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ABSTRACT
The apparent distribution of large-scale structures in the Universe is sensitive to the veloc-
ity/potential of the sources as well as the potential along the line of sight through the mapping
from real space to redshift space (redshift-space distortions, RSD). Since odd multipoles of the
halo cross-correlation function vanish when considering standard Doppler RSD, the dipole is a
sensitive probe of relativistic and wide-angle effects. We build a catalogue of ten million haloes
(Milky Way size to galaxy-cluster size) from the full-sky light cone of a new ‘RayGalGroup-
Sims’ N-body simulation which covers a volume of (2.625 h−1 Gpc)3 with 40963 particles.
Using ray-tracing techniques, we find the null geodesics connecting all the sources to the
observer. We then self-consistently derive all the relativistic contributions (in the weak-field
approximation) to RSD: Doppler, transverse Doppler, gravitational, lensing and integrated
Sachs–Wolfe. It allows us, for the first time, to disentangle all contributions to the dipole
from linear to non-linear scales. At large scale, we recover the linear predictions dominated
by a contribution from the divergence of neighbouring line of sights. While the linear theory
remains a reasonable approximation of the velocity contribution to the dipole at non-linear
scales it fails to reproduce the potential contribution below 30–60 h−1 Mpc (depending on the
halo mass). At scales smaller than ∼10 h−1 Mpc, the dipole is dominated by the asymmetry
caused by the gravitational redshift. The transition between the two regimes is mass dependent
as well. We also identify a new non-trivial contribution from the non-linear coupling between
potential and velocity terms.

Key words: gravitational lensing: weak – methods: numerical – galaxies: distances and red-
shifts – large-scale structure of Universe.

1 IN T RO D U C T I O N

Late time structure formation is a non-linear process which is very
sensitive to the underlying cosmology. However we do not observe
large-scale structures in themselves but rather an image of these ob-
jects via messengers (photons, neutrinos, gravitational waves, etc.).
Most of our observations come from light, but the information trans-
ported by photons is altered during their path from the source to the
observer. This leads to several distortions of the image and spectrum
of the objects we are interested in. Because of lensing (Schneider,
Ehlers & Falco 1992; Bartelmann & Schneider 2001), the angular

� E-mail: michel-andres.breton@obspm.fr

position as well as the shape/luminosity of objects can be modified:
this is related to the bending of light near local energy overdensities
and tidal deformations of light beams respectively. The observed
redshift of an object is also perturbed by its proper motion, its grav-
itational potential, and light propagation in time-varying potentials.
As a consequence, the comoving radial distance inferred from red-
shift (assuming a given homogeneous cosmology) is also perturbed.
The apparent distribution of structures is therefore modified by red-
shift perturbations and lensing: this effect is called redshift-space
distortions (RSD1; Kaiser 1987; Hamilton 1992). RSD modify the

1We stick to the terminology, RSD, as used widely in the community
although we admit that this term is ambiguous. It should be taken as a
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position and properties of objects but also carry relevant cosmo-
logical information: studying these effects is a major contemporary
challenge. Early RSD studies only took into account peculiar veloc-
ities at linear order in the distant-observer approximation. However
with the improvement of data precision more subtle effects need to
be accounted for: in Szapudi (2004) and Reimberg, Bernardeau &
Pitrou (2016) the distant-observer approximation has been relaxed
leading to a wide-angle calculation. In Pápai & Szapudi (2008) and
Raccanelli et al. (2018) a more sophisticated treatment of Doppler
terms has been implemented and, in McDonald (2009) the effect
of gravitational redshift has been included leading to an imaginary
part of the power spectrum.

However linear theory does not provide a fully satisfactory pre-
diction since small scales are dominated by non-linear clustering
and large-scale modes can also be affected by smaller scale modes
through mode coupling. In fact, non-linear effects are already visible
in real space at 100 h−1 Mpc scales in Baryon Acoustic Oscillations
(BAO; Crocce & Scoccimarro 2008; Taruya et al. 2012; Rasera
et al. 2014). Moreover the mapping from real space to redshift
space also becomes non-linear. The question of non-linearities has
been addressed through semi-analytical approaches: either using
different flavours of perturbation theory (Crocce & Scoccimarro
2006; Matsubara 2008; Carlson, White & Padmanabhan 2009;
Taruya, Nishimichi & Saito 2010; Taruya et al. 2012; Carlson,
Reid & White 2013; Taruya, Nishimichi & Bernardeau 2013), using
streaming models (Scoccimarro 2004; Reid & White 2011), Effec-
tive Field Theory (Carrasco, Hertzberg & Senatore 2012), or halo
model (Tinker et al. 2008). Alternatively, N-body simulations have
been performed (Tinker, Weinberg & Zheng 2006; Tinker 2007)
to investigate RSD beyond the quasi-linear regime. One important
limitation of most of these works is that only standard RSD have
been considered (distant-observer approximation and no relativistic
effects).

Recently, several authors computed the observed galaxy number
count including all relativistic effects at first order in the weak-field
approximation (Yoo, Fitzpatrick & Zaldarriaga 2009; Yoo 2010;
Bonvin & Durrer 2011; Challinor & Lewis 2011). Given the com-
plexity of the calculation, all the terms were computed using the
linear regime approximation and, assuming a linear mapping be-
tween real space and redshift space. These works allow to better
understand the relative amplitude of all the contributions to the
multipoles of the observed galaxy power spectrum (or two-point
correlation function) at large linear scales. Measuring the so-called
relativistic effects (i.e. beyond standard RSD effects) in a galaxy
survey would be exciting since it would provide alternative ways of
testing the nature of gravity and of the dark sector. Unfortunately the
(usually studied) even multipoles of the observed halo correlation
function are dominated by standard RSD and the detection of such
effects might be challenging.

While standard RSD generate only even multipoles, the relativis-
tic and wide-angle effects generate an asymmetry in the observed
galaxy distribution (i.e. odd multipoles) when cross-correlating two
halo populations living in different environments (or more, Bonvin,
Hui & Gaztanaga 2016). Using a multipole expansion of the linear
cross-correlation function including all relativistic terms, Bonvin,
Hui & Gaztañaga (2014) have shown that the dipole is dominated
by relativistic terms (which scale as H/k, where H is the conformal
Hubble constant and k is the wavenumber of interest). Without con-
firmation by simulation, the validity of these results was however

synonymous of ‘Observed-Space Distortions’ including all distortions in-
duced by the presence of an observer.

limited to large linear scales (>100 Mpc). At these scales the dipole
generated by the gravitational potential is cancelled out because of
velocity terms present in the Euler equation.

On the other hand at halo scale (< few Mpc), the asymmetry
of the distribution of galaxies caused by the gravitational potential
of galaxy clusters has been investigated through analytical models
(Cappi 1995; Kaiser 2013; Zhao, Peacock & Li 2013) and simula-
tions (Cai et al. 2017). In these studies the relative shift between
the mean redshift of two galaxy populations was considered instead
of the dipole of the galaxy cross-correlation. Wojtak, Hansen &
Hjorth (2011) claimed a detection of this effect by stacking galaxy
clusters: this has provided an alternative way to test gravity in clus-
ter although the exact interpretation of the measurement is debated
(Kaiser 2013; Zhao et al. 2013).

Croft (2013) proposed to use the same concept at larger scales
in order to probe the gravitational redshift outside galaxy clusters.
They introduce a new estimator since a clear boundary cannot be
defined in the universe as is the case in galaxy clusters. The shell es-
timator measures the relative shift of galaxy’s redshift within spher-
ical shells centred on galaxy clusters. In a recent paper, they have
measured this estimator from snapshots of N-body simulations (Zhu
et al. 2017). Because of the noise related to the limited size of the
simulation, they have used an artificial boost factor to increase the
signal-to-noise ratio. Interestingly, Alam et al. (2017) have claimed
a detection of this effect within the SDSS survey. However, exact
predictions for this estimator remain difficult at all scales (Giusarma
et al. 2017). While predictions of the dipole at large linear scales
are already well established, a clean dipole measurement from lin-
ear to non-linear scales within simulations (or observations) is still
missing (Alam et al. 2017; Gaztanaga, Bonvin & Hui 2017; Zhu
et al. 2017)

In this paper, we directly measure the cross-correlation between
two halo populations within the full-sky light cone of a larger and
more resolved simulation. We use sophisticated ray-tracing tech-
niques to self-consistently include all relativistic effects at first or-
der in the weak-field approximation. For the first time, we fill in the
gap between large-scale linear predictions of the dipole (dominated
by the contribution from the divergence of the line of sights) and
small-scale non-linear expectations (dominated by the contribution
from gravitational redshift). We also decompose all the contribu-
tions to the dipole, compare them to linear theory and shed light on
to new ones.

The paper is organized as follows. In Section 2 we review the the-
oretical predictions for dipole in the linear and non-linear regimes.
We then present in Section 3 the methodology used to compute
halo cross-correlation function from our simulated light cone. In
Section 4 we describe our halo catalogues and test our measure-
ments. Finally in Section 5 we show the results of the dipole from
linear to non-linear scales.

2 TH E O RY

In this paper, we will consider a well-defined mass-limited collec-
tion of haloes within a given cosmological volume. We will not con-
sider observational effects such as selection effects, magnification-
bias, absorption/diffusion of light, redshift errors, or the fact that
galaxies can be hidden if they are aligned along the line of sight.

2.1 Apparent halo overdensity: from real space to redshift
space

We consider scalar perturbations of the Friedmann–Lemaı̂tre–
Robertson–Walker (FLRW) metric in conformal Newtonian gauge.
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The metric reads (Ma & Bertschinger 1995)

gμνdxμdxν = a(η)2
[−(1 + 2ψ/c2)c2dη2

+ (1 − 2φ/c2)δij dxidxj
]
, (1)

where a is the expansion factor, c is the speed of light, δij is the
Kronecker delta, ψ and φ the Bardeen potentials (Bardeen 1980), x
is the comoving position, and η the conformal time. Using kνkν = 0
(where kν are the components of the wavevector) and the lensing
deviation equation we know that the apparent comoving position of
a source is (Challinor & Lewis 2011)

s = χn + c

H
δzn − n

∫ χ

0
(φ + ψ)/c2dχ ′

−
∫ χ

0
(χ − χ ′)∇⊥(φ + ψ)/c2dχ ′, (2)

where n is a unit vector pointing towards the direction from which
the unperturbed photon is coming and χ is the unperturbed comov-
ing distance of the source. On the right-hand side the first term
x = χn is the unperturbed comoving position of the source, the
second term is the distance perturbation along the line of sight due
to redshift perturbation δz. The third term is the (small) Shapiro
effect and the last term is the transverse displacement due to
lensing.

For the redshift perturbation we will consider the usual first-order
terms plus the special relativistic transverse Doppler effect that can
be a non-negligible fraction of the gravitational redshift at small
scales (Zhao et al. 2013)

δz = a0

a

{
v · n

c
− (ψ − ψ0)

c2
+ 1

2

(v

c

)2
− 1

c2

∫ η0

η

∂(φ + ψ)

∂η
dη′

}
,

(3)

where v is the velocity and φ the potential. Quantities with the
subscript ‘0’ are evaluated at the observer location today. In the
above expression, we have assumed a comoving observer. Assuming
mass conservation gives(

1 + δ(s)(s)
)

d3s = (
1 + δ(x)(x)

)
d3x, (4)

where δ(s) and δ(x) are the matter density contrast in redshift space
and real space, respectively. We have

δ(s) = (
1 + δ(x)

) |J |−1 − 1, (5)

where J is the Jacobian of the transformation from real space to
redshift space.

2.2 Two-point halo–halo cross-correlation function: linear
theory

The halo–halo cross-correlation function between two halo popula-
tions h1 and h2 is given by

ξh1h2 ( �r2 − �r1) = 〈δh1 ( �r1)δh2 ( �r2)〉, (6)

with δhi
(�ri) the overdensity of population i and 〈〉 the ensemble

average. The cross-correlation function is related to the cross-power
spectrum through〈

δ
(s)
h1

(k1)δ(s)∗
h2

(k2)
〉

=
∫

d3s1d3s2

〈
e−ik1 s1 eik2 s2δ

(s)
h1

(s1)δ(s)
h2

(s2)
〉

,

(7)

where δ(s)(ki) is the Fourier transform of δ(s)(si). To rewrite this ex-
pression in terms of real space quantities we can use equations (4)
and (5). Equation (7) is the general formula for the power spec-
trum in redshift space but this leads to complicated mode couplings

(Zaroubi & Hoffman 1996). In the linear regime, we can linearize
the mapping between real and redshift space,

�(s) = �(r) + 1 − |J |, (8)

where we use � to denote the galaxy number count as an observ-
able thus gauge invariant quantity. Assuming no velocity bias, the
observed galaxy number count is given by the sum of the following
terms (Bonvin & Durrer 2011; Challinor & Lewis 2011; Bonvin
et al. 2014; Tansella et al. 2018)

�std = bδ − 1

H∇r (v · n), (9)

�acc = 1

Hc
v̇ · n, (10)

�q = − Ḣ
cH2 v · n, (11)

�div = − 2

Hχ
v · n, (12)

�pot,(1) = 1

Hc
∇rψ · n, (13)

�pot,(2) =
( Ḣ
H2 + 2c

Hχ

)
ψ/c2 − 1

Hc2
ψ̇, (14)

�shapiro = (φ + ψ)/c2, (15)

�lens = − 1

c2

∫ χ

0

(χ − χ ′)χ ′

χ
∇2

⊥(φ + ψ)dχ ′, (16)

�isw = 1

Hc2
(φ̇ + ψ̇), (17)

�LC = v · n/c, (18)

with δ the matter density contrast and b a scale-independent bias.
�std is the standard contribution to RSD (Kaiser 1987), �acc the
contribution from the acceleration of sources, �q the contribution
related to the acceleration of the expansion of the universe, �div

the contribution from the divergence of line of sights due to a finite
observer, �pot,(1) the contribution from the gravitational redshift at
first order in H/k, �pot,(2) the contribution of the dominant terms in
(H/k)2 to the gravitational redshift, �shapiro the contribution from
the Shapiro time delay, �isw the contribution from the Integrated
Sachs–Wolfe effect, �lens the lensing contribution equal to the lens-
ing convergence as light-beam deformations modify the apparent
source distribution, and �LC the light-cone contribution as the ob-
served position of sources on the light cone is different from their
position on constant-time hypersurfaces due to peculiar velocities
(Bonvin et al. 2014). A more refined calculation of this effect is
given in Kaiser (2013). We neglect the following terms, which are
the subdominant (H/k)2 terms:

�neglect =
( Ḣ
H2 + 2c

Hχ

)
1

c2

∫ η0

η

∂(φ + ψ)

∂η
dη′

+ 2

χc2

∫ χ

0
(φ + ψ)dχ ′. (19)
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2674 M.-A. Breton et al.

It is straightforward to see that these terms are subdominant: for
the dipole the only contribution of integrated terms comes from the
integration between χ − r/2 and χ + r/2 where χ is the pair centre
and r the pair separation for the correlation function. We do not
consider the term from transverse Doppler effect because it does not
contribute to the correlation function in the linear regime. We also
neglect higher order terms in redshift (see Ben-Dayan et al. 2012;
Umeh, Clarkson & Maartens 2014). The linear correlation function
of two different populations of galaxies is given by ξ = 〈�s

1�
s
2〉. In

the following we will focus on the terms that generate an asymmetry

ξA =
∑

i

〈
�std

1 �A
2

〉 + (1) ↔ (2), (20)

where �A is given by equations (9)–(18). In the following, we
will omit the subscript which indicates the halo population and we
will implicitly assume that we perform the summation over the
two populations (first and second term in the right-hand side). Odd
multipoles come from an asymmetry in the correlation function via
exchange of pairs. If the position of each object of a pair is given by
x1 and x2 we choose the convention x = (x1 + x2)/2, r = x2 − x1,
and μ = x̂ · r̂ , where a hat denotes a unit vector. The angle defined
this way is symmetric under exchange of pairs and we therefore do
not need any additional geometrical term for the dipole due to the
choice of angle (Reimberg et al. 2016; Gaztanaga et al. 2017).

The contributions to the dipole are the following (Bonvin et al.
2014; Tansella et al. 2018):

〈ξ acc〉 = −
(

f 2 + ḟ

H + Ḣ
H2 f

)
Gγ 1

1 (r), (21)

〈ξ q〉 = Ḣ
H2 fGγ 1

1 (r), (22)

〈ξ div〉 = 2c

Hχ
fGγ 1

1 (r), (23)

〈ξ pot,(1)〉 = 3

2
m(z)Gγ 1

1 (r), (24)

〈ξ pot,(2)〉 = −3

2
m(z)

H
H0

Gγ 2
1 (r)

(
2c

Hχ
+ Ḣ

H2 − f + 1

)
, (25)

〈ξ shapiro〉 = −3m(z)
H
H0

Gγ 2
1 (r), (26)

〈ξ isw〉 = 3m(z)
H
H0

Gγ 2
1 (r) (1 − f ) , (27)

where we have f = ∂ln D+/∂ln a the linear growth rate, D+ the linear
growth factor, G = (b1 − b2) H

H0
, and

γ m
� (r) = 1

2π2

(H0

c

)m ∫
dkk2−mj�(kr)P (k, z). (28)

with j� the �th spherical Bessel function and P(k, z) the linear power
spectrum at redshift z. A dot denotes a derivative w.r.t. conformal
time The wide-angle term, coming from the fact that two haloes
have different line of sights, reads

〈ξwa〉 = −2

5
(b1 − b2)f

r

χ
γ 0

2 (r). (29)

The lensing term is given by (Matsubara 2000; Hui, Gaztañaga &
Loverde 2007, 2008)

〈ξ lens〉 = 〈�std�lens〉 = −9

4
m(z)

rH
c

G� (r, z), (30)

with

� (r, z) = 1

2π

(H0

c

)∫ 1

−1
μ2dμ

∫
dkkJ0

×
(
kr
√

1 − μ2
)

P (k, z). (31)

J0 is the Bessel function of the first kind of order 0. The lensing
effect is due to the fact that galaxies on the far side of a massive
halo look more spread out than the ones in front of the halo due
to light bending. This generates an observed underdense region on
the far side of the halo which leads to a negative dipole. Following
Bonvin et al. (2014), the light-cone term due to peculiar velocities
is given by

〈ξLC〉 = −fGγ 1
1 (r). (32)

The bias and growth factor are not constant. This leads to evolution
terms

〈ξ evo1〉 = r

6

{[
(b1 − b2)f ′ − f (b′

1 − b′
2)
] [

γ 0
0 (r) − 4

5
γ 0

2 (r)

]}
,

(33)

〈ξ evo2〉 = r

2

(
b1b

′
2 − b′

1b2

)
γ 0

0 (r), (34)

where an apostrophe denotes a derivative w.r.t. comoving distance.
We find it convenient to split the evolution term in two parts be-
cause they appear in different configurations (depending on the
velocity field) as we will see in Section 5. In computing equa-
tions (35) and (36), while we use the bias parameter directly mea-
sured from our simulation, the comoving distance derivative of the
bias is estimated from theoretical model, since the measured co-
moving distance derivative is basically noisy (see Fig. A1). Here,
we specifically use the model given by Sheth & Tormen (1999)

bST = 1 + dν2 − 1

δc

+ 2
p/δc

1 + (dν2)p
, (35)

where p = 0.3, d = 0.707, δc = 1.673 for the �CDM cosmology
that we used, ν = δc/σ (M, z), and σ (M, z) = σ (M, 0)D+(z). Finally
we get

b′
ST = 2Hf

cδc

[
dν2 − 2

p2(dν2)p

(1 + (dν2)p)2

]
. (36)

We verified that this value is in agreement with the derivative com-
puted from our simulation (see Appendix A).

Note that in order to compute the full correlation function it is
also possible to use the pressureless Euler equation v̇ · n + Hv ·
n + ∇rψ = 0.

We sum up in Table 1 the linear regime contributions to the dipole
predictions used in this paper.

The dominant term for large separation is ξ div. It is related to
a geometrical effect due to the divergence of line of sights for an
observer at finite distance. However this is not a ‘wide-angle’ term.
Indeed, even if we consider the pairs to be aligned the effect does not
vanish. It comes from the fact that an element of volume seen under
a given solid angle is perceived as less dense when receding from
us and similarly is perceived as denser when coming towards us.
This generates an overall positive dipole while the usual wide-angle
term produces a negative dipole.
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Relativistic correlation-function dipole 2675

Table 1. Dipole prediction table for the linear regime. This table indicates which terms to consider when predicting the dipole for a specific choice of angle (θ
or β) and redshift (zi) which are given by equations (44)–(49). A cross shows if a term should be added to the prediction, while a zero indicates that the term
should not be taken into account.

ξpot, (1) ξpot, (2) ξ acc ξq ξdiv ξwa ξLC ξ isw ξ lens ξ evo1 ξ evo2

flrw = (β, z0) 0 0 0 0 0 0 × 0 0 0 ×
(β, z1)-flrw : Potential only (1) × 0 0 0 0 0 0 0 0 0 0
(β, z1)-flrw : Potential only (2) × × 0 0 0 0 0 0 0 0 0
(β, z2)-flrw : Doppler only 0 0 × × × × 0 0 0 × 0
(β, z3)-flrw : Transverse Doppler only 0 0 0 0 0 0 0 0 0 0 0
(β, z4)-flrw : ISW only 0 0 0 0 0 0 0 × 0 0 0
(θ , z0)-flrw : Lensing only 0 0 0 0 0 0 0 0 × 0 0
(θ , z5)-flrw : All2 × × × × × × 0 × × × 0

To infer the final prediction, we computed the linear theory pre-
diction at 200 redshifts between the limits of our survey and took
the volume average. Indeed, for some of the dipole terms, it is
not equivalent to computing the prediction at the volume aver-
aged redshift. Throughout the paper we always consider the case
b1 > b2.

2.3 Two-point halo–halo cross-correlation function:
non-linear regime

Starting from equation (6), two difficulties arise in the non-linear
regime of structure formation. The evolution of the matter fields
(density, velocity, and potential) becomes non-linear. Moreover,
the mapping from real space to redshift space becomes non-linear
too. A vast literature has addressed these questions in the context of
the standard RSD with distant observer approximation (i.e. Doppler
effect along one fixed direction). A naive perturbation theory expan-
sion provides poor results because of Finger-of-God effect. Taruya
et al. (2010) have developed a perturbation-based theory where the
damping is characterized by a univariate function with one single
free parameter. This model performs well in the quasi-linear regime.
It however needs to be extended to include wide-angle effect and
other relativistic effects. We plan to work on these aspects in the fu-
ture. Another approach to the non-linear regime is to rewrite RSD in
the context of the streaming model. Following Scoccimarro (2004)
the observed (Doppler-only) correlation function ξ std

s is given (in
the distant observer approximation) by

1 + ξ std
s (s⊥, s‖) =

∫ [
1 + ξ (r⊥, r‖)

]
P(v12

‖ |r⊥, r‖)dv12
‖ , (37)

where the apparent position in redshift space is decomposed into
a component perpendicular to the line of sight (s⊥) and along the
line of sight (s�), the real-space position is also decomposed as
r⊥ = s⊥ and r‖ = s‖ − v12

‖ /H, v12
‖ is the pairwise velocity along the

line of sight and P(v12
‖ |r⊥, r‖) is the pairwise-velocity Probability

Distribution Function (PDF) at the position (r⊥, r�) in real space.
This decomposition is exact even at non-linear scales. However one
still needs to predict the PDF of the pairwise velocity using halo
model or perturbation theory. Again an extension to wide angles is
still missing as it is quite challenging. The detailed analytical mod-
elling of the non-linear velocity PDF which is highly non-Gaussian
(Scoccimarro 2004) (plus possible wide-angle effects at interme-
diate scales) is beyond the scope of this paper and we leave it for
future work. However, as we will see the contribution from grav-
itational redshift dominates the dipole at small non-linear scales:
we have therefore focused on this specific contribution. Taking into
account the PDF of the gravitational potential at a given pair separa-
tion P(φ12|r⊥, r‖), a general expression to the halo–halo correlation

function with potential-only RSD is given by

1 + ξ pot
s (s⊥, s‖) =

∫ [
1 + ξ (r⊥, r‖)

]
P(φ12|r⊥, r‖)dφ12, (38)

where r⊥ = s⊥, r‖ = s‖ + φ12/(cH) and φ12 is the difference of
potential between the two halo populations. We assume a simple
spherical model to derive the potential difference as a function of
radius. Following Croft (2013), the PDF of the potential difference
is a single-valued function which depends only on pair separation.
The contribution from the potential difference φ12 to the halo-matter
correlation function (no velocity), is given by

M12(< r) = 4πρ̄

∫ r

0
(ξh1m(x) − ξh2m(x))x2dx, (39)

φ12(R) = −G

∫ R

0

M12(< r)

r2
dr, (40)

ξ pot,sing
s (s⊥, s‖) = ξ (r⊥, r‖), (41)

where ξ hm is the monopole of the halo-matter correlation func-
tion, M12(< r) is the enclosed mass, G is the gravitational constant,

R =
√

r2
⊥ + r2

‖ , r⊥ = s⊥, and r‖ = s‖ + φ(R)/(cH). ξ hm is taken as

the maximum between the linear prediction bξmm and a spherical
NFW profile (Navarro, Frenk & White 1997) with a concentration
parameter given by Zhao et al. (2009). This model is an approxima-
tion as the distribution of matter is not spherical (Cai et al. 2017),
the PDF of the pairwise potential is not single valued and the halo
profile can deviate from NFW (Balmès et al. 2014).

Croft (2013) have also taken into account both the standard and
(single-valued) potential contributions to the dipole with a simple
streaming model. However they have neglected wide-angle effects,
other relativistic effects and they have assumed a simple exponential
model for the pairwise velocities. To conclude, a full model of the
cross-correlation function with all relativistic effects in the non-
linear regime is still missing. We will use cosmological simulations
to address this regime including all contributions.

3 M E T H O D S

The numerical set-up is described in the three following subsections.
In the first subsection, we introduce the new large N-body simula-
tion that we have performed. It is part of the RAYGALGROUPSIMS3

suite of simulations dedicated to ray-tracing studies (Breton et al.,

3Ray-tracing Galaxy Group Simulations, soon available at http://cosmo.ob
spm.fr/
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2676 M.-A. Breton et al.

in preparation). This simulation gives us Lagrangian and Eulerian
quantities within snapshots (volume at constant times) and light
cones (volume as seen from an observer located at the centre of the
box, a point further away from the centre being seen further back
in time). In the second subsection, we use MAGRATHEA4 (Reverdy
2014), a ray-tracing library integrating photon paths using geodesic
equations on the light cones. Searching for the geodesics connecting
a given observer to all detected haloes, we compute the seen angle
and the observed redshift (which are different from the true angle
and comoving redshift provided directly by the simulation). The ray
tracing gives us catalogues of apparent redshift and angular posi-
tions (z, θ , φ). In the last subsection, we introduce the correlation
function estimator.

We would like to point out that in the following we use the Newto-
nian gauge to interpret the data from N-body simulation. In principle
this can lead to errors in redshift due to the fact that in this gauge
there are relativistic corrections at the horizon scale. To be perfectly
rigorous we should interpret the position of particles in the N-body
gauge (Fidler et al. 2015, 2016). The difference of interpretation
comes from the fact that contrary to the Newtonian gauge, the N-
body gauge leaves the spatial volume unperturbed in a similar way
to Newtonian simulations. To account for relativistic corrections in
Newtonian gauge we could also apply a time-independent displace-
ment on the particle position (Chisari & Zaldarriaga 2011) which
depends on the initial particle distribution. However as shown by
Adamek et al. (2016a,b) and Adamek (2017) these gauge effects
are small compared to the effects we are interested in, meaning for
this work we can safely use the Newtonian gauge to interpret the
data from our Newtonian simulation.

3.1 N-body simulation

The simulation used in this work consists in a dark matter only sim-
ulation with 40963 particles within a volume of (2625 h−1 Mpc)3.
The corresponding particle mass-resolution is 1.88 × 1010h−1 M.
The final number of AMR (Adaptive Mesh Refinement) cells is
0.4 trillion and the spatial resolution reaches 5 h−1kpc. We use
CAMB (Lewis, Challinor & Lasenby 2000) to compute the initial
linear matter power spectrum for a �CDM cosmology (7-yr WMAP
data, Komatsu et al. 2011) with Hubble parameter h = 0.72, matter
density m = 0.25733, baryon density b = 0.04356, radiation
density r = 8.076 × 10−5, slope of the primordial power spec-
trum ns = 0.963, and normalization σ 8 = 0.801. Initial conditions
were generated with a second-order Lagrangian perturbation the-
ory (2LPT) version of MPGRAFIC (Prunet et al. 2008) at a redshift
zstart = 46.

Dark matter particles were evolved with an improved version
of the particle-mesh adaptive-mesh-refinement (PM-AMR) N-body
code RAMSES (Teyssier 2002). We borrow the Triangular Shape
Cloud assignment routine from Li et al. (2012) in order to make the
density, potential, and force more isotropic than with the standard
Cloud In Cell assignment.

During the simulation, ∼50 snapshots (particles) and three light
cones (particles and gravity cells) with different depths and aper-
tures were written. The light cones were built using the onion-shells
technique (Fosalba et al. 2008, 2015a,b; Teyssier et al. 2009). In this
article, we focus on snapshots between z = 0.5 and z = 0 and the

4https://github.com/vreverdy/magrathea-pathfinder/ The version used for
this work is currently very different from the master branch, however they
will be synchronized soon

full-sky light cone up to zmax = 0.5. Choosing this maximum redshift
ensures that we avoid any replica in the light cone. The light cone
consists in ∼300 shells (i.e. every coarse time-step): this ensures a
good time resolution.

We use pFoF5 (Roy, Bouillot & Rasera 2014), a parallel friend-of-
friend algorithm to detect haloes both in snapshots and light cones.
We adopt a standard linking-length of b = 0.2 times the mean
interparticle separation and we only pick haloes with more than 100
particles (to guarantee that haloes are sufficiently sampled).

Last, we note that we use a Newtonian simulation and therefore
the two Bardeen potentials are equal.

3.2 Ray tracing

The goal of ray tracing is to make a connection between sources
and observers. There are many approaches to ray tracing. The most
basic approximation (widely used in analytical works) is the Born
approximation where deflections and lensing are computed from in-
tegral along the undeflected path. Within simulations a commonly
used method consists in splitting the universe in several thin lenses
orthogonal to the direction of observation (multiple lens formalism,
Hilbert et al. 2009). The light is assumed to move in straight lines
between lenses while being deflected when crossing the lenses.
Lenses are usually flat and plane parallel, thus inducing error for
large angles. Moreover the potential is often computed by solving
a 2D Poisson equation on the lens (instead of a 3D one). In order to
deal with wide-angle effects an onion-shells technique has been im-
plemented (Fosalba et al. 2008, 2015a,b; Teyssier et al. 2009) with
spherical lenses. More recently the ray-tracing algorithm has been
ported within RAMSES in order to use the accurate 3D potential from
the simulation (Barreira et al. 2016). In most of the works, lensing
is computed using integral along the light ray while redshift pertur-
bations are computed independently, only considering the Doppler
effect.

Our method consists in unifying deflection, lensing, and redshift
calculation by directly solving geodesics equations. While this ap-
proach is usually done in the field of general relativity, it is not
common within cosmological simulations. To our knowledge, this
approach has been introduced by Killedar et al. (2012) using a
fixed grid resolution and limited-size simulation. Here we use MA-
GRATHEA, a hybrid MPI/pthreads C+ + 11 ray-tracing library to
propagate photons on null geodesics within the hierarchy of AMR
grids (Reverdy 2014). Using adaptive mesh is crucial to fully re-
solve lensing, potential, and velocity profiles near haloes. We note
that there has been a recent resurgence of interest for a relativis-
tic approach to ray tracing within cosmological simulations (Giblin
et al. 2017 has solved optical scalar equation with a full general rela-
tivistic code at low resolution; Borzyszkowski, Bertacca & Porciani
2017 has solved it at higher resolution but using Born approxima-
tion).

A detailed description of our fast and very accurate ray-tracing li-
brary based on template-meta-programming is available in Reverdy
(2014), we now review some of its specialities. The light cone pro-
vides a regular grid at coarse level with refinement in high-density

areas. In each cell of the grid we have
(
a, φ, ∂φ

∂x
, ∂φ

∂y
, ∂φ

∂z

)
, respec-

tively, the scale factor of the shell, the potential and derivatives of
the potential with respect to spatial Cartesian coordinates of the
simulation box. In order to propagate light rays we interpolate these
quantities at the photon space–time location and solve the geodesic

5https://gitlab.obspm.fr/roy/pFoF
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equations. In this work, we chose the linear interpolation for space
and nearest-neighbour interpolation for time. Higher order interpo-
lation are interesting prospects for future work, but for this paper we
will not consider it. Photons are launched backward in time (back-
ward ray tracing) from the light-cone centre at z = 0 with a given ki

(spatial part of the wavevector) and initially setting gμνdxμdxν = 0.
We then let MAGRATHEA solve the linearized geodesic equations
with the metric given by equation (1),

d2η

dλ2
= −2a′

a

dη

dλ

dη

dλ
− 2

c2

dφ

dλ

dη

dλ
+ 2

∂φ

∂η

(
dη

dλ

)2

(42)

d2xi

dλ2
= −2a′

a

dη

dλ

dxi

dλ
+ 2

c2

dφ

dλ

dxi

dλ
− 2

∂φ

∂xi

(
dη

dλ

)2

(43)

where λ is the affine parameter along the photon path.
As we are interested in source-averaged observables rather than

direction-averaged ones (Kibble & Lieu 2005), we now describe
recent modifications of the solver to build a catalogue of sources
including all relativistic effects. To find the null geodesic connecting
a source and the observer, we launch several photons from the
observer to the tentative directions of observation of the source.
Then using a root finder, the geodesics intersecting both the source
and observer world lines are identified. In practice, we assume that
sources are present at any time (as opposed to an event which
corresponds to a specific space–time location). Moreover, since
sources are moving, we use a nearest-neighbour interpolation for
the time location of the source. Because sources are moving slowly
and light-ray deflections are small, the sources lie very close to the
null FLRW light cone. A refinement would be to linearly interpolate
the position of particles between two light cones at different times.
Moreover, we only search for one geodesic for each source since
we focus on large scales, dominated by the weak-lensing regime:
generalization to strong lensing (i.e. multiple geodesics for one
source) is straight-forward with enough resolution. We leave these
possible refinements for future work.

Let a halo be at location (X, Y, Z) on the light cone. For an
observer at the centre of the simulation, the two components of the
true angle β are (assuming the same convention as for lensing):
β1 = arctan (Y/X), β2 = arccos (Z/R) where R is the comoving
distance R = √

X2 + Y 2 + Z2. We expect the lensing deviation
to be small, we thus launch the photon in the direction β, but
the ray is deflected and does not reach the position (X, Y, Z). As
shown in Fig. 1, we iterate on the initial launching conditions using
a root-finder method (Newton’s method in our case) to find the
initial angle that minimizes the angle difference between β and the
position of the photon at same radius. In practice only one or two
iterations are needed to get an angle difference lower than 10−2

arcsec. With this method we know the true angle β and the seen
angle θ . We can then directly derive the Jacobian matrix Aij =
∂βi

∂θj
, hence the distortion matrix (related to lensing). This way of

computing the lensing directly from a beam of light rays (instead
of integrating Sachs equation) is similar to the ray-bundle approach
(Fluke, Webster & Mortlock 1999; Fluke & Lasky 2011) except that
the geodesic equations are directly integrated.

To gain comprehension on the various contributions to the total
redshift we decompose it as follows:

z0 = a0

a
− 1, (44)

z1 = a0

a

(
1 + φo/c

2 − φs/c
2
) − 1, (45)

Figure 1. Illustration of the geodesic-finder algorithm. Each tentative pho-
ton is designated by ζ n with n being the number of iterations. The first
photon ζ 0 is launched towards the source with an angle β. The first ray will
generally miss the source, we then iterate using Newton’s method in order
to get a new initial angle. In this example we iterate twice to find a ray close
enough to the source at the same radius, the initial angle of ζ 2 is given by θ

and is interpreted as the seen angle.

z2 = a0

a
(1 + vs · n/c) − 1, (46)

z3 = a0

a

(
1 + 1

2

(vs

c

)2
)

− 1, (47)

z4 = a0

a

(
1 − 2

c2

∫ ηo

ηs

φ̇dη

)
− 1, (48)

z5 = (gμνk
μuν)s

(gμνkμuν)o
− 1, (49)

with gμνk
μuν = −ack0

(
1 + φ/c2 + v · n/c + 1

2

(
v
c

)2
)

and the

observer velocity set to zero.
Each redshift corresponds to a specific contribution. z0 is the

redshift directly inferred from the scale factor. However this scale
factor is related to the conformal time computed until arriving at
the source, using the geodesic equation (42). It therefore implicitly
takes into account time delay. z1 only includes the gravitational
redshift perturbation, z2 the Doppler perturbation, z3 the transverse
Doppler perturbation, and z4 the ISW perturbation. z5 is the exact
general relativity redshift computation. It almost corresponds to z0

plus all redshift perturbations above. The ISW effect is hidden in
the k0 term, which comes directly from our geodesic integration.

Finally, ray tracing gives us catalogues with β, θ , Aij, various
redshifts containing each terms of equation (3) and the number
of dark matter particles for each halo. In these catalogues all the
relativistic effects have been computed in a self-consistent way.
These catalogues6 will be described in detail in Breton et al. (in
preparation).

3.3 Estimation of the correlation function

The halo–halo two-point cross-correlation function ξh1h2 (r) =
〈δh1 (x)δh2 (x + r)〉 is a measure of the excess of probability rel-
ative to a Poisson distribution of finding a pair of haloes separated

6http://cosmo.obspm.fr/raygalgroupsims-relativistic-halo-catalogs
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by a vector r . For a statistically homogeneous and isotropic field the
correlation function can be written as ξh1h2 (r) since it only depends
on the norm r of the separation. However the presence of an ob-
server breaks the isotropy and one needs to specify two components
of the separation vector r , for instance its norm r and projection μ

along the line of sight.
To estimate the correlation function we used a modified version of

CUTE (Alonso 2012) (a parallel tree-code pair-counting algorithm).
It implements an LS estimator (Landy & Szalay 1993; Kerscher,
Szapudi & Szalay 2000), which is one of the most commonly used
estimator for the correlation function (since its variance is almost
Poisson),

ξLS = D1D2 − D1R2 − R1D2 + R1R2

R1R2
, (50)

where D1, D2 refer to different data sets to be cross-correlated while
R1 and R2 are the associated random catalogues. Moreover the pair
counts are normalized by the total number of pairs in the catalogues.
Since we are interested in correlation function anisotropies, we bin
in (r, μ). Once we compute ξ (r, μ), we deduce the multipoles as

ξ�(r) ≈ 2� + 1

2

1∑
μ=−1

ξ (r, μ)L�(μ)�μ, (51)

where L�(μ) is the Legendre polynomial of order �.
We have cross-checked the results of this direct pair-counting

method to a grid method. In this method the halo density is esti-
mated on a thin Cartesian grid using a Cloud-in-Cell assignment
scheme. The correlation function is then directly computed from its
definition as a function of the overdensities of the halo populations.
The two methods give very similar results. With the intention of
comparing to linear theory we estimated the linear bias bi for data
set data Hi (see Appendix A for more details),

b100 ≈
√

ξ�=0
h100h100

ξ�=0
mm

, (52)

bi ≈ b100
ξ�=0
hih100

ξ�=0
h100h100

, (53)

where ξ�=0
hh and ξ�=0

mm are the halo–halo and matter–matter correlation
function monopole, respectively. The bias is estimated by fitting a
constant to equation (53) for r between 25 and 75 h−1 Mpc. Below
25 h−1 Mpc the number of pairs is too low and the correlation
function may fluctuate while above 75 h−1 Mpc the Poisson noise
becomes non-negligible

The last point concerns the estimation of statistical errors. Run-
ning again the same heavy simulation being much too time con-
suming, we estimate the variance using the jackknife method, as
it is the internal method that minimizes most of the variance for
the linear regime according to Norberg et al. (2009). In this paper
we compute the jackknife method with 32 re-samplings. We then
estimate the variance of the correlation function as follows,

σ 2
� (r) = N − 1

N

N∑
k=1

(ξk
� (r) − ξ̄�(r))2, (54)

with N the number of re-samplings, k the sample number, and ξ̄�(r)
the mean correlation function given by

ξ̄�(r) = 1

N

N∑
k=1

ξk
� (r). (55)

Table 2. Summary of the different data sets used: name, number of haloes,
range for the number of particles per halo, mean mass, bias at the volume
averaged redshift z = 0.341, and estimated mean halo concentration (taken
from Zhao et al. 2009).

Name
Number of

haloes
Number of

part
Mass

(h−1 M) Bias c200m
zhao

data H100 5.4 × 106 100–200 2.8 × 1012 1.08 8.2
data H200 3.4 × 106 200–400 5.6 × 1012 1.22 7.7
data H400 1.9 × 106 400–800 1.1 × 1013 1.42 7.1
data H800 1.0 × 106 800–1600 2.2 × 1013 1.69 6.6
data H1600 4.0 × 105 1600–3200 4.5 × 1013 2.07 6.1
data H3200 2.0 × 105 3200–6400 9.0 × 1013 2.59 5.7

It is important to note that the variance estimated with equa-
tion (54) is good enough in the linear regime where the density field
is Gaussian but becomes much less accurate for smaller scales, in
the non-linear regime. In this regime error bars should be taken with
caution.

In the linear regime, we note that the theoretical predictions for
the cross-correlation dipole are proportional to the bias difference
(except for evolution effects). Therefore, normalizing by this quan-
tity should give the same signal for each pair of populations. We
take advantage of this feature by using a weighted average of the
normalized dipole for all mass combinations to increase our signal-
to-noise ratio. In the linear regime, the mean signal is computed
as

ξ lin
1 /�b =

∑
ij

ξ
ij
1

bi−bj

1
σ 2
ij∑

ij

1/σ 2
ij

, (56)

where bi and bj are the bias of different halo populations. ξ
ij

1 is the
dipole of the cross-correlation between two halo populations of bias
bi and bj, and σ 2

ij its variance normalized by the bias difference. The
variance of the weighted average dipole is

σ 2 = 1∑
ij

1/σ 2
ij

. (57)

The error bars are probably underestimated due to the lack of inde-
pendence.

4 DATA A N D VA L I DAT I O N

We now proceed to the presentation and validation of our data sets.
In Section 4.1 we introduce the halo catalogues and in Section 4.2 we
validate our two-point correlation measurements on the monopole
and quadrupole.

4.1 Data sets

We consider haloes between zmin = 0.05 and zmax = 0.465 (hereafter,
when we refer to the full light cone we mean the light cone between
these two redshifts), leading to a volume of 8.34 (h−1 Gpc)3. We
choose redshift limits which are not too close to the observer to avoid
issues when computing angles, and not too close from the edge of
our full-sky light cone to avoid edge effects. We also focus on haloes
with mass between 1.9 × 1012 h−1 M and 1.2 × 1014 h−1 M.
The total number of haloes in this volume is 1.2 × 107 leading to
a mean halo density of n ≈ 5 × 10−4 Mpc−3. We divide the halo
catalogue in six logarithmic mass bins as shown in Table 2.
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Relativistic correlation-function dipole 2679

Figure 2. Redshift distribution for each halo data set in Table 2. The dis-
tributions from least to most massive haloes population are shown in black,
purple, blue, green, orange, and red. The distributions are normalized so that
the integral is unity.

data HN represents catalogues of haloes sampled by a number of
dark matter particles between N and 2N. We cross-correlate all the
data sets, with 15 linear bins in r going from 0 to 150 h−1 Mpc for
large scales and eight linear bins from 0 to 32 h−1 Mpc for smaller
scales. We also use 201 bins in μ. For computations on the full light
cone we generate a random catalogue for each data set with more
than 10 times the number of haloes. The redshift distribution for
random catalogues follow the same distribution as the associated
data catalogue. To avoid losing information on the clustering along
the line of sight, the redshift distribution is smoothed using eight
redshift bins as shown in Fig. 2.

Otherwise, if our computation is done with shell averages we use
a random catalogue with 108 object with a uniform distribution.

4.2 Monopole and quadrupole validation

4.2.1 Matter autocorrelation monopole on the light cone

We first check our measurement of the well-known matter autocor-
relation monopole. Out of the ≈30 billion particles in the light cone
we randomly pick 108 that we ray trace. We expect this catalogue
to be representative of the general distribution of dark matter in
the simulation. We compute the monopole on our full light cone
using 109 particles for the random catalogue with a uniform dis-
tribution (since the mean matter density does not evolve with red-
shift), and we compare to the real-space prediction at the volume
averaged redshift (the light-cone effect being negligible for this
multipole). For the prediction we use the emulator COSMICEMU

(Heitmann et al. 2016) which agrees with our power spectrum com-
putation for different snapshots at per cent level between roughly
k = 0.02 h Mpc−1 and k = 2 h Mpc−1. The result is shown in Fig. 3.
The monopole of the matter autocorrelation is in good agreement
(better than two per cent) with the emulator in the range r = 20–
120 h−1 Mpc.

4.2.2 Halo autocorrelation monopole and quadrupole in redshift
space

In this section we want to validate our monopole and quadrupole
measurements in redshift space taking only into account the effects
of peculiar velocity e.g. the standard RSD effect. We compute the

Figure 3. Matter monopole autocorrelation computed on the unperturbed
FLRW light cone compared with COSMICEMU emulator (Heitmann et al.
2016). Subplot shows the relative difference.

Figure 4. Monopole autocorrelation in redshift space (Doppler term only).
Red full lines give the prediction from RegPT + TNS (Taruya et al. 2010,
2012; Taruya et al. 2013). Black circles give the computation on the full
light cone.

correlation on the full light cone and the errors bars are estimated
with the jackknife method. For the quadrupole in redshift space we
have subtracted the real-space quadrupole.

To predict the monopole (Fig. 4) and quadrupole (Fig. 5) in
redshift space we use the RegPT + TNS (Taruya et al. 2010,
2012; Taruya et al. 2013) model with the measured linear bias and
the parameter characterizing the damping of small-scale clustering
σ v = 5.204 h−1 Mpc, which is estimated from the linear theory
assuming that haloes trace dark matter flow. We compute the pre-
diction at the volume averaged redshift. The prediction is supposed
to be accurate in the weakly non-linear regime, which roughly cor-
responds to the scales larger than 30 h−1 Mpc for this redshift. Note
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2680 M.-A. Breton et al.

Figure 5. Absolute value of the quadrupole autocorrelation in redshift space
(Doppler term only). Red full lines give the prediction from RegPT + TNS
(Taruya et al. 2010, 2012; Taruya et al. 2013). Black circles give the com-
putation on the full light cone.

that the validity of the prediction relies on the assumption of linear
bias and on the distant observer approximation.

We have a very good agreement on the redshift-space monopole
and a good agreement for the quadrupole, although we see a small
discrepancy at large scales which might be due to the cosmic vari-
ance of the measurement results or alternatively to the presence of a
finite distance observer. Our procedure is therefore fully validated.

Finally we have also checked that the relative amplitude of effects
beyond the standard Doppler RSD are of order of ∼10−2 (monopole)
or ∼10−3 (quadrupole). Disentangling these effects from the main
contribution is therefore a challenge. We now focus on the dipole
where the standard Doppler contribution vanishes in the distant-
observer limit.

5 R ESULTS

We are now interested in the dipole. In order to investigate this
multipole we will split it into three parts. The first part is the one
generated by statistical fluctuations in real space. This is mostly
interesting for the comparison to observations. It can be minimized
by increasing the statistics (number and density of haloes). The
second part is generated when the halo catalogue is projected from
real space to the unperturbed FLRW light cone. This part is a small
contribution to the dipole which has to be taken into account when
making accurate predictions. The third part of particular interest in
this paper is the dipole generated by the perturbation of the FLRW
light cone (at first order in the weak-field approximation) related to
the formation of large-scale structures in the universe.

In what follows, we compare our results with the linear theory
predictions presented in Section 2.2, and summarized in Table 1. In
the predictions including evolution terms (i.e. equations 33 and 34),
the comoving distance derivative of the bias changes the amplitude

of dipole correlation, and the resultant prediction does not simply
scale as ξ1 ∝ �b. We thus plot the averaged prediction as well
as the maximum and minimum of the predictions among possible
combination of haloes, filling up the interval with grey shade (Fig. 8,
upper-right panel of Fig. 10, and Fig. 11).

In Section 5.1 and 5.2 we focus on the dipole at large scales.
At these scales the theoretical predictions are proportional to the
bias difference between two halo populations (except for evolution
effects). We take full advantage of all the cross-correlations by
using them to compute the weighted dipole normalized by the bias
difference (see Section 3.3). Each cross-correlation are shown in
Appendix C. In Section 5.3 we investigate the dipole at smaller
scales where non-linearities arise. For these scales we show the
dipole and its mass dependence.

5.1 Statistical fluctuations and light-cone effect

In this section, we measure the dipole of the halo distribution using
snapshot information (i.e. distribution of haloes at constant time).
We consider seven snapshots in the interval between z = 0.05 and
z = 0.465. For each snapshot, we build a shell of size of order
∼300 h−1 Mpc centred on the comoving distance corresponding to
the snapshot redshift. In this way, we are able to compute the mean
dipole in real space. We can also compare the dipole computed at
constant time to the one computed on the FLRW unperturbed light
cone at the same position (see Fig. 6).

5.1.1 Dipole generated by statistical fluctuations

After averaging the snapshot dipole computed in each shell (with
a weigh given by the volume of each shell), we obtain the mean
snapshot dipole. The standard errors on the mean are computed from
the seven snapshots and should therefore be taken with caution
because of the lack of independence. For a wide range of radii
(20 < r < 150 h−1 Mpc) the dipole shown in Fig. 7 is roughly
compatible with zero within the statistical error bars (except for
several points at 100 and 130 h−1 Mpc where the error bars are
very likely underestimated). Moreover the error bars are limited to
∼2 × 10−4.

In principle, for a very large volume and for a very large density
of haloes, the dipole tends towards zero. For finite volume surveys
with finite number of galaxies per unit of volume such a fluctuation
might blur the dipole. However, this noise can be minimized by
increasing the size of the surveys and the density of pairs of haloes
(smaller haloes, more halo populations, see Bonvin et al. 2016). As
we will see for our light cone, the noise is below the signal but it
can sometimes reach the same order of magnitude as the signal.
Increasing the halo statistics by a factor of ∼10 should be enough
to boost the signal-to-noise ratio. In our simulation, we have simply
subtracted this noisy contribution to extract the physical part of the
dipole signal.

5.1.2 Light-cone and evolution effects

In this section, we compute the dipole within the shells in the light
cone and the corresponding shells in the snapshots. By subtracting
the two we can extract the so-called light-cone effect (Kaiser 2013;
Bonvin et al. 2014). The main contribution to this effect is related to
the peculiar motions of haloes: haloes are not at the same position in
the snapshot (constant time) and in the FLRW light cone. Another
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Figure 6. Representation of snapshots and light cone. Left-hand panel : snapshot at redshift zI. Middle panel : snapshot at redshift zII. Right-hand panel :
full-sky light cone (made of ∼300 small shells of size ∼4 h−1 Mpc not represented here). Here zII > zI and dI (respectively dII) is the FLRW comoving distance
at redshift zI (respectively zII). To estimate light-cone effects, we compare large light-cone shells (of size 2�r ∼ 300 h−1 Mpc) to the equivalent volume in a
snapshot at the corresponding homogeneous redshift.

Figure 7. Real-space (snapshot) dipole of the cross-correlation function,
normalized by the bias. We use a weighted average of all the cross-
correlations as well as a weighted average on seven redshift shells. The
dipole is consistent with zero within the statistical error bars.

Figure 8. Light-cone-effect contribution to the dipole of the cross-
correlation function, normalized by the bias. We use a weighted average
of all the cross-correlations as well as a weighted average on seven redshift
shells. The linear prediction given by the first line of Table 1 is shown by the
grey filled curve (as the prediction is not completely proportional to the bias
difference) while the averaged prediction is shown with black solid line.

Figure 9. The dipole of the cross-correlation function normalized by the
bias induced by the Shapiro effect. The prediction for this effect is shown in
Section 2.2. This contribution is very small and will be neglected afterwards.

contribution comes from the evolution effects: haloes are not exactly
the same in the snapshot and light cone as they experience merging.

While the light-cone effect has already been taken into account in
simulations (Cai et al. 2017; Zhu et al. 2017), our approach is more
sophisticated since we have directly built the light cone on the fly
during the simulation (at each coarse time-step). In previous work,
the light-cone effect was added as a post-processing procedure on
top of the snapshots. This approach usually neglects the variation
of the potential during the evolution. Moreover, evolution effect
are not easily captured while they are a direct outcome of our
approach.

As shown in Fig. 8, the light-cone effect (plus evolution effect)
is in agreement with the linear expectation (see first line of Table 1)
while error bars remain important and the points at small scales seem
to depart from the averaged prediction. The normalized dipole is
of order 10−4 at most. As we will see later it is a subdominant
contribution to the full dipole. The linear prediction is broad due to
evolution effects which are not proportional to the bias difference.
For the cross-correlation of the two most massive halo populations
the evolution effect is of the same order as the light-cone effect. This
shows the importance of an accurate modelling as well as precise
bias measurement to disentangle these two effects.
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2682 M.-A. Breton et al.

Figure 10. Dipole of the cross-correlation function normalized by the bias, at large scales, for different perturbations of the observed halo number count. This
leads to: upper left-hand panel only the contribution from gravitational potential was taken into account as a source of RSD, in black dashed line we have
the prediction when accounting for leading terms in (H/k)2. Upper right-hand panel Doppler only, middle left-hand panel transverse Doppler only, middle
right-hand panel ISW/RS only, bottom left-hand panel weak lensing only, and finally bottom right-hand panel the residual where we subtract all the previous
effects to the full dipole taking into account all the effects at once. In black we have the averaged prediction using linear theory at first order in H/k.

Last, there is a difference between the particle positions on the
FLRW light cone given by the simulation and the particle position
on the perturbed FLRW light cone seen by photons due to time
delay (Shapiro effect). However this contribution is too small to be
detectable (inferior to 10−5) as seen in Fig. 9 and will therefore be
neglected.

5.2 The linear regime and its breakdown

From now on, we subtract the effects from statistical fluctuations as
well as the light-cone effect described above. In this section we in-

vestigate the dipole at large scales from 20 h−1 Mpc to 150 h−1 Mpc.
This corresponds to the linear regime (Section 2.2) and the begin-
ning of the quasi-linear regime where, in principle, linear theory
does not hold any more. We focus on the weighted average of the
normalized dipole. Each cross-correlation is shown in Appendix C.

5.2.1 Contributions to the dipole at large scales

At first order in the metric perturbation, RSD are the sum of five
contributions: four redshift perturbations (see equations 44–49) plus
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Relativistic correlation-function dipole 2683

Figure 11. Full dipole of the cross-correlation function normalized by the
bias. The dipole is dominated by the Doppler contribution.

the lensing effect which affects the apparent position of haloes (we
neglect the small Shapiro term which is already subtracted). To
investigate each of these effects we have produced five catalogues
where only one effect is present at a time. This allows us to compare
our measurements to the linear predictions summed up in Table 1
as shown in Fig. 10.

The upper left-hand panel shows the dipole when we only con-
sider the gravitational potential as a source of RSD. We find a good
agreement at large scales with linear theory (even better with higher
order terms in H/k) down to a radius r ≈ 60–80 h−1 Mpc where
ξ 1/�b ≈ 5 × 10−5. The dipole drops sharply at smaller scales and
even becomes negative at scales smaller than 30 h−1 Mpc. Linear
theory fails to predict this drop. As we shall see, it is the second most
important contribution to the total dipole at large scales. The upper
right-hand panel shows the dipole for the Doppler term only. The
signal is much larger rising from ξ 1/�b ≈ 2 × 10−4 at 100 h−1 Mpc
up to ξ 1/�b ≈ 10−3 at 20 h−1 Mpc. Data points and linear predic-
tion are in agreement when looking at the scatter (except for two
points at 65 and 75 h−1 Mpc which are at about 3 − σ above the
linear expectation). This is the dominant term and it is mostly re-
lated to the divergence of the line of sights at this redshift (this term
is inversely proportional to the comoving distance and is therefore
fainter at higher redshift). In the middle left-hand panel we only
consider the transverse Doppler term which should be null in the
linear regime. Our measurement is consistent with zero between
r ≈ 60 h−1 Mpc and r ≈ 150 h−1 Mpc at a precision better than
2 × 10−6. Below 60 h−1 Mpc the data show a positive dipole. The
transverse Doppler yields an overall redshift of the lighter galax-
ies w.r.t. to the more massive ones which is explained (at smaller
scales) by Zhao et al. (2013). In the middle right-hand panel we
see the dipole of the ISW/RS effect only. This effect is integrated
and suppressed by a factor H/k compared to the other terms and is
therefore expected to be small. Here we only check the consistency
with zero that is given on the full scales of interest with a precision
of order �5 × 10−6. Bottom left shows the effect of weak lensing
only. This effect is much fainter than the potential and Doppler
terms and the data clearly favours a negative dipole of order of a
few 10−6 which follows well the linear prediction.

Lastly, the bottom right-hand panel shows the residual, i.e. the full
dipole including all effects (full redshift perturbations and lensing)
minus the individual contributions mentioned above. It includes all
the cross-terms (potential-Doppler, potential-lensing, etc...) as well
as the non-linear mapping that was ignored by the linear calculation.

We see that the residual is consistent with zero to a good precision
beyond 50 h−1 Mpc. However below this threshold the residual
gives a negative contribution to the total dipole. We expect this term
to be dominated by the potential-Doppler cross-correlation term as
they are the two dominant terms. We can see that the departure of
the residual from zero occurs at approximately the same scale as the
departure of the dipole for the potential only term from the linear
prediction. It indicates a failure of the linear regime at this scale.
In Appendix C we show the behaviour of the residual for a wide
range of cross-correlations. Depending on the values of bias and
bias difference, the amplitude of the signal as well as the scale at
which the residual departs from zero can change.

5.2.2 Total dipole

Now that we have seen all the individual contributions to the dipole,
we show the final result that is the sum of all the previous contribu-
tions (see Fig. 11). As we expected the dipole is dominated by the
Doppler term as the effects of the others terms are small. However
the dipole departs from linear theory near 30 h−1 Mpc due to the
non-linear contribution from the potential and residual. In Bonvin
et al. (2014) the authors claim that a measurement of the total dipole
in the linear regime will allow us to probe velocity field and to test
general relativity (through the Euler equation). As we have seen
to reach this goal, one has to pay attention to real-space statistical
fluctuations of the dipole (therefore huge sample and survey vol-
ume are mandatory), evolution effect (as we need to properly model
bias evolution while for the moment we are limited to simple phe-
nomenological models) and the bias itself (as the linear prediction
is proportional to the bias difference between the population and
simple scale-independent bias models are considered).

5.3 From quasi-linear scales to non-linear scales

After investigating the linear regime (beyond 50 h−1 Mpc) and its
breakdown (at 40–60 h−1 Mpc scales for the potential contribution
and the residual), we now focus on the transition from quasi-linear
to non-linear scales between 30 h−1 Mpc and 5 h−1 Mpc. We use
the conservative lower bound of 5 h−1 Mpc because it stands well
above the coarse grid size (0.6 h−1 Mpc), beyond halo’s virial radii
(∼0.9 h−1 Mpc for large group-size haloes) and it is larger than
the light-cone shell size (∼4 h−1 Mpc). In this regime, we expect
baryonic effects to be negligible although this has to be further
investigated with dedicated simulations.

The theoretical predictions are not necessarily proportional to the
bias difference, thus showing the weighted average of the normal-
ized dipole would not make much sense. Here we focus on the cross-
correlation of data H1600 (halo mass Mh1 ≈ 4.5 × 1013 h−1 M)
with data H100 (halo mass Mh2 ≈ 2.8 × 1012 h−1 M), which gives
a bias difference �b ≈ 1.

5.3.1 Contributions to the dipole at small scales

The various contributions to the dipole are shown in Fig. 12.
The dominant contributions at non-linear scales (especially at r
< 10 h−1 Mpc) are very different from the ones at linear scales.
Here the dominant contributions are the potential term (upper left)
and the residual (bottom right) while in the linear regime the domi-
nant contribution is the Doppler term (upper right). Moreover both
contributions are very negative resulting in a negative dipole.
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2684 M.-A. Breton et al.

Figure 12. Dipole of the cross-correlation function between data H1600 and data H100, at small scales, for different perturbations of the halo number count.
This leads to: upper left-hand panel only the contribution from gravitational potential was taken into account as a source of RSD, upper right-hand panel
Doppler only, middle left-hand panel transverse Doppler only, middle right-hand panel ISW/RS only, bottom left-hand panel weak lensing only, and finally
bottom right-hand panel the residual for which we subtract all the previous effects to the full dipole taking into account all the effects at once.

The potential contribution (upper left) drops slowly from ξ 1 � 0
near 30 h−1 Mpc to ξ 1 � −1 × 10−4 at 20 h−1 Mpc. The fall is
then much steeper at smaller separations, from ξ 1 � −5 × 10−4 at
14 h−1 Mpc down to ξ 1 �−6 × 10−3 at 6 h−1 Mpc. We also note that
the measurement is very robust since the statistical error bars are
very small (although error bars should be taken with caution at these
scales). The linear prediction completely fails. The dipole of the
halo–halo cross-correlation is a sensitive probe of the gravitational
potential up to about ten virial radii for this halo mass.

The velocity contribution (upper right) remains high ξ 1 � 5–
20 × 10−4 between 30 and 6 h−1 Mpc. At smaller scales the error
bars increase from σ ξ � 5 × 10−4 to σ ξ � 5 × 10−3 at smaller

scales. Interestingly the Doppler-only dipole remains close to the
linear expectation.

The transverse-Doppler contribution to the total redshift in the
vicinity of galaxy clusters has originally been highlighted by Zhao
et al. (2013). However it was restricted to the region r < 2 Rvir inside
or close to the virial radius Rvir ∼ 1–2 h−1 Mpc of the clusters. Inter-
estingly, the transverse-Doppler contribution to the dipole (middle-
left) is non-zero even at very large radii (r > 2 Rvir). It remains
positive of order ξ 1 � 2–6 × 10−5 at radii 14 < r < 30 h−1 Mpc.
At smaller scales there is strong increase from ξ 1 = 2 × 10−4 at
14 h−1 Mpc to ξ 1 = 5 × 10−4 at 6 h−1 Mpc. The ratio to the potential
contribution to the dipole is of order −10 at this scale.
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Figure 13. Full dipole of the cross-correlation function between data H1600

and data H100. The deviation from linear theory is governed by the potential
contribution and the ‘residual” (mostly related to the coupling between
potential and velocity terms). The dipole is a sensitive probe of the potential
well beyond the virial radius of haloes.

The ISW contribution (middle right) and lensing contribution
(bottom left) are consistent with zero at small scales. The size of
the error bars provide an upper limit for the signal of ξ 1 < 5 × 10−5

for ISW and ξ 1 < 10−4 for lensing. It is still in agreement with the
linear prediction which is of the same order of magnitude, however
the fluctuations are too important to measure the signal.

Surprisingly, the residual (bottom right) is of the same order as
the potential contribution (from ∼− 10−4 at 30 h−1 Mpc to ∼−
6 × 10−3 at 6 h−1 Mpc). This is an important result of this paper.
It means that at these scales and especially below 15 h−1 Mpc, one
cannot add up all the contributions one by one. On the contrary, there
are some important contributions involving both potential terms and
velocity terms together.

5.3.2 Total dipole

The total dipole at non-linear scales is presented in Fig. 13.
It remains slightly positive of order ξ 1 ∼ 1 × 10−3 above
15 h−1 Mpc. As shown in the previous section, this is related to
the velocity contribution which remains positive in this region. At
smaller scales, the potential contribution dominates over the veloc-
ity contribution. The total dipole is then falling down quickly to
ξ 1 ∼ −1 × 10−2 at 6 h−1 Mpc. Moreover within our simulated sur-
vey of 8.34 (h−1 Gpc)3, error bars (mostly related to the fluctuations
of the velocity field) are smaller than the signal at this scale. The
dipole of the group-galaxy cross-correlation function is therefore
a good probe of the potential far outside of the group virial radii.
Interestingly, deviations from linear theory are mostly governed by
the potential and by the residual. The interpretation of the dipole is
therefore non-trivial because of correlations between potential and
velocity terms. However the dipole carries important information
about the potential.

5.3.3 Mass dependence of the contributions

So far, we have focused on the cross-correlation between
haloes of mass ∼4.5 × 1013 h−1 M and haloes of mass
∼2.8 × 1012 h−1 M. In Fig. 14, we investigate the halo mass
dependence of the main dipole contributions (velocity, potential).
The mass dependence on the residual is shown in Appendix C. We

explore various configurations by cross-correlating all the different
halo populations with the lightest halo population. At large linear
scales the variation of the dipole is mostly governed by the bias
difference between the two halo populations, however at small non-
linear scales the evolution of the dipole is less trivial. The velocity
contribution to the dipole does not evolve strongly with halo mass.
It stays bounded in the range 0 < ξ 1 < 1 × 10−3. On the other hand,
the potential contribution becomes more negative at larger mass
from ξ 1 � −5 × 10−4 to ξ 1 � −1 × 10−2 at 6 h−1 Mpc. It means
that for massive enough haloes the potential contribution dominates
over the velocity contribution for a wide range of scales (as seen
previously). However for haloes lighter than ∼1013 h−1 M the
velocity-contribution dominates. The residual also departs from 0
at larger radii for heavier haloes. Interestingly it is mostly following
the potential contribution.

The prediction of the potential effect from equation (41) (assum-
ing spherical symmetry) reproduces the trend at a qualitative level.
However the potential contribution is overestimated. Taking into
account the dispersion around the potential deduced from spherical
symmetry as in equation (38) should improve the agreement with
the measured dipole (Cai et al. 2017). Note that we have checked
(see Appendix B) that our conclusions still hold for a very different
halo definition (i.e. linking length b = 0.1). The main difference
is a slightly better agreement with the spherical predictions for the
potential contribution to the dipole.

6 C O N C L U S I O N S

In this work we explored the galaxy clustering asymmetry by look-
ing at the dipole of the cross-correlation function between halo
populations of different masses (from Milky Way size to galaxy-
cluster size). We took into account all the relevant effects which
contribute to the dipole, from lensing to multiple redshift pertur-
bation terms. At large scales we obtain a good agreement between
linear theory and our results. At these scales the dipole can be used
as a probe of velocity field (and as a probe of gravity through the
Euler equation). However one has to consider a large enough survey
to overcome important real-space statistical fluctuations. It is also
important to take into account the light-cone effect and to accurately
model the bias and its evolution.

At smaller scales we have seen deviation from linear theory.
Moreover the gravitational redshift effect dominates the dipole be-
low 10 h−1 Mpc. It is therefore possible to probe the potential out-
side groups and clusters using the dipole. By subtracting the linear
expectation for the Doppler contribution it is in principle possible
to probe the potential to even larger radii. This is a path to explore
in order to circumvent the disadvantages of standard probes of the
potential, usually relying on strong assumptions (such as hydro-
static equilibrium) or being only sensitive to the projected potential
(lensing). A simple spherical prediction allows to predict the global
trend of the dipole but not the exact value. Moreover as we have
seen the residual (i.e all the cross terms and non-linearities of the
mapping) is of the same order as the gravitational potential contri-
bution and should be taken into account properly. At small scales
the pairwise velocity PDF is also highly non-Gaussian, leading to
high peculiar velocities and Finger-of-God effect. Coupled to grav-
itational potential and possibly wide-angle effect we expect this to
be a non-negligible contribution to the dipole. To fully understand
and probe cosmology or modified theories of gravity at these scales
using the cross-correlation dipole we therefore need a perturbation
theory or streaming model which takes into account more redshift
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2686 M.-A. Breton et al.

Figure 14. Dipole of the cross-correlation function between different data sets and data H100 (no autocorrelation). Left-hand panels: gravitational potential
only, dotted lines gives the spherical prediction computed using equation (41). Middle panels: Doppler only. For massive enough halo the negative potential
contribution dominates over the positive Doppler contribution.The linear prediction is given by dashed lines. Right-hand panels: residual term.

perturbation terms and relaxes the distant observer approximation.
This will be the focus of a future paper.

There are multiple possible extensions to this work. At large Gpc
scales current analysis are limited by the volume of the simulation
as well as gauge effect. At smaller scales the baryons as well as
the finite resolution effect might play a role. Extension of this work

in these two directions can open interesting perspectives. When
analysing future surveys, it is also important to consider observa-
tional effects. One possibility would be to populate haloes with
galaxies and to incorporate effects such as magnification bias, ab-
sorption by dust, redshift errors, alignment of galaxies, etc. Another
straight-forward extension is to explore the influence of cosmology,
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dark energy, dark matter and modified gravity on the dipole of the
halo cross-correlation to shed light on the nature of the dark sector
with future large scale surveys.
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Fosalba P., Crocce M., Gaztañaga E., Castander F. J., 2015b, MNRAS, 448,

2987
Gaztanaga E., Bonvin C., Hui L., 2017, J. Cosmol. Astropart. Phys., 1, 032
Giblin J. T., Jr, Mertens J. B., Starkman G. D., Zentner A. R., 2017, Phys.

Rev., 96, 103530
Giusarma E., Alam S., Zhu H., Croft R. A. C., Ho S., 2017, preprint (arXiv:

1709.07854)
Hamilton A. J. S., 1992, ApJ, 385, L5
Heitmann K. et al., 2016, ApJ, 820, 108
Hilbert S., Hartlap J., White S. D. M., Schneider P., 2009, A&A, 499, 31
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APP ENDIX A : BIAS MEASUREMENT AND
E VO L U T I O N

In this section we present the methodology used to compute the bias
for each halo population summarized in Table 2. In our case we will
consider a scale-independent bias which can be directly fitted with
a constant using equation (53). Even if we perform our analysis on
the light cone, computing the bias from the full light-cone monopole
would give very poor results (see Fig. 4) for haloes with increas-
ing mass. We therefore compute the bias using snapshots with the
same comoving volume as our full light cone, and interpolating
between snapshots to find the bias of a given population at a given
redshift. From a numerical point of view, it would be more accurate
to use the halo-matter cross-correlation instead of square root of the
halo–halo autocorrelation since we would have more particles than

Figure A1. Top panel: bias of the halo populations summarized in Table 2
computed on snapshots. Bottom panel: Derivative of bias w.r.t. comoving
distance, comparison of our computation (circles, dashed lines) with the pre-
diction from the Sheth & Tormen (1999) model equation (36) (full lines). The
associated halo populations are, from top to bottom: data H3200, data H1600,
data H800, data H400, data H200, data H100.

haloes and therefore less noise. However this would mean saving all
the particles for each snapshot which is unrealistic for our simula-
tion. Instead, we compute ξmm using COSMICEMU (Heitmann et al.
2016) which is in good agreement which the matter autocorrelation
monopole we have on the light cone (see Fig. 3). We also checked
that the emulator power spectrum is in agreement with the power
spectrum we compute in each snapshot at one per cent level be-
tween roughly k = 0.02 and 2 h Mpc−1. Finally, we cross-correlate
each halo population with the least massive one in order to increase
the statistics instead of computing the halo autocorrelation. For the
data H100 bias we indeed use

b100 ≈
√

ξ�=0
hh

ξmm

. (A1)

For other populations we then take

b1 = b100
ξ�=0
h1h2

ξ�=0
mm

, (A2)

where h1 denotes the halo population from which we want to know
the bias, h2 denotes the data H100 population with b100 its bias. This
was done on 12 snapshots which covers well our full-sky light cone.
The associated redshift are : z = 0.123, 0.152, 0.180, 0.208, 0.236,
0.250, 0.265, 0.296, 0.329, 0.364, 0.399, and 0.428. The results are
shown in Fig. A1.

For bias derivative shown in Fig. A1, we use the prediction
from Sheth & Tormen (1999), which gives us as a result equa-
tion (36). In our case, for each mass bin (increasing in mass)
we set σ (M, 0) ≡ σ 0 = 1.60, 1.44, 1.27, 1.17, 0.95, and
0.9.

For the most massive bins the Sheth & Tormen (1999) com-
putation of the bias can be very different from our numerical re-
sults, therefore for the dipole predictions we keep the bias from
our computation on snapshots but we take the bias derivative from
equation (36) as it is smoother.

APPENDI X B: D I FFERENT HALO DEFI NITIO N

In this appendix we perform the same analysis as in core of the paper
but with a different halo definition. In the paper we detected haloes
using the friend-of-friend algorithm with b = 0.2. To check the
sensitivity of our results about the halo definition we here consider
a very different linking length, namely b = 0.1. While b = 0.2
corresponds to an enclosed overdensity very roughly of order of
200 times the mean density of the universe, b = 0.1 corresponds
to an enclosed overdensity much larger (approximately eight times
more). Most of the usual halo definitions lie somewhere in between
these two definitions. The data sets are shown in Table. B1, where
the bias is computed on the full light cone contrarily to previous

Table B1. Summary of the different data sets used: name, number of haloes,
range for the number of particles per halo, mean mass, bias at the volume
averaged redshift z = 0.341.

Name
Number of

haloes Number of part
Mass

(h−1 M) Bias

data2 H050 6.9 × 106 50–100 1.4 × 1012 1.18
data2 H100 3.7 × 106 100–200 2.8 × 1012 1.38
data2 H200 2.0 × 106 200–400 5.6 × 1012 1.54
data2 H400 1.0 × 106 400–800 1.1 × 1013 1.76
data2 H800 4.3 × 105 800–1600 2.2 × 1013 2.13
data2 H1600 1.7 × 105 1600–3200 4.5 × 1013 2.60
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Relativistic correlation-function dipole 2689

Figure B1. Dipole of the cross-correlation function normalized by the bias, at large scales, for different perturbations of the observed halo number count for
another halo definition (b = 0.1). This leads to: upper left-hand panel only the contribution from gravitational potential was taken into account as a source of
RSD, in black dashed line we have the prediction when accounting for leading terms in (H/k)2. Upper right-hand panel Doppler only, middle left-hand panel
transverse Doppler only, middle right-hand panel ISW/RS only, bottom left-hand panel weak lensing only, and finally bottom right-hand panel the residual
where we subtract all the previous effects to the full dipole taking into account all the effects at once. In black solid lines we show the averaged prediction
using linear theory at first order in H/k.
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Figure B2. Full dipole of the cross-correlation function normalized by the
bias for another halo definition (b = 0.1). The dipole is dominated by the
Doppler contribution.

data sets where the bias was estimated by interpolating between
snapshots. For previous data sets these two methods agree at the
1 per cent level.

For linear scales in Fig. B1, we see that on a qualitative level the
results are similar to the ones using another halo definition (Fig. 10).
Quantitatively, it seems that we slightly underestimate the Doppler
effect. The remarks on the full dipole shown in Fig. B2 are also simi-
lar. More interestingly, for the quasi-linear and non-linear regime in
Fig. B3 we can notice three things. First the results are qualitatively
similar to the haloes with b = 0.2. Second there is a better agreement
with b = 0.1 with the spherical prediction for the non-linear dipole
for the potential only term. This is due to the fact that haloes are now
more clustered and sit in deeper potential wells, enhancing the am-
plitude of the dipole. Still we see that it does not match completely
the theoretical prediction. Last, we see that similarly to b = 0.2, the
point at 6 h−1 Mpc for Doppler only is very negative for the last
correlation (most massive halo population with the lightest). This
may be due to a coupling between Finger-of-God and wide-angle
effects.
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Relativistic correlation-function dipole 2691

Figure B3. Dipole of the cross-correlation function between different data sets and data2 H050 (i.e. for another halo definition b = 0.1). Left-hand panels:
gravitational potential only, dotted lines gives the spherical prediction computed using equation (41). Middle panels: Doppler only. For massive enough halo
the negative potential contribution dominates over the positive Doppler contribution.The linear prediction is given by dashed lines. Right-hand panels: residual
term. In the bottom plot of the middle column, the point at 6 h−1 Mpc is at ξ1 = −0.03.
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APP ENDIX C : M ASS D EPENDENCE OF TH E
DIPOLE

In Section 5.1 and 5.2, we presented the computation of the dipole
normalised by the bias difference. To do so we used all the cross-
correlations available with our data sets shown in Table 2. We then
performed a sum on the dipoles, weighted by the inverse of their

variance (see Section 3.3). In this Section we show the different
cross-correlations for each perturbation effect (potential only in
Fig. C1, Doppler only in Fig. C2, transverse Doppler in Fig. C3,
residual in Fig. C4 and the full dipole in Fig. C5), and for every
combination of populations at large scales. We show the results for
the computation of the cross-correlation on the full light cone using
jackknife re-sampling.

Figure C1. Potential only term of the dipole of the cross-correlation function on the full light cone at large scales. The linear predictions at first order in H/k

are shown in dash–dotted lines while the prediction with the dominant (H/k)2 terms is shown in dashed lines.
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Figure C2. Doppler only term of the dipole of the cross-correlation function on the full light cone at large scales. The linear predictions are shown in dashed
lines.
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Figure C3. Transverse Doppler only term of the dipole of the cross-correlation function on the full light cone at large scales.
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Figure C4. Residual term of the dipole of the cross-correlation function on the full light cone at large scales.
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Figure C5. Full dipole of the cross-correlation function on the full light cone at large scales. The linear predictions are shown in dashed lines.
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