Time Blocks Decomposition of Multistage Stochastic Optimization Problems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Time Blocks Decomposition of Multistage Stochastic Optimization Problems

Résumé

Multistage stochastic optimization problems are, by essence, complex as their solutions are indexed both by stages and by uncertainties. Their large scale nature makes decomposition methods appealing, like dynamic programming which is a sequential decomposition using a state variable defined at all stages. In this paper, we introduce the notion of state reduction by time blocks, that is, at stages that are not necessarily all the original stages. Then, we prove a reduced dynamic programming equation. We position our result with respect to the most well-known mathematical frameworks for dynamic programming. We illustrate our contribution by showing its potential for applied problems with two time scales.
Fichier principal
Vignette du fichier
preprint_TBDMSOP_v3.pdf (518.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01757113 , version 1 (04-04-2018)
hal-01757113 , version 2 (26-09-2018)
hal-01757113 , version 3 (11-05-2022)
hal-01757113 , version 4 (22-12-2022)
hal-01757113 , version 5 (13-02-2023)
hal-01757113 , version 6 (25-04-2023)

Identifiants

Citer

Pierre Carpentier, Jean-Philippe Chancelier, Michel de Lara, Thomas Martin, Tristan Rigaut. Time Blocks Decomposition of Multistage Stochastic Optimization Problems. 2022. ⟨hal-01757113v3⟩
537 Consultations
532 Téléchargements

Altmetric

Partager

More