Imprints of relativistic effects on the asymmetry of the halo cross-correlation function: from linear to non-linear scales - Archive ouverte HAL
Article Dans Une Revue Monthly Notices of the Royal Astronomical Society Année : 2019

Imprints of relativistic effects on the asymmetry of the halo cross-correlation function: from linear to non-linear scales

Résumé

The apparent distribution of large-scale structures in the Universe is sensitive to the velocity/potential of the sources as well as the potential along the line of sight through the mapping from real space to redshift space (redshift-space distortions, RSD). Since odd multipoles of the halo cross-correlation function vanish when considering standard Doppler RSD, the dipole is a sensitive probe of relativistic and wide-angle effects. We build a catalogue of ten million haloes (Milky Way size to galaxy-cluster size) from the full-sky light cone of a new ‘RayGalGroupSims’ N-body simulation which covers a volume of (2.625 h^−1 Gpc)^3 with 4096^3 particles. Using ray-tracing techniques, we find the null geodesics connecting all the sources to the observer. We then self-consistently derive all the relativistic contributions (in the weak-field approximation) to RSD: Doppler, transverse Doppler, gravitational, lensing and integrated Sachs–Wolfe. It allows us, for the first time, to disentangle all contributions to the dipole from linear to non-linear scales. At large scale, we recover the linear predictions dominated by a contribution from the divergence of neighbouring line of sights. While the linear theory remains a reasonable approximation of the velocity contribution to the dipole at non-linear scales it fails to reproduce the potential contribution below 30–60 h^−1 Mpc (depending on the halo mass). At scales smaller than ∼10 h^−1 Mpc, the dipole is dominated by the asymmetry caused by the gravitational redshift. The transition between the two regimes is mass dependent as well. We also identify a new non-trivial contribution from the non-linear coupling between potential and velocity terms.
Fichier principal
Vignette du fichier
sty3206.pdf (2.79 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01758753 , version 1 (01-03-2022)

Licence

Identifiants

Citer

Michel-Andrès Breton, Yann Rasera, Atsushi Taruya, Osmin Lacombe, Shohei Saga. Imprints of relativistic effects on the asymmetry of the halo cross-correlation function: from linear to non-linear scales. Monthly Notices of the Royal Astronomical Society, 2019, 483 (2), pp.2671-2696. ⟨10.1093/mnras/sty3206⟩. ⟨hal-01758753⟩
124 Consultations
28 Téléchargements

Altmetric

Partager

More