloud is a single object.

For the point classification task, each point is a sample, so the number of samples per class is very unbalanced (from
thousands of points for the class "pedestrian” to tens of millions for the class "ground"). Also with the training method of
deep-learning, an Epoch would be to pass through all points of the cloud, which would take a lot of time. Indeed, two very
close points have the same neighborhood, and will therefore be classified in the same way. Moreover, for each point one needs
to retrieve a neighborhood of the point at a certain scale (or several scales). Even with structures optimized for this task (such
as k-d tree or octree) this step can take a lot of time on very large clouds.

We propose a training method that solves these two problems. We randomly select N (for example 1000) points in each
class, then we train on these points mixed randomly between classes, and we renew this mechanism at the beginning of each
Epoch.

Once a point p to classify is chosen, we compute a grid of voxels given to the convolutional network by building an
occupancy grid centered on p whose empty voxels contain 0 and occupied voxels contain 1. We only use n X n X n cubic grids
where 7 is pair, and we only use isotropic space discretization steps A.

3.2 Data Augmentation and Training
Some classic data augmentation steps are performed before projecting the 3D point clouds into the voxels grid:

e Flip x and y axis, with probability 0.5

e Random rotation around z-axis



Random scale, between 95% and 105%

Random occlusions (randomly removing points), up to 5%
e Random artefacts (randomly inserting points), up to 5%
e Random noise in position of points, the noise follows a normal distribution centered in 0 with standard deviation 0.01m

The cost function used is cross-entropy, and the optimizer used is ADAM [Kingma and Ba, 2014] with a learning rate of
0.001 and £ = 108, which are the default settings in most deep-learning libraries.

3.3 Test

To label a complete point cloud scene, the naive method is to go through all the points of the cloud, and for each point:
e look for all the neighboring points that fit into the occupation grid,
e create this grid,
o infer the class of the point via the pre-trained network.

However, two points very close to each other will have the same neighborhood occupancy grid and therefore the network
will predict the same class. A faster test method is therefore to sub-sample the cloud to be tested. This has two beneficial
effects: reduce the number of inferences and neighborhood searches, and each neighborhood search takes less time. To infer
the point class of the initial cloud, we give each point the class of the nearest point in the subsampled cloud, which can be
done efficiently if the subsampling method used retains the correct information.

4 NETWORK ARCHITECTURES

4.1 3D essential layers

‘We denote:

e Conv(n,k,s,p) a convolutional layer that transforms feature maps from previous layer into n new feature maps, with a
kernel of size k X k x k and stride s and pads p on each side of the grid.

e DeConv(n,k,s, p) a transposed convolutional layer that transforms feature maps from previous layer into n new feature
maps, with a kernel of size k x k X k and stride s and pads p on each side of the grid.

e FC(n) a fully-connected layer that transforms the feature maps from previous layer into n feature maps.
e MaxPool(k) alayer that aggregates on each feature map every group of 8 neigboring voxels.
e MaxUnPool (k) a layer that computes an inverse of MaxPool (k).

e ReLU, LeakyReLU and PReLU common non-linearities used after linear layers as Conv and FC. ReLU (x) returns the
positive part of x, and to avoid null gradient if x is negative, we can add a slight slope which is fixed (LeakyReLU) or
can be learned (PReLU).

e SoftMax a non-linearity layer that rescales a tensor in the range [0, 1] with sum 1.
e BatchNorm a layer that normalizes samples over a batch.

e DropOut(p) a layer that randomly zeroes some of the elements of the input tensor with probability p.
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Figure 2: Our Multi-Scale Voxel Network architecture: MS3_DeepVoxScene (all tensors are represented as 2D tensors instead
of 3D for simplicity).

4.2 Classification Network Architecture

The choosen network architecture is inspired from [Simonyan and Zisserman, 2014] that works well in 2D. Our network
follows the architecture:

Conv(32,3,1,0) — Conv(32,3,1,0) = MaxPool(2) — Conv(64,3,1,0) — Conv(64,3,1,0) — MaxPool(2) — FC(1024) —
FC(N,) where N, is the number of classes, and each Conv and FC layer is followed by BatchNorm — PReLU and a Squeeze-
and-Excitation block except the last FC layer that is followed by a SoftMax layer. This network takes as
input a 3D occupancy grid of size 32 x 32 x 32, where each voxel of the grid contains 0 (empty) or 1 (occupied) and has a size
of 10cm x 10cm x 10cm.

This type of method is very dependent on the space discretization step A selected. Indeed, a small A allows to understand
the object finely around the point and its texture (for example to differentiate the natural ground from the ground made by
man) but a large A allows to understand the context of the object (for example if it is locally flat and horizontal around the
point there can be ambiguity between the ground and the ceiling, but there is no more ambiguity if we add context).

Since a 3D scene contains objects at several scales, this type of network can have difficulty classifying certain objects. So
we also propose a multiscale version of our network called MSK_DeepVoxScene for the K-scales version (or abbreviated in
MSK_DVS).

We take several versions of the previous network without the fully-connected layer. The input of each version is given a
grid of the same size 32 x 32 x 32, but with different sizes of voxels (for example Scm, 10cm and 15cm). We then retrieve a
vector of 1024 characteristics from each version, which we concatenate before giving to a fully-connected classifier layer. See
figure 2] for a graphical representation of MS3_DeepVoxScene.

5 EXPERIMENTS

5.1 Datasets

To carry out our experiments we have chosen the 3 datasets of 3D scenes which seem to us the most relevant to train methods
of deep-learning, Paris-Lille-3D [Roynard et al., 2017]], S3DIS [Armeni et al., 2016] and Semantic3D [Hackel et al., 2017].
Among the 3D point cloud scenes datasets, these are those with the most area covered and the most variability (see table []).
The covered area is obtained by projecting each cloud on an horizontal plane in pixels of size 10cm x 10cm, then summing
the area of all occupied pixels.




Number of points

Name LiDAR type Covered Area (subsampled) Number of classes
Paris-Lille-3D
[Roynard et al., 2017] multi-fiber MLS 55000m? 143.1M (44.0M) 9
Semantic3D
[Hackel et al., 2017 static LIDAR 110000m? 1660M (79.5M) 8
S3DIS
[[Armeni et al., 2016] MatterPort 6020m? 695.9M (36.9M) 13

Table 1: Comparison of 3D point cloud scenes datasets. Paris-Lille-3D contains 50 classes but for our experimentations we
keep only 9 coarser classes. In brackets is indicated the number of points after subsampling at 2 cm.

5.1.1 Paris-Lille-3D

The Paris-Lille-3D dataset consists of 2 km of 3D point clouds acquired by Mobile Laser Scanning using with a Velodyne
HDL-32e mounted on a van. Clouds are georeferenced using IMU and GPS-RTK only, no registration or SLAM methods are
used, resulting in a slight noise. Because the scene is scanned at approximately constant speed, the point density is roughly
uniform. The dataset consists of 3 files, one acquired in Paris and two acquired in Lille including Lillel .ply much larger
than Lille2.ply. To validate our architectures by K-fold method, we cut Lillel.ply into two folds containing the
same number of points. In addition, this dataset contains 50 classes, some of which only appear in some folds and with very
few points. We therefore decide to delete and group together some classes to keep only 9 coarser classes:

ground buildings poles
bollards trash cans barriers
pedestrians cars natural

Some qualitative results on Paris-Lille-3D dataset are shown in figure[3] We can observe that some trunks of trees are classified
as poles. It may means that the context is not sufficiently taken into account (even so the 15 cm grid is 4.8 m large) In addition,
the ground around objects (except cars) is classified as belonging to the object. One can imagine that cars are not affected by
this phenomenon because this class is very present in the dataset.

Figure 3: Example of classified point cloud on Paris-Lille-3D dataset. Left: classified with MS3_DVS, right: ground truth
(blue: ground, cerulean blue: buildings, dark green: poles, green: bollards, light green: trash cans, yellow: barriers, dark
yellow: pedestrians, orange: cars, red: natural).

5.1.2 Semantic3D

The Semantic3D dataset was acquired by static laser scanners, it is therefore more dense than a dataset acquired by
MLS as Paris-Lille-3D, but the density of points varies considerably depending on the distance to the sensor. And there
are occlusions due to the fact that sensors do not turn around the objects. Even by registering several clouds acquired from
different viewpoints, there are still a lot of occlusions. To minimize the problem of very variable density, we subsample the



training clouds at 2 cm. This results in a more uniform density at least close to the sensor and avoids redundant points. After
subsampling, the dataset contains 79.5M points. Some qualitative results on Semantic3D dataset are shown in Figure [T]

5.1.3 S3DIS

The S3DIS dataset is made up of 6 RGB 3D point cloud scenes taken from 3 different buildings and containing 13 classes.
On this dataset we sub-sample the clouds to 2 cm in the same way as for the Semantic3D dataset. After sub-sampling, the
entire dataset contains 36,9M points. As done in [Tchapmi et al., 2017] we compare our results only on fold 5 since this cloud

was acquired in another building than the other 5 clouds. Some qualitative results on S3DIS dataset are shown in figured] We
observe above all that there is a big confusion between the clutter class and the other classes, this can be explained because
this class contains objects of all shapes and sizes that can sometimes resemble objects of an existing class. In addition, as on
Paris-Lille-3D dataset, the floor around objects such as chairs is classified as belonging to the object instead of the floor. One
can guess that during training the network saw only few points on the border between the floor and a chair.

Figure 4: Example of classified point cloud on S3DIS dataset. Left: classified with MS3_DVS, right: ground truth (blue:
clutter, cerulean blue: floor, dark green: wall, green: column, dark yellow: chair, light yellow: table, dark orange: bookcase,
light orange: sofa).

5.2 Metrics

To confirm the interest of multi-scale CNNs, we compare the performance of our two architectures on these three datasets.
And on Semantic3D and S3DIS we compare our results with those of the literature. The metrics used to evaluate performance
are the following:

TP,
~ TP.+FP.
TP,
Ro=—"
TP.+FN,
2TP, 5 P.R.
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Where P, R., F1., Acc. and IoU, represent respectively Precision, Recall, F1-score, Accuracy and Intersection-over-Union

score of class c. And TP,., TN,, FP. and FN, are respectively the number of True-Positives, True-Negatives, False-Positives
and False-Negatives in class c.
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1 SPGraph|Landrieu and Simonovsky, 2017] 73.2% 94.0% 974% 92.6% 87.9% 44.0% 932% 31.0% 63.5¢
2 MS3_DVS(Ours) 65.3% 88.4% 83.0% 672% 83.8% 367% 924% 31.3% 50.0
3 RF_MSSF 62.7% 90.3% 87.6% 80.3% 81.8% 36.4% 922% 24.1% 42.6¢
4 SegCloud[Tchapmi et al., 2017 61.3% 88.1% 83.9% 66.0% 86.0% 40.5% 91.1% 30.9% 27.5
5 SnapNet_[Boulch et al., 2017 59.1% 88.6% 82.0% 773% 797% 229% 91.1% 18.4% 37.3
9 MS1_DVS(Ours) 57.1% 84.8% 82.7% 53.1% 83.8% 28.7% 89.9% 23.6% 29.8
Table 2: Top-5 Results on Semantic3D reduced-8 testing set. MS3_DVS is our MS3_DeepVoxScene with voxel
sizes of 5 cm, 10 cm and 15 cm and MS1_DVS is our MS1_DeepVoxScene with voxel size of 10 cm (added for
comparison with non multi-scale deep network).
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PointNet [Qi et al., 2016] 41.09%  48.98%  88.80 97.33 69.80 0.05 392 4626 1076 5261 5893 4028 585 2638 33
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SPG |Landrieu and Simonovsky, 2017] 54.67% 61.75% 9149 9789 7589 0.00 14.25 5134 5229 8635 7740 6549 4038 7.23 50.¢

Table 3: Results on S3DIS 5th fold.

5.3 Comparison with the state of the art

For a comparison with the state-of-the-art methods on reduced-8 Semantic3D benchmark see table[2] For MS1_DeepVoxScene
several resolutions have been tested, and by cross-validation on the Semantic3D training set the 10 cm resolution is the one
that maximizes validation accuracy. DeepVoxScene’s choice of MS3_DeepVoxScene resolution results from this observation,
we keep a resolution that obtains good performance in general, and we add a finer resolution of 5 cm to better capture the
local surface near the point, and a coarser resolution of 15 cm to better understand the context of the object to which the point
belongs. Our method achieves better results than all methods that classify cloud by points (i. e. without regularization). Better
results could probably be achieved by adding for exemple a CRF after classification.

For a comparison with the state-of-the-art methods on S3DIS 5th fold see table [3] We observe a confusion between the
classes wall and board (and more slightly with beam, column, window and door), this is explained mainly because these
classes are very similar geometrically and we do not use color. To improve these results, we should not sub-sample the clouds
to keep the geometric information thin (such as the table slightly protruding from the wall) and add a 2 cm scale in input to
the network, but looking for neighbourhoods would then take an unacceptable amount of time.

5.4 Study of the different architectures

To evaluate our architecture choices, we tested this classification task by one of the first 3D convolutional networks: VoxNet[Maturana and Sc

This allows us both to validate the choices made for the generic architecture of the MS1_DeepVoxScene network and to val-
idate the interest of the multi-scale network. We reimplemented VoxNet using the deep-learning library Pytorch. See table
E] for a comparison between VoxNet [Maturana and Scherer, 2015], MS1_DeepVoxScene and MS3_DeepVoxScene on the 3
datasets.

See table 5 for a comparison per class between MS1_DeepVoxScene and MS3_DeepVoxScene on Paris-Lille-3D dataset.
This shows that the use of multi-scale networks improves the results on some classes, in particular the buildings, barriers and
pedestrians classes are greatly improved (especially in Recall), while the car class loses a lot of Precision.



Class MS3 DVS MS1 _DVS VoxNet [Maturana and Scherer, 2015]

Paris-Lille-3D 89.29% 88.23% 86.59%
Semantic3D 79.36% 74.05% 71.66%
S3DIS 73.08% 69.36% 66.28%

Table 4: Comparison of mean F1 scores of MS3_DVS, MS1_DVS and VoxNet [Maturana and Scherer, 2015]. For
each dataset, the F1 score is average on all folds.

Precision Recall
Class  Ms3 pys MSI_DVS MS3 DVS MSI_DVS
ground 97.74%  97.08%  9870%  98.28%
buildings  85.50%  84.28%  9527%  90.65%
poles 93.30%  92.27%  92.69%  94.16%

bollards 98.60% 98.61% 93.93% 94.16%
trash cans 95.31% 93.52% 79.60% 80.91%

barriers 85.70% 81.56% 77.08% 73.85%
pedestrians 98.53% 93.62% 95.42% 92.89%
cars 93.51% 96.41% 98.38% 97.71%
natural 89.51% 88.23% 92.52% 91.53%

Table 5: Per class Precision and Recall averaged on the 4 folds of Paris-Lille-3D dataset.

6 CONCLUSIONS

We have proposed both a training method that balances the number of points per class seen during each epoch, as well as
a multi-scale CNN that is capable of learning to classify point cloud scenes. This is achieved by both focusing on the local
shape of the object around a point and by taking into account the context of the object.

We validated the use of our multi-scale network for 3D scene classification by ranking second on Semantic3D benchmark
and by ranking better than state-of-the-art point classification methods (those without regularization).
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