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Time Blocks Decomposition
of Multistage Stochastic Optimization Problems

Pierre Carpentier;} Jean-Philippe Chancelier! Michel De Laral
Thomas Martin] Tristan Rigaut?*

May 11, 2022

Abstract

Multistage stochastic optimization problems are, by essence, complex as their solu-
tions are indexed both by stages and by uncertainties. Their large scale nature makes
decomposition methods appealing, like dynamic programming which is a sequential
decomposition using a state variable defined at all stages. In this paper, we introduce
the notion of state reduction by time blocks, that is, at stages that are not necessarily
all the original stages. Then, we prove a reduced dynamic programming equation.
We position our result with respect to the most well-known mathematical frameworks
for dynamic programming. We illustrate our contribution by showing its potential for
applied problems with two time scales.

Keywords: multistage stochastic optimization, time blocks decomposition, dynamic pro-
gramming

1 Introduction

Solutions of multistage stochastic optimization problems are indexed both by time and by
uncertainties. This makes such problems complex. However, their structure makes decom-
position methods appealing to solve them. The most common approaches are time decompo-
sition (state-based resolution methods), like stochastic dynamic programming, in stochastic
optimal control, and scenario decomposition, like progressive hedging, in stochastic program-
ming. On the one hand, stochastic programming deals with an underlying random process
taking a finite number of values, called scenarios [12]. Solutions are indexed by a scenario
tree, the size of which increases exponentially with the number of stages (hence generally a
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few stages in practice). However, to overcome this obstacle, stochastic programming takes
advantage of scenario decomposition methods (progressive hedging [11]). On the other hand,
stochastic control deals with a state model driven by a white noise, that is, the noise is made
of a sequence of independent random variables. Under such assumptions, stochastic dynamic
programming is able to handle many stages, as it offers reduction of the search for a solution
among state feedbacks (instead of functions of the past noise) [2, 9].

In a word, dynamic programming is good at handling multiple stages — but at the price
of assuming that noises are stagewise independent — whereas stochastic programming does
not require such assumption, but can only handle a few stages. Could we take advantage
of both methods? Is there a way to apply stochastic dynamic programming at a slow time
scale — a scale at which noise would be statistically independent — crossing over fast time
scale optimization problems where independence would not hold? This question is one of
the motivations of this paper, and we indeed provide a method to decompose multistage
stochastic optimization problems by time blocks. This decomposition method and the main
result are, mathematically speaking, quite natural, but the main difficulty is notational.
Indeed, the rigorous formulation of multistage stochastic optimization problems on so-called
history spaces requires heavy notation.

Although specialists in stochastic optimal control and dynamic programming will find
the results as natural and non surprising, or as part of folklore, the fact is that we have not
been able to find references that treat the case of a state defined only at a subset of stages.
This is why we set out to write this paper, without any real theoretical ambition, but with
the objective that this result be established and can be used for applications using several
forms of decomposition!

The methodology developed in this paper has been successfully applied to a multistage
stochastic optimization problem involving several millions time steps, namely a battery man-
agement problem over 20 years involving both the battery operating (with a fast time step of
1 minute) and the battery replacement (with a slow time step of one day) [10]. It is assumed
that the vectors of noises (energy demand minus renewable energy production) are indepen-
dent day by day, so that we are able to write the dynamic programming equations at the
slow time scale for this two time scales optimization problem. Then we use decomposition
techniques to obtain lower and upper bounds for the Bellman value functions: the corre-
sponding approximated value functions are also computed by backward recursion, involving
intraday costs (fast time scale) which are computable offline. Finally, taking into account
some periodicity properties in the computation of intraday costs allows to solve the problem
using a reasonable CPU time.

The paper is organized as follows. In Sect. 2, we present the standard approaches to solve,
by dynamic programming, a stochastic optimal control problem formulated in discrete time.
In Sect. 3, we revisit the notion of “state” by defining state reduction by time blocks — that
is, at stages that are not necessarily all the original stages — and then we prove a reduced

!The starting point of our reflections on this subject were conversations that three of us held with Roger
Wets in Bogota in 2013. We discussed the interest and the way of mixing the techniques of scenario trees
(to be able to take into account correlated noises) with the techniques of dynamic programming (to have a
vision of the optimal future costs).



dynamic programming equation. In Sect. 4, we illustrate our contribution by showing its
potential for applied problems with two time scales, as the crude oil procurement problem.
We relegate technical results in Appendix A.

2 Stochastic dynamic programming with histories

In §2.1, we recall standard approaches to solve, by dynamic programming, a stochastic
optimal control problem formulated in discrete time. We emphasize that, in all of these
approaches, either a state is given for all times or no state is given. We highlight that our
approach is intermediate, in that a state will possibly be obtained, but only at certain times.
In §2.2, we formulate multistage stochastic optimization problems over the so-called history
space, with history feedbacks, and we obtain a general dynamic programming equation.

2.1 Background on stochastic dynamic programming

We first recall the notion of stochastic kernel, used in the modeling of stochastic control
problems. Let (X, X) and (Y,Y) be two measurable spaces. A stochastic kernel from (X, X)
to (Y,Y) is a function p : X x Y — [0, 1] such that, for any Y € Y, the function p(-,Y) :
X — [0,1] is X-measurable and, for any x € X, the function p(z,-) : Y — [0,1] is a
probability measure. By a slight abuse of notation, a stochastic kernel is also denoted as
a mapping p : X — A(Y) from the measurable space (X,X) towards the space A(Y) of
probability measures over (Y,Y), with the property that the function z € X — [, p(dy | )
is measurable for any Y € Y.

We now sketch the most classical frameworks for stochastic dynamic programming in
discrete time. We use the notation [r,s] = {r,r+1,...,s — 1, s} for any two integers r, s
such that r < s. We will also use the shorter notation r:s = [r, s], for example in subscripts
as in h,.s. In what follows, to € N and T' € N* are two integers such that to < T.

Witsenhausen approach The most general stochastic dynamic programming principle
is sketched by Witsenhausen at the end of [17]. However, we do not detail it as its formalism
is too far from the following ones, though we will touch the subject when we discuss Yiiksel’s
approach below. We present here what Witsenhausen calls an optimal stochastic control
problem in standard form (see [15]). The ingredients are the following:

—_

. time t € [to, T] is discrete and runs among a finite set of consecutive integers;

[N}

- (X, Xiy) (Nature), (Xigt1, Xigr1), -- -, (X, Xr) (state spaces) are measurable spaces;

w

. (U, Usy)y- -+, (Up—1,Ur—_1) are measurable spaces (control spaces);

W

. J; is a subfield of X;, for t € [to, T — 1] (information);

5. fr o (X x Uy, Xy @ Uy) — (Xgy1, Xyyq) is measurable, for ¢ € [tg, T — 1] (dynamics);



6. 7, is a probability on (X, Xy, );
7. j: (X7, X7) — R is a measurable function (criterion).

With these ingredients, Witsenhausen formulates a stochastic optimization problem, whose
solutions are to be searched among adapted feedbacks, namely A, : (X;, X;) — (U, U;) with
the property that A\;'(U;) C J; for all t € [to,T — 1]. Then, he establishes a dynamic
programming equation, where the Bellman functions are function of the (unconditional)
distribution of the original state x; € X;, and where the minimization is done over adapted
feedbacks. The main objective of Witsenhausen is to establish a dynamic programming
equation for nonclassical information patterns.

Evstigneev approach The ingredients of the approach developed in [5] are the following:
1. time t € [to,T] is discrete and runs among a finite set of consecutive integers;
2. (U, Usy),- -, (Up—1,Up_1) are measurable spaces (control spaces);

3. (©2,9) is a measurable space (Nature);

W

. {fft}te[to 7oy 1S @ filtration of F (information);
5. P is a probability on (2, F);
6. j: (X ILepor1 Ut F @ Qyepror1g Ue) = R is a measurable function (criterion).

With these ingredients, Evstigneev formulates a stochastic optimization problem, whose
solutions are to be searched among adapted processes, namely random processes with values
in Hte[[toyT_”] U, and adapted to the filtration {3’}} tefto. 1" Then, he establishes a dynamic
programming equation, where the Bellman function at time ¢ is an F;-integrand depending
on controls up to time ¢ (random variables) and where the minimization is done over F;-
measurable random variables at time t. The main objective of Evstigneev is to establish
an existence theorem for an optimal adapted process (under proper technical assumptions,
especially on the objective function j, that we do not detail here). Notice that there is no
notion of state variable.

Puterman approach The ingredients of the approach developed in [9, Sect. 2.1] are the
following;:

1. time t € [to,T] is discrete and runs among a finite set of consecutive integers;
2. (X, X)), -+, (Xp, X7) are measurable spaces (state spaces);
3. (Ugy, Usy),- - -, (Up—1,Up_1) are measurable spaces (control spaces);

4. vy Xy x Uy — A(Xp41) is a stochastic kernel, for t € [[tg,T — 1] (transitions);



5. Ly : Xy x Uy = R, for t € [to,T — 1], and K : X; — R, are measurable functions
(instantaneous and final costs).

With these ingredients, Puterman formulates a stochastic optimization problem with a time
additive cost function over given state and control spaces, whose solutions are to be searched
among history feedbacks, namely sequences of mappings X;, x HZ;O (Us x X541) — Uy
Then, he establishes a dynamic programming equation, where the Bellman functions are
function of the history h; € Xy, x HZ;{O (Us x X4y1). He identifies cases where no loss of
optimality results from reducing the search to Markovian feedbacks X; — U;. In such cases,
the Bellman functions are function of the state z; € X;, and the minimization in the dynamic
programming equation is done over controls u; € U;. The main objective of Puterman is
to explore infinite horizon criteria, average reward criteria, the continuous time case, and to

present many examples.

Hernandez-Lerma and Lasserre approach The ingredients of the approach developed
in [6, §2.2, §3.2, §3.3] are the following;:

1. time t € [to,T] is discrete and runs among a finite set of consecutive integers;
2. (Xt X)), - -+, (Xp, Xp) are Borel spaces (state spaces);

3. (U, Usy),- -5 (Up_1,Ur_q) are Borel spaces (control spaces); there are also feasible
state-dependent control constraints that we do not present here;

4. vy Xy x Up = A(Xyqq), for t € to, T — 1], are Borel-measurable stochastic kernels
(transitions);

5. Ly : Xy x Uy — R, for t € [ty,T — 1], and K : X7 — R are Borel-measurable functions
(instantaneous and final costs).

With these ingredients, Hernandez-Lerma and Lasserre formulate a stochastic optimization
problem with a time additive cost function over given state and control spaces. They intro-
duce the “canonical construction” where the history at time ¢ consists in the states and the
controls prior to . Then, they study optimization problems whose solutions (policies) are to
be searched among history feedbacks (or randomized history feedbacks), namely sequences
of mappings X, x Hi;io (Us x Xs541) — Uy They identify cases where no loss of optimality
results from reducing the search to (relaxed) Markovian feedbacks X; — U;. Then, they
establish a dynamic programming equation, where the Bellman functions are function of the
state x; € X;, and where the minimization is done over controls u; € U;. For finite horizon
problems, the mathematical challenge is to set up a mathematical framework — the Borel
assumptions plus additional topological ones presented in [6, §3.3] — for which optimal poli-
cies exists. The main objective of [6] is to offer a unified and comprehensive treatment of
discrete-time Markov control processes, with emphasis on the case of Borel state and control
spaces, and possibly unbounded costs and noncompact control constraint sets.



Bertsekas and Shreve approach The ingredients of the approach developed in [3] (more
precisely in [3, Definition 10.1]) are the following:

1. time t € [to, T] is discrete and runs among a finite set of consecutive integers;
2. (X4, Xty), -+ -y (Xp, Xr) are Borel spaces (state spaces);

3. (Ugy, Uyy),. -y (Up—y,Ur_y) are Borel spaces (control spaces); there are also feasible
state-dependent control constraints that we do not present here;

4. (W, Wy),. .., (Wp, Wr) are Borel spaces (noise);

5. fi: (Xgx Uy x Wy, X, U @W,) — (Xyy1, Xyp1), for t € [tg, T—1], are Borel-measurable
mappings (dynamics);

6. prir1: Xy x Uy = A(Wyyq), for ¢ € [to, T — 1], are Borel-measurable stochastic kernels
(noise distributions);

7. L : Xy x Uy = R, for t € [tg,T — 1], and K : X7 — R are lower semianalytic functions
(instantaneous and final costs).

With these ingredients, Bertsekas and Shreve formulate a stochastic optimization problem
with a time additive cost function over given state spaces, control spaces and uncertainty
spaces. They introduce the notion of history at time ¢ which consists in the states and
the controls prior to ¢ and study optimization problems whose solutions (policies) are to be
searched among history feedbacks (or relaxed history feedbacks), namely sequences of map-
pings from history space X;, X Hi;io (Us x X541) — Uy They identify cases where no loss
of optimality results from reducing the search to (relaxed) Markovian feedbacks X; — Us,.
Then, they establish a dynamic programming equation, where the Bellman functions are
function of the state x; € X;, and where the minimization is done over controls u; € U;. For
finite horizon problems, the mathematical challenge is to set up a mathematical framework
(the Borel assumptions) for which optimal policies exists. The main objective of Bertsekas
and Shreve is to state conditions under which the dynamic programming equation is mathe-
matically sound, namely with universally measurable Bellman functions and with universally
measurable relaxed control strategies in the context of Borel spaces. The interested reader
will find all the subtleties about Borel spaces and universally measurable concepts in [3,
Chapter 7].

Yiiksel approach As said at the beginning, the most general stochastic dynamic pro-
gramming principle is sketched by Witsenhausen at the end of [17]. This approach builds
upon the so-called Witsenhausen intrinsic model [16] which does not consider state, but in-
formation under the form of o-fields (see [18] for the functional form). In [15], Witsenhausen
provides conditions to express stochastic control optimization problems — with information
constraints, but without state — in standard form with a state (the first approach that we
have considered above).



Although Witsenhausen established a dynamic programming equation in [15], Yiiksel
notes in [19] that “Witsenhausen’s construction [...] does not address the well-posedness
of such a dynamic program” and that “the existence problem was not considered”. In the
spirit of [15], Yiiksel entails in [19] “a general approach establishing that any sequential team
optimization may admit a formulation appropriate for a dynamic programming analysis”.
One of the contributions of [19] is to propose a construction of standard Borel controlled
state and action spaces and to establish a universal dynamic program for stochastic control
optimization problems — with information constraints, but without state — thus addressing
some of the issues raised and left open by Witsenhausen. The ingredients are the following:

1. time t € [to,T] is discrete and runs among a finite set of consecutive integers;

2. (Q,3) is a measurable space (Nature);

w

Uy, Uty ) - -, (Up_1,Ur_1) are measurable spaces (control spaces);

-
-

;.l;

Yio, Yt0)s -+, (Yr_1,Y7_1) are measurable spaces (“observation” spaces);

B et (% [Lscpiog Us » T © Qo g Us) —
(U, ut)} reftor—1] A€ measurable mappings (“measurement constraints”);

6. [P is a probability on (€, F);
7.7 QX icpor—1 Ut F ® Qe r—1y We) — Ry is a measurable function (criterion).

With these ingredients, Yiiksel formulates a stochastic team optimization problem whose
solutions (policies) are to be searched among sequences of measurable mappings (“design
constraints”) Y; ; — U, and their “randomized” versions (so-called strategic measures).
He establishes a dynamic programming equation, where the Bellman functions are function
of probability distributions and where the minimization is done over proper design mappings.
One objective of Yiiksel is to set up a mathematical framework under which the dynamic
programming equation is mathematically sound [19, Theorem 3.6].

Our approach The ingredients that we use are the following:
1. time t € [to,T] is discrete and runs among a finite set of consecutive integers;
2. (U, Uyy),. -y (Up—y1,Up_1) are measurable spaces (control spaces);
3. (Wi, W), .., (Wp, Wyp) are measurable spaces (noise);

4. prir1 : Wy, X HS i (Us x Wyyq) = A(Wyyq), for t € [tg, T — 1], are stochastic kernels
(noise distributions);

5.5 (Wyx 12 tl (UsxWei1), Wiy ® @1 to( s@Wsi1)) — [0, +00] is a measurable func-

tlon (criterion);



6. to < --- < ty = T are the indices of multiple consecutive time blocks [to,¢1], ...,
[tn—1,tn], with N > 1 an integer;

7. {(Xy,, xtj)}j cfo.ny A€ measurable spaces (time block state spaces);

ti—1
8. {Htj Wy, x JT (U x W) = X, and 6, : W,, — X, are measurable map-
s=to j€[1,N]
pings (time block reduction of history towards state);

tjp1—1
9. { frtn X< [T (UgxWeyy) — X, +1} are measurable mappings (time block
§=t; FE[0,N—1]
dynamics).

The framework developed in this paper is intermediate between the ones of Evstigneev in [5]
and of Yiiksel in [19] — notable by the absence of a state space — and the ones of Witsen-
hausen [15], Hernandez-Lerma and Lasserre [6], Bertsekas and Shreve [3] and Puterman [9]
— where the state spaces are given for all times.

This said, our preoccupation could be adapted to any of the above frameworks. Indeed,
our objective is to establish a dynamic programming equation with a state, not at any
time ¢ € [to, T], but at some specified instants ¢y < t; < --- < ty = T. The state spaces are
introduced as image sets (codomains) of what we call (time block) history reduction mappings
(where history at time ¢ consists of all uncertainties and controls prior to time t).

2.2 Stochastic dynamic programming with history feedbacks

To prepare the main result in Sect. 3, we establish a dynamic programming equation when
the state is the history, that is, the uncertainties and the controls prior to the current stage
(see the “canonical construction” in [6, p. 15]). Although quite natural, this equation is
generally not written in the literature, as most frameworks in dynamic programming assume
the a priori existence of a state (see §2.1).

From now on, time is discrete and runs among the integers ¢ € [0,7], where T' € N*
is a positive integer (and where, for the sake of simplicity, we have taken ¢, = 0 regarding
the notation in §2.1). We first define the basic and the composite spaces that we need
to formulate multistage stochastic optimization problems. Then, we introduce a class of
solutions called history feedbacks.

Histories and history spaces For each time t € [0,7 — 1], the control u, takes its
values in a measurable set U; equipped with a o-field U;. For each time ¢ € [0,77, the
uncertainty w, takes its values in a measurable set W, equipped with a o-field W,. For



t € [0,T], we define the history space H; equipped with the history field H,

t
Hy = Wo x [ [(Usr x W) |
s=1

t
Hy =Wo @ QU @W,) , Vit € [0,T],

s=1

with the particular case Hy = Wy, Hy = Wy. A generic element hy = (wo, (Us—1, Ws)s=1,..¢) =

(wo, ug, Wi, Uy, Wa, ..., Us_g, Wi_1, U1, wy) € Hy is called a history at time t. For
1 <r < s < t, we introduce the (r:s)-history subpart h,.s = (Up_1, Wy, ..., Us_1,Ws) €
H,.. = [ _, (U,_1 x W), so that we have hy = (hy_1, hyut).

History feedbacks For 0 <r <t <T—1, we define a (r:t)-history feedback as a sequence

{%}s:r...t of measurable mappings v : (Hs, Hs) — (Us, Us). We call T, the set of (r:t)-

history feedbacks. The history feedbacks reflect the following information structure. At

the end of the time interval [t — 1,¢[, an uncertainty variable w; is produced. Then, at the

beginning of the time interval [t,¢ + 1], a decision-maker chooses a control u; contingent on

no more than the past, giving the chronology wg ~» ug ~> wy ~> Uy ~> -+ ~> Wy ~> Uy ~>
T Wr_q v U1 M Wt

Family of optimization problems with stochastic kernels We introduce a family
of optimization problems with stochastic kernels. Then, we show how such problems can
be solved by stochastic dynamic programming. In what follows, we say that a function is
numerical if it takes its values in R = [—o0, +00] (also called extended or extended real-
valued function). To build a family of optimization problems over the time span [0, 7—1],
we require two ingredients:

e a family {ps_1:8}56[1 ] of stochastic kernels
Ps—1:s - (Hs—bj{s—l) — A(Ws) ) VS € [[LT]] ) (1)

that represents the distribution of the next uncertainty ws parameterized by past his-
tory h’sfb

e a numerical function, playing the role of a cost to be minimized,
j : (HTa}CT) — [07 +OO] ) (2)

assumed to be nonnegative? and measurable with respect to the field Hr.

2We could also consider any j : H, — R, measurable bounded function, or measurable and uniformly
bounded below function. However, for the sake of simplicity, we will deal in the sequel with measurable non-
negative numerical functions. When j(hr) = +00, this materializes joint constraints between uncertainties
and controls.



We define, for any feedback {%}S:t”_’T_l € I'tr1, a new family of stochastic kernels
prp : (Hy, Hy) — A(Hy), that capture the transitions between histories when the dynamics
hey1 = (hs,us,ws+1) is driven by us = vs(hs) for all s in [t,7 — 1] (see Definition 10
in Appendix A for the detailed construction of p),; note that p/, generates a probability
distribution on the space Hy of histories over the whole timespan [0,77]). We consider the
following family of optimization problems, indexed by ¢ in [0,7 — 1] and parameterized by

the history h; € Hy: for all ¢ in [0,7 — 1], we define the minimum value

Vit =t [ el b Ve E )
Hr

YeT—1€ T —1

and we also define Vp(hr) = j(hr), Yhy € Hy . (3b)

The numerical function V; : H; — [0, 400] is called the value function at time t.
In the next paragraph, we show how the family {V;},cf, 7y of value functions can be used
to solve, via dynamic programming, the optimization problem of interest whose value is

Vo(wo) = int /j(h’T>p&T<dh’Trwo>
Hr

Yo.r—1€l0:7 -1

R /W i(@plwor)

Yo.r—1€l0:7-1

H Ps—1:s ( dws ’ @3;5—1(7”0:8*1)) ’ (4)

s=1

by (40), where the flows @] for s € [0,T—1] are defined by Equation (38a) in Appendix A.

Bellman operators and dynamic programming We show that the value functions
in (3) are Bellman functions, in that they are solution of a Bellman or dynamic programming
equation. For ¢ in [0, 77, let LY (H,, H;) be the space of universally measurable nonnegative
numerical functions over H; (see [3, § 7.7] for further details). For ¢ in [0,7—1], we define
the Bellman operator B,y 1. by, for all ¢ € ]L&(]I—]Lm7 Hiv1), and for all hy € Hy,

(Bt+1;t90)(ht) = inf ©(he, U, Wit1) prea1 (dwegr | hy) - (5)

ut €Ut Wit

Since ¢ € LS)F(HtH,thH), we have that B;,.14p is a well defined nonnegative numerical
function. The proof of the following theorem is given in Appendix A.

Theorem 1 Assume that all the spaces introduced in §2.2 are Borel spaces, the stochas-
tic kernels in (1) are Borel-measurable, and that the criterion j in (2) is a nonnegative
lower semianalytic numerical function. Then, the Bellman operators in (5) are such that
Biti : LY (Hypq, Higr) — LS (Hy, 3,), and the value functions V; defined in (3) are univer-
sally measurable and satisfy the Bellman equation, or (stochastic) dynamic programming
equation,

V=34, Vi=Bi1.Viea, fort=T-1,...,1,0. (6)

10



This theorem is mainly inspired by [3, Chap. 8], with the feature that the state z; is, in
our case, the canonical history h;, with the canonical dynamics h;; = (ht,ut, wt+1). This
very general dynamic programming result will be the basis of all future developments in this
paper. In the sequel, we assume that all the assumptions of Theorem 1 are fulfilled; all the
spaces (like the ones introduced in §2.2) are Borel spaces; all the stochastic kernels (like the
ones introduced in (1)) are Borel-measurable; all the criteria (like the one introduced in (2))
are nonnegative lower semianalytic functions.

This Sect. 2 is mostly made of recalls and of statements that are straightforward conse-
quences of results already established in the literature. However, the developements in §2.2
are indispensable to tackle time blocks decomposition in the coming Sect. 3.

3 State reduction by time blocks and dynamic pro-
gramming

In this section, we consider the question of reducing the history using a compressed “state”
variable. Differing with traditional practice, such a variable may not be available at any
time ¢t € [0,7], but at some specified stages 0 = tg < -+ < ty = T. We have seen
in §2.2 that the history h; is itself a state variable with associated canonical dynamics
hiy1 = (ht,ut,wt+1). However the size of this canonical state increases with ¢, which is
an unpleasant feature for dynamic programming, hence the practical need to introduce a
(ideally low dimensional) state space, at least at some specified stages, as done in this paper.
As said in the introduction, the main difficulty is notational.

3.1 State reduction on a single time block

We first present the case where the reduction only occurs at two instants denoted by r and ¢,
and such that 0 <r <t <T.

Definition 2 Let (X,,X,) and (X;,X;) be two measurable state spaces, 6, and 0; be two
measurable reduction mappings

0, :H, —-X,., 6:H, —X,, (7a)
and f... be a measurable dynamics
Fro  Xo X Hypry — X, . (7b)
The triplet (0, 0y, f,.¢) is called a state reduction across (r:t) if we have®
Oc((hr, Brgrt)) = fra (00 (he), Bygase) » Vhe € Hy . (7c)

The state reduction (0,,0:, fr+) is said to be compatible with the family {ps—1.s}ry1<s<t Of
stochastic kernels (1) if

3Notice that, if only the couple (6, f.:) is given, we can define 6; by (7c), and thus obtain a
triplet (6,6, fr+) which is a state reduction across (r:t).

11



e there exists a reduced stochastic kernel p,..11 : X, — A(W,.1), such that the stochas-
tic kernel py,.1 in (1) can be factored, for all h, € H,, as prpi1(dw,iq|h,) =
ﬁr:r+1 ( dwr+1 | er(hfr))f

e for all s in [r + 2,t], there exists a reduced stochastic kernel py 1.5 : X, X H, (1.6 1 —
A(Wy), such that the stochastic kernel ps_1.s can be factored, for all hs_1 € Hy 1, as

psfl:s( dws | (hr7 hr+1:571>) = ,B/sfl:s(dws ‘ (6r<h7")7 hr+1:571)); .

The above definition is quite similar to the sufficient statistics idea in stochastic control:
the state variable, which summarizes the history, is sufficient for the controller to design
its control policy ([14, p. 19], [3, Definition 10.6], [13]). However, sufficient statistics in the
stochastic control literature are defined at the original time stages. By contrast, Definition 2
— and the coming Definition 4 — consider a notion of sufficient statistics only for a subset
of stages, which is the main focus of this paper.

According to Definition 2, the triplet (6, 6y, f,+) is a state reduction across (r:t) if and
only if the diagram in the left part of Figure 1 is commutative; it is compatible if and only
if the diagram in the middle part of Figure 1 is commutative.

1. B;.,
Hr X Hr—i—l:t L} Ht Hr X HT+1:3_1 Q} A(Ws) ]L’g-(]H[taj{f) % L(-)t,-(ng{r)
07” Id et 97“ 0; 0:
X, x Hyppe —7s X, X, * Hy 101 LY (%,,%,) —DE LY(X,. X,)

Figure 1: Commutative diagrams in case of state reduction

To prepare a dynamic programming equation, we define the Bellman operator across (t:r)
By : LY (H,, 3,) — LY. (H,, 3,) by

Bt:r = DOr41:9 00 Bt:tfl y (9)

where the one time step operators Bg.s_1, for s in [r + 1,¢] are defined in (5). The follow-
ing proposition is the key ingredient to formulate dynamic programming equations with a
reduced state.

Proposition 3 Suppose that all the assumptions of Theorem 1 are satisfied. Suppose that
there exists a state reduction (0,0, frt) that is compatible with the family {ps_1.s }rr1<s<t

of stochastic kernels (1) (see Definition 2). Then, there exists a reduced Bellman operator
across (t:r) By, : LY (X, X;) = LU(X,, X,.), such that

(gt:r@t) 00, = Br(Gro0), Vo, € Li(xm Xt) - (10)

12



For any ¢ € LY (X, Xy) and for any x, € X,, we have that

(gt:rgbt) ('TT)
= inf / Prir+1(dwpiq | 2,)
W1

ur €U

inf pr—i—l:r—i—?( dwr+2 | Ly Uy, wr—i—l)
Ur+41 6U7‘+1 Wr+2

inf Pr—1:4(dwy | Ty Upy Wy - o U, Wy—1)
ut—1€Us—1 Jyy

@t(f'r:t(xmumw%‘rl""7ut—17wt>) : (]'1)

The proof of Proposition 3 is given in Appendix A. Proposition 3 can be interpreted as
follows. Denoting by 67 : LY (X, X;) — LS (Hy, ;) the ciperator defined by 07 (@:) = @1 o 6,
for any ¢, € LY (X;, X;), the relation (10) rewrites as 0% o By, = B, 00}, that is, Proposition 3
states that the diagram in the right part of Figure 1 is commutative.

3.2 State reduction on multiple consecutive time blocks and dy-
namic programming equations

Proposition 3 can easily be extended to the case of multiple consecutive time blocks [t;, t;11],

with Ne N i€ [O,N —1]and 0=ty < --- <ty =T.

Definition 4 Let {(Xy,, Xe.)},ci0 v

family of measurable reduction mappings 0,, : H;, — X;,, and {fti:tiﬂ}
of measurable dynamics

be a family of measurable state spaces, {eti}ie[[o N be a

ieO.N-1] be a family
fti:ti+1 : Xti X Hti+13ti+1 — Xti+1 :

The triplet ({Xti}ie[[O,N}]f {04 }icpo.n {fti‘ti+1}ieﬂ0 N71]]) is called a state reduction across the
consecutive time blocks [t;,t;1], i € [0, N—1] if every triplet (04,,64,,., fr1..r) @S a state
reduction, for i in [0, N—1]. The state reduction across the consecutive time blocks [t;, ;1]
is said to be compatible with the family {ps—1.s}sepry of stochastic kernels given in (1)
if every triplet (04,04, ., frn,y,) i compatible with the family {ps—1.s}scft 414 for i in
[0, N—1].

i)

There is a practical case where state reductions can readily be obtained.

Remark 5 (Composed state dynamics as a straightforward reduction mapping)

We consider here the special case were the model is given by controlled state dynamics
driven by noises. That is, we are given a family of measurable state spaces {(Xs, xs)}seﬂm
and a family {fszs_l’_l}se[[O’T_l]] of measurable dynamics

f515+1 . Xs X US X W5+1 — X5+1 . (12)
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For any time s € [0,T — 1], we define the composition fo.s41 = fest1© fs—1.60 ... 0 fou1
with the abuse of notation that the composition is performed on the state argument. Setting
Wy = Xo, we obtain that fo.si1 @ Hery — X1 is a mapping from the history space Hgq
taking values in the state space X 1.

Now, given an integer N > 0 and an increasing sequence 0 =ty < --- <ty =T of times,
we define the family {eti}ie[[O,N]] of measurable reduction mappings by 0, = fo., : Hy, = X,
for i >0, and by 0y = I; (the identity mapping on Wy ) for i = 0. Moreover, given i and
J € [0, N], with i < j we obtain, for all hy, € Hy,, that

Htj (htj> = et]' ((hti7 h’ti—‘rl:tj)) = ftiit]' (etl (h’ti>7 hti—‘rlitj) Y (13)
with fi.4; = fi,—14; © ft,—2:4,-1 0 ... 0 fr4,41 which gives the state reduction Equation (7c).
There is a practical case where compatible state reductions can readily be obtained.

Remark 6 (Block independent exogenous noises and stochastic kernels)

Assume that the family {ps—1.s}sep,ry of stochastic kernels in §2.2 are mappings whose
arguments do not include the control part (that is, depend at most on the history uncertainty
part (see (37a)). If we interpret stochastic kernels as (conditional) distributions of noises
(random process), this means that the system dynamics are driven by an exogenous noise
process, say (Wt)te[[l,T]]' Moreover, assume that the stochastic kernels give rise to noises that

are independent block by block, in the sense that the family of noises{ <Wt>t€[[ti+1,ti+1]] }ie[[O No1]
is made of independent random vectors, i by i. Then, from Definitions 2 and 4, we deduce

that any state reduction across the same time blocks is compatible with the stochastic kernels.

Assuming the existence of a state reduction across the consecutive time blocks [[t;,%;11]
compatible with the family of stochastic kernels (1), we obtain the existence of a family
of reduced Bellman operators across the consecutive [t;, ;1] as an immediate consequence
of multiple applications of Proposition 3, that is, gti ot LS (X X)) — AIEAS)F(XQ,DC“),
i € [0, N—1], such that, for any function @,,, € LY (Xy,,,, Xt,,, ), we have that (B, ., 8t )©
0y, = B, 1t (P 00r,,,). We now consider the family of optimization problems defined
by the associated value functions (3). Thanks to the state reductions, we can enounce
the following theorem which establishes dynamic programming equations across consecutive
time blocks.

Theorem 7 (Time block decomposition) Suppose that all the assumptions of Theorem 1
are satisfied. Suppose that a state reduction ({Xti}ie[[O,N}]f {62 }ico.ny {fti:tiJrl}ie[[O,N—l]]) ex-
ists across the consecutive time blocks {[[t;, ti+1]]}i€[[0,N71]]7 satisfying 0 =tg < -+ <ty =T,
and which is compatible with the family {ps—1.s}sepry of stochastic kernels given in (1).
Assume that there exists a reduced criterion j : Xp — [0,4+00] such that the cost func-
tion j in (2) can be factored as j = jo Op. We define the family of reduced value functions
{Vti}ieuo,N]} by ~ R _ R

Viv =7 and V;, = By, \4,Vs,, » Vi€ [0,N-1]. (15)

Then, the family {Vi, }icpo.ny in (3) satisfies Vi, = Vi, 0 04, for all i € [0, N].
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The proof is an immediate consequence of multiple applications of Theorem 1 and Propo-
sition 3. Then, it is easy, and left to the reader, to prove that the following Corollary holds
true.

Corollary 8 (Taking care of instantaneous costs in addition to final cost)

Assume that a state reduction on multiple consecutive time blocks compatible with the
family of stochastic kernels (as in Definition 4) exists, and assume moreover that the criterion
j:Hp — [0, +00] can be factored as

N-1

G(hr) = (0 (he)s heia,) + Lo (Biy (hey)) - (16)

i=0
Theorem 7 remains valid with the reduced Bellman value functions given by

Vie =l and Vi, =By, Vi, , Vi€ [0O,N—1],

i+1 )

and the reduced Bellman operator across (t;:t;11) given, for anyi € [0, N—1], for any ¢y,,, €
L8 (Xt,,,, Xeiyy) and for any xy, € Xy, by

i+1)

Ut; E]Uti

(Bti+1:ti¢ti+l) (mtz) = inf / ﬁti5ti+1(dwti+1 | xti)
Wi, +1

inf / pti+1tt¢+2( dwti+2 ‘ Lty Ut; s wti+1)
We, 42

ut;+1€UL, +1
1n]1fj / Ptiy1—Titiys
ut; g —1€U -1 Wti+1
( dwt¢+1 | Lgyy Ugyy Wey41,y -+ uti+1727 wti+1*1)
<€t¢ (Z'tp Uty Wty 1y - vy Uty q—1, wti+1>
+ Ptipa (ftiiti+1 (Itw Uty W1y - -5 Uty —15 wti+1))> : (17>

Of course, solving Equation (15) or Equation (17) can be as difficult as solving the original
Bellman equation. However, the interest of such time block decomposition will be illustrated
on the two time scale optimization problems, object of the next Sect. 4, as detailed at the
end of §4.3.

4 Two time scale optimization problems

Some decisions problems naturally involve two different time scales, because of the timing
of decisions — as for example long term investment decision and short term monitoring of
physical devices. In this section, we introduce abstract mathematical notations to describe
multistage decision problems with two time scales. Then, we show how they can be reformu-
lated on a unique product timeline in order to obtain a block decomposition by Theorem 7.
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In §4.1 and §4.2 we detail the structure and we formulate the two time scale optimization
problems that we consider. In §4.3, we show how to decompose such problems by time
blocks. In §4.4, we make the link with the classical framework of stochastic optimal control,
and we illustrate the approach on a crude oil procurement problem in §4.5.

4.1 Structure of a two time scale optimization problem

We provide the data for a two time scale optimization problem.

Two time scales. We consider a multistage decision problem, with two time scales. The
slow time scale is represented by a finite totally ordered set (S, <) as follows — where sT
denotes the successor of s € S and s~ its predecessor, and where we use the notation ¢ < ¢/
fort <t' andt £t —

mnS=s<--<s <s=<s" < <5=max$, (18a)
and the fast time scale by a finite totally ordered set (F, <):

minF=/f~<- < f < f=<f"<- < f=maxF. (18b)

In a sense to be made more rigorous later (once a unified timeline will have been defined),
each slow time interval [s, s™[ is made up of |F| (cardinality of F) fast time steps, hence the
denomination “two time scale”. For instance, S = {Mo, Tu, We, Th, Fr, Sa, Su} may
represent days, whereas F = [1,24] may represent hours within a day. In some problems,
we might even take F = [0, 24] to handle the fact that two decisions (one slow and one fast)
are taken at midnight, hence an additional fast time step 0.

Unified timeline. We define the unified timeline of the decision problem in two steps.
First, we equip the product set S x F with the following lexicographic order:

(s,f) < ( S =)= fT) = (19)
< ()= (=T )= =<5 f)

More formally, we denote by (s, f)™ the successor of (s, f) in S x F\ {(5, f)}, with

c e AT ”
(Saf) {(S+7z) lff:_f ( a)
Similarly, we denote by (s, f)~ the predecessor of (s, f) in S x F\ {(s, f)}, with
_ (s, f7) i f#[f,
s, = _ = 20b
(5.1) {@7) . (201)



We adopt the convention that the slow time s € S is identified with the two scale time (s, f),
as illustrated in Figure 2. For instance Monday is identified with (Mo, 24).

In the product set SxF, the first time (s, f) does not coincide with a slow time (the
couple (Mo, 0) does not correspond to Monday_in our running example). Thus, we add to
the product set SxF an extra time denoted by (s~, f), corresponding to the extra slow time
s~, which is such that (s, f)~ = (s~, f). We denote by S the set {s~}US and by SXF the set
(57, f) U(SxF), also called the extended timeline when equipped with an order < as follows
— where we use the notation (s, f) < (¢, f) for (s, f) < (¢, f') and (s, f) # (', f') —

(§‘,f)<(§,i)<---<(8‘,f)<(s,f)<( )=

< ()=, ) = (s ) << (5 f) (21)

The two time scale optimization problem will be formulated on the extended timeline SxF,
which we trivially identify with the time set [0, T], where T = |S]| x |F|.

Figure 2: The product timeline with an extra starting point (s~ f)

Decisions. We suppose given

o a family {U}},c5, (5 of slow time scale decision measurable sets, and a family {W3}
of slow time scale uncertainty measurable sets,

s€S

e a family {U
{st

?2 N }(S HeEsxFU) of fast time scale decision measurable sets, and a family

}(s Hesx P\ of fast time scale uncertainty measurable sets.

Dynamics. We suppose given a family {X3} < and a family {XSS f)}(s PesxE of slow
time scale and fast time scale state measurable sets. We also suppose given a family
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{]—"j}seg\ (s} of slow time scale dynamics measurable mappings, that represent the evolution

“driven at the slow time scale” given, for s € S\ {5}, by*

Fo o XEXUS X WS, — X?s+ R
(m u ws+) — x(s+ = f:(xz,uz,w;) ) (22a)

We suppose given a family { of fast time scale dynamics measurable map-

(s f>}(s HESX(F\{F})
pings, that represent the evolution “driven at the fast time scale” given, for all s € S and

feF\{f}, by

f . wwsf sf sf sf
F(Ss,f) . X(szf) XU(srf) XW(S + % X( 7f)
f f f
(J;?Svf)’uisvf) w?s f) ) = x( 7f)

sf
= Fon@tip, (S,f)’w(s,fﬁ)? (22b)

where, for the sake of simplicity, we use the notation X?f H= =X for all s € S.

Criterion. We suppose given a family {As}seé\ o of slow time scale measurable cost func-
tions, with

At XU xWix [ (XE <UL ) xWe L) = R,
FERT)

J/

TV
interval [s—,s|

for s € S, and we suppose given a function A, representing a final cost, with
A XS R,

that make up, by summation, an intertemporal criterion

Z A87 (xvssf ) sz ) w:’ {$?£,f)’ u?i,f)’ w?z,f)+ }fEF\{f}) + A§ ('TZ) : <24)

SES

Stochastic kernels. Finally, we suppose given a family of constant slow time scale stochas-
tic kernels {pZ:er}Seg\{g}

P € A(WE,), Vs €5\ {5}, (250)

4We stress that the slow time scale dynamics (22a) yields as output the first fast state of the slow period
(and not the next slow state). Thus, the slow time scale dynamics (22a) is not a dynamics from one slow
state to the next slow state.
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and, for each s € S, a family {p?i of fast time scale stochastic kernels

,f):(s,f)Jr}feF\{f}

!
sf . S sf sf
Pls.f)(s.)* F W, X H+ W(Svf') — A(W(S,fﬁ) ’
f'=f

N————

interval [s—,s[

Vse€S, VfeF\{f}, (25b)

with the convention that the Cartesian products of spaces in Equations (25a) and (25b)
reduce to the empty set when the upper index of the Cartesian product is strictly lower that
the corresponding lower index. Note that, for a given s € S, each fast time scale stochastic

kernel p?i Py only depends on the noises of the slow time block s.°

4.2 Formulation of a two time scale optimization problem on the
product timeline

To apply Theorem 7, we introduce sets associated with the extended timeline (21) by

xs wtf=7 -

X(S,f) - {X?;f) if f 7§ ‘]; ’ V(S,f) € SxF ) (26&)
o wtp=7 .

Uter) = {U?;f) 727 Ve DESFUGD (26D)

We o iff=f
W= : =V SxF 2
(s,f) {Wg’f) if f 7& i ) (S7f) € OX ) ( C)

with the particular case of the extra initial slow time

W(§7,f7) - X;— ; (26d)

and a family of state dynamics Fs p) : X5 p) XU, 1) X W )+ — X 4+ defined by

F: if f=Ff .
Fisf) = ~, V(s,f) € SxF )} 27
From these sets, we deduce the history sets and the histories for all (s, f) € SxF

]H[(s,f) = W(ﬁ_,f) X H (U(s’,f’)7 X W(s/’f/)) s (28&)
(8,£)2(s" ) 2(s,f)

Moy = (w@‘f)’ (u<8’vf’>"w(S”f’>)(gi)ﬁ(s’,f')f(s,f)) ’ (28b)

>The (constant) assumption (25a) and the (single block) assumption (25b) correspond to stochastic
independence between time blocks, and will be useful in the proof of Proposition 9.
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) ———————— ) ) —— —— (T f

| ! ! !

f Xsf sf £ s
Xs(= X ) Xt Ff (s+,£%) b s (X (=X%2)
(=X 5 7 ' e i (s*.7") F s (D' s
( < Us s XU?iJr’i) & XU?';;.f+) N XU?Z*,f*) M XU;r

x Wsf x WSt

sf
(st.H* (st fH7*

Xs f X.s+, X,+.+ X(st. f~ X,..
() Foody %U 5 Fiorp) % 1) (s ’f,) Far ) roh)
XU, ) — | *Uerp —= | XU —= | XU oy | ———= | xUerp
“Weont *Wigr oyt XW e piy+ *Wigh ) W p+

Figure 3: Original dynamics and their reformulation on the product timeline on the slow
time interval [s, s*[

and, for suitable indices, the partial history sets and the partial histories

Hs, p):s0, 1) = H (U(thfn)* X W(su,fw)) , (29a)
(,)2(s",f)2(s',f")
h’(s,f):(s’,f’) = (<u(8//7f”)7,w(sn’fﬁ))(S,f)j(s//,f”)j(sl,f/)) . (29b)

The criterion formulated in Equation (24) combined with state dynamics leads to a
criterion j : H(g,f) — R.

Based on the stochastic kernels (25a) and (25b), we introduce stochastic kernels p(y ). 5+
associated with the extended timeline (21), for each (s, f) € SXF\ {5, [}, by pg )50
Hy 5 — A(W(s,f)+> with

P(s.f):(s.)F ( dw(s,f)+ ‘ h(s,f))
{@ﬁ«ma> iff =1,

sf sf s sf Sf . -
p(s,fy(s,f)*(dw(afﬂ |ws7w(s¢+)’ e wil ) M fAS

Note that, for f # f, the kernels Pis. st H(S@:(S’f) — A(W(s,f)+)’ only depend on the

partial history uncertainty part from (s, f) to (s, f), and not on the (past) controls.

The components of the problem are now formulated on the extended timeline SxF,
already identified with the time set [0,77]. Thus, we are in the framework of §2.2 and we
aim at solving an optimization problem as formulated in Equation (4).

4.3 Two time scale decomposition

The existence of Bellman equations for a two time scale optimization problem is given by
the following proposition.
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Proposition 9 Consider a two time scale optimization problem as formulated in §4.1 and
§4.2. The optimization problem (4) has a solution given by a dynamic programming equation
at the slow scale. More precisely, let (V,), .5 be given by V; = Ag and, for s € S\ {5}, by the
backward induction

Vit = ot [ g (dus)
W

us €U s
st
: sf sf s
usf lreltgsf / Sf p(5+7i):(5+7i+)(dw(s+7i+) ‘ wer) T
DS D T W s
f inf f /
R N e R L
sf sf s sf sf
Pt (s p (AWt py [ 0o Wit pys o Wit 1)
f f
(Aot uwie, il it )
f f
+ Vo (Pt (23,03, wis . .  Uler F-y w?5+f)))) : (30)

where Fy.o+ is the composition Fg.o+ = }"(S;L 7o o .7-"(5; f) oF? associated with the state dy-

S

namics defined in (22). Then, the value of the optimization problem (4) is given by V,_(25-).

Proof. The proof is an application of Theorem 7 with the help of Remarks 5 and 6. First, we
have re-framed in §4.2 the two time scale optimization problems described in §4.1 in the formalism
of §2.2 with the help of the extended timeline (21). Second, as we are given state dynamics (27) on
the extended timeline and thanks to Remark 5, we obtain a state reduction at times {(s, f)},cg by
composition of the state dynamics. Moreover, as the slow time scale kernels given by Equation (25a)
are constant, the state reduction across the slow time scale is compatible with the stochastic kernels
(see Remark 6). Third, the case of a time additive criterion has been considered in Corollary 8.
We are thus able to apply Theorem 7 and obtain the slow time scale Bellman recursion (30) as a
special case of Equation (17). O

The slow time scale Bellman equation (30) is as difficult to solve as the Bellman equation
on the extended timeline. However, the interest of (30) lies elsewhere. Imagine that one

is able to obtain, in a relatively easy way, lower V and upper V, approximations of V,

in (30). Then, by replacing the last term V_, of (30) by either V_, or K, one can now solve
a (lower or upper) surrogate of Equation (30) by any suitable method. For instance, one
could use scenario decomposition methods, like progressive hedging [11], that do not require
statistical independence of noises within the slow time interval [s, sT[. Thus, the two time
scale optimization problem as formulated in §4.1 and §4.2 can be approximatively solved,
from below and from above, by a mix of slow time scale dynamic programming and of (for
example) progressive hedging (or any other method, including dynamic programming). This
is the approach we followed to numerically tackle a battery management problem over 20
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years involving both the battery operating (with a fast time step of 1 minutes) and the
battery replacement (with a slow time step of one day). Despite involving several millions
time steps, we were able to solve the problem using a reasonable CPU time [10].

4.4 Link with the classical framework of stochastic optimal control
The property that the stochastic kernels (25) do not depend on any decision variable makes
it possible to build a probability p( r).;s,7) on the product space W, 1.5 ) by
P(s.1):(5.0) (31)
(PZ;ﬁ (dwiy)

s€S

® p?£+’i);(s+,i+)( dwiﬂiﬂ |w§+) &
@ Plat ooty (AWir gy | W54, Wit g, 7“’?;,%))) ‘

Then Problem (4) may be rewritten using this probability as

Vi-(at) =t [
o) =it |

(5,£):(5.F)

sf S sf
ZA Tg—y Ug—, W {l’ (s,f) (Sf)’w(s’f)+}f€':\{f})>

seS
Pls.f) (dw dw(s e dw?f dw?i f)) (32a)
sf
St Tigpr = 7z f)< 4. U ) (s,f)+) 7
Vs€S, VfeF\{f}, (32b)
x?2+ n=F@ug, wi) , Vs €S\ {s}, (32¢)
us = ’)/s({u(s’,f’ )-s—} 7)) , Vs € g\ {5} , (32d)

sf
Wapy) = Vo) ({09 Wy F g o))
VseS, VfeF\{f}. (32e)

The integral cost given in the right hand side of Equation (32a) can be reformulated as an
expectation, denoted by E, with respect to the probability p( 1.5 ) by introducing random
variables for the exogeneous noises as projection mappings from Wi, 1)) to Ws gy for all
(s, f) € SxF

Wen : Wiaprsp = Wi o Vs, f) € SxF, (33)
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and obtaining random variables for the states and the control through the dynamics equa-
tions (32b)—(32c) and the feedback equations (32d)—(32e).

This leads to a reformulation of Problem 32 as a classical stochastic optimal control
problem

. 3 sf f
inf E[SGZSAS (X3, U3, W, (X U ) W 0t reriny)
+ A (X3)] (34a)
sf i sf sf sf
st X0 i = FionXiapy Ul Wi )
Vs €S, VfeF\{f}, (34b)
Xfe = F2(X5 UL Wi ), Vs € S\{5}, (34¢)
Uscl, Vse§, (34d)
(Us) C 0'({Ws} §'=<s) {W(s f’)} sf))
Vs €S, (34e)
U, €U, , VseS, VfeF\{f}, (34f)
(U?s,f)) C U({W } s'<s) {WSf ! )} s/ )= sf))
VseS, VfeF\{f}, (34g)

where the two feedback constraints in (32d) and (32e) are reformulated as measurability
constraints (34e) and (34g) (of course, a formal equivalence would require to be more specific
about spaces to use Doob functional Lemma).

4.5 Illustration with the crude oil procurement problem

Crude oil procurement is the part of the oil supply chain that sits between the production of
crude oil and its processing in a refinery. The goal of procurement is to purchase crude oil
from various suppliers around the world and having it delivered in time to the refinery to be
processed. As illustrated in Figure 4, every month (on the bottom line) a refinery receives
crudes that have been bought during the 8 previous weeks (on the upper line).

The problem naturally displays two time scales. On the one hand, deliveries to the
refinery are made at the beginning of each month, and crude consumption is set once a
month. On the other hand, crude oil shipments can be purchased at the frequency of the
week; every week, a selection of shipments is presented to the decision-maker who must
decide which shipments to purchase. Following the construction of the extended timeline
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crude oil shipments purchased every week

7 sf sf sf sf sf sf sf sf sf sf sf
(My,1) "(Mmy2) Y(M13) Yna) Y(Ma) Y(M22) Y(M2,3) Y(Maa) Y(Ms1) Y(Ms2) “(M3.3) Y(Ms4)

Be b o 4 4 2

I

I

|

I

I

|

refinery :
stocks !
I

|

I

I

|

refinery stock consumption every month

Figure 4: Procurement of crude oil over 3 months M;, My and M3, where O denotes purchase
decisions and [J denotes consumption decisions

in (21), we represent by the sequence

(Mo, 5) (35)
< (M, 1) < (My,2) < (My,3) < (My,4) < (M, 5)
< (M3, 1) < (M3,2) < (Ms,3) < (Ms,4) < (Ms,5)
< (Ms,1) < (M3,2) < (Ms,3) < (Ms,4) < (Ms,5)

the timeline associated with Figure 4 (notice that we consider that a month is made of
4 weeks). The initial stage (My,5) corresponds to the additional stage (s, f) in (21). The
stages (Mi,5) and (Ms,5) both represent the “end of the month” when a consumption
decision (slow scale decision u$ on the bottom line of Figure 4) is taken.

We now illustrate how the crude oil procurement problem can be put in the form of a
two time scale optimization problem such as presented in §4.1. For this purpose, we proceed
to the identifications in Table 1.

We call s—buffer (resp. s~ —buffer), the temporary stock that is created at the beginning
of the month s (resp. s7) and that will be delivered two months after. For instance, in
Figure 4, the yellow disks represent the M; —buffer and the red disks represent the My—buffer.

We introduce the state variable 3:?2 n= (s’ —buffer, s—buffer, refinery stocks) , together with
the accumulation dynamics ]-"(5; n for the buffers, and the accumulation dynamics F; for the
stocks. Supposing that the products prices are independent month by month, we represent
this assumption by a family of constant kernels {p%, .} 5\(s)° By contrast, we do not assume
that the crude prices are independent week by week, and the possible dependency is modeled
by stochastic kernels p?i,f):(s,f)"’ for f € F\{f}.
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Notations from §4.1 Crude oil procurement
S set of months during which we manage the refinery;
in Figure 4, S = {M;, My, M3}
F set of weeks in each month;
in Figure 4, F = {1,2,3,4,5}
U3 set of crude oil consumptions during the month s
o set of product prices for the month s
?2 N set of crude shipments purchased in week (s, f)
W?g 0t set of crude oil prices in week (s, f)
(Si n accumulation of shipments purchased in (s, f)
F delivery of orders and consumption of crude oil for the month s™
A, operational costs during the month s
(crude oil purchases during s - earnings from production)
Ay, end cost associated with the state z3,, = xf]{@ﬁ)
valuation of the buffers and stocks in the refinery
before the beginning of the month M,

Table 1: Identification of the elements introduced in §4.1 with elements of the crude oil
procurement problem

Now that all the elements from §4.1 have been identified, Proposition 9 enables us to
write a dynamic programming equation such as (30) at the scale of the month, without
losing the time-dependency of crude prices inside the month. This illustration stems from a
research work done in partnership with TotalEnergies, in the context of a PhD thesis [§].

5 Conclusion and perspectives

As said in the introduction, decomposition methods are appealing to tackle multistage
stochastic optimization problems, as they are naturally large scale. The most common
approaches are time decomposition (and state-based resolution methods, like stochastic dy-
namic programming, in stochastic optimal control), and scenario decomposition (like pro-
gressive hedging in stochastic programming).

This paper is part of a general research program that consists in mizing different decom-
position bricks. Space decomposition methods have been investigated in [1] and [4]. Here,
we have tackled the issue of using time blocks decomposition in such a way that stochas-
tic dynamic programming is used at the slow time scale with an appropriate white noise
assumption, whereas stochastic programming methods such as progressive hedging can be
used at the fast time scale where such an independence assumption does not hold. This
approach paves the way of mixing time decomposition with scenario decomposition. For this
purpose, we have revisited the notion of state, and have provided a way to perform time
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decomposition but only across specified time blocks.

Acknowledgements. We thank Roger Wets for fruitful discussions about the possibility
of mixing stochastic dynamic programming with Progressive Hedging.

A Technical details and proofs

We introduce the notations

t
W, =][W,, 0<r<t<T,

S=T

t
Ur;t:HUS,OSTStST—l (36)

s=r

Let 0 <r <s<t<T. From a history h; € H;, we can extract the (r:s)-history uncertainty
part
[ht];‘yg:(wﬂ"'aws):wr:sewr:sa OSTSSSta (373)

the (r:s)-history control part (notice that the indices are special)

[ht]gs = (urfla R 7u571)

= Up_1:5-1 € Ur—lzs—l ) I<r<s<t. (37b)

Flows Let r and ¢ be given such that 0 < r <t < T. For a (r:t — 1)-history feedback
Y= {Ys}teer..s1 € [ri—1, we define the flow @, by

¢?‘/Zt . HT X Wr—i—l:t — Ht
(hr> wr+1:t) = <hra ’Vr(hr)a Wy+1,
Yr+1 (hT7 ’}/T(hT)7 w’f‘+1) y Wr42,

Y1 (hee), wt) . (38a)
Otherwise stated, the flow is given by
cbz:t(h‘rv wTJrl:t) = (hh Upy Wr1s Up41, Wr42, - -+ Up—1, wt) ) (38b)
with hg = (hp, Up, Wygq, .oy U1, W), T <8< T, (38¢)
and us = vs(hs), r<s<t—1. (38d)

When 0 <r =t <7, weput @), :H, = H,, h, — h,. With this convention, the expression
), makes sense when 0 < r <t < T. The mapping ®], gives the history at time ¢ as a

r:t
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function of the initial history A, at time r and of the history feedbacks {7s},_, , | € Iy
An immediate consequence of this definition are the flow properties:
q)zztﬂ (Prs Wri1:41)
= (q)z:t(hrawr—&-l:t)v%(q)z:t(hrawr-i-l:t))awt+1> 5
0<r<t<T-1, (39a)
D (b, Wri1:4)
= &) 1 (A, v (By) s Wyg1), W) , 0< T <t <T. (39b)

Definition 10 Let r and t be given such that 0 <r <t <T.

o When0 <r <t<T, fora(r:t—1)-history feedback v = {7Vs}.cp.; 1y € L'ra—1, and for
a family {ps—1:s},,1<5<; Of stochastic kernels ps_1.s : Hy_1 — A(WJ , s € [r+1,1],
we define a stochastic kernel pl, : H, — A(H,) such that, for any numerical function
¢ € LY (Hy, 3,)°, we have that

/H P(H ) PR ) (40)

o )
Wri1:t

t
H ps—l:s(dws | q):;sfl(hru wr—l—l:s—l)) .

s=r+1

o When 0 <r=1t<T, wedefine pl, : H, — A(H,) by pl..(dh.|h.) = 0. (dh.).

The stochastic kernels p).,, on Hj, given by (40), are of the form p/,(dhy | h,) = p),(dhl dR!_ ., | hy) =
On, (dh.)®o,., (dh, ., | hy), where, for each h, € H,, the probability distribution o,( dh!_ ., | h,)
only charges the histories visited by the flow from r+1 to ¢. The construction of the stochas-

tic kernels p)., is developed in [3, p. 190] for relaxed history feedbacks and obtained by using

[3, Proposition 7.45].

-----

property:

oL (dh, ) = / posri(duwess | hy) (41)

Wst1

p:serl:t ( dh:‘,

(hes o) wasn) ) Vs <t

Sspace of universally measurable nonnegative numerical functions over H,: see Footnote 2
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Proof. Let s < t. For any ¢ € LY (H;, H;), we have that
JECRAWEHETATS (422)
t

:/ @(@Z:t(h& ws—i—l:t))
W5+1:t
t

H Ps'—1:s' ( dws’

s'=s+1

= / @((DZ:t(hSa ws—i—l:t))ps:s—i-l ( dwsiq ‘ hs)
W5+1:t

)y (hs, ws+1:s’—1)) (by Definition (40))

t
H Ps'—1:s' ( dws’

§'=542
= / @((DZJrl;t ((hsa ’Ys(hs)a ws—i—l)a ws+2:t))
W5+1:t

Psis+1 ( dws 41 | hs)

t
H Ps'—1:s' ( dws’

§'=s+2

:/ ps:s+1(dws+1 ’ hs)
W5+1

/ (p(q)z+1:t((h8778(h8)7w5+1)7w5+2:t))
Wst2:t

(I)Z:s’—l(h57 ws+1:s’—1))

O), 11 ((hsyYs(he), wes1), werai9—1))  (by the flow property (39b))

‘I’Z+1:s/_1 ((hsa 'Ys(hs)a ws—l—l)a ws+2:s’71))

t
H Ps'—1:s' ( dws’

s'=s+2
(by Fubini Theorem [7, p.137])

= / Psis+1 ( dwst1 ‘ hs) / @((h{y PYS(h;)a w;—l—l)? h;—i-?:t)
Wst1

H
p’serl;t(dh:S ‘ (hs,vs(hs), ws-i—l)) (by Definition (40))
= [ ol ). )
H
/W pS:s+1(dw5+1 ‘ hs)pZJrl:t(dh; ’ (hs,s(hs), ws+1)) (42Db)
s+1

by Fubini Theorem. As the two expressions (42a) and (42b) are equal for any ¢ € L9 (Hy, H;), we
deduce the flow property (41). O

Proof of Theorem 1 We only give a sketch of the proof, as it is a variation on different
results of [3], the framework of which we follow.
Proof. We take the history space H; for state space, and the state dynamics

S (hesue,wesr) = (hey ug, wig1) = hygr € Hygn = Hy X Up x Wiy (43)
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Then, the family {ps—1:s} 17y of stochastic kernels (1) gives a family of disturbance kernels that
do not depend on the current control. The criterion to be minimized (2) is a function of the history
at time 7', thus of the state at time 7. The optimization problem defined by the associated value
function (3) is thus a finite horizon model with a final cost and we are minimizing over the so-called
state-feedbacks. Then, the proof of Theorem 1 follows from the results developed in Chap. 7, 8
and 10 of [3] in a Borel setting. Since we are considering a finite horizon model with a final cost,
we detail the steps needed to use the results of [3, Chap. 8|.

The final cost at time T" can be turned into an instantaneous cost at time T'— 1 by inserting the
state dynamics (43) in the final cost. Getting rid of the disturbance in the expected cost by using
the disturbance kernel is standard practice. Then, we can turn this non-homogeneous finite horizon
model into a finite horizon model with homogeneous dynamics and costs by following the steps of [3,
Chap. 10]. Using [3, Proposition 8.2], we obtain that the family of optimization problems defined
by the associated value functions (3), when minimizing over the relaxed state feedbacks, satisfies
the Bellman equation (6); we conclude with [3, Proposition 8.4] which covers the minimization over
state feedbacks. O

To summarize, Theorem 1 is valid under the general Borel assumptions of [3, Chap. §]
and with the specific (F'~) assumption needed for [3, Proposition 8.4]; this last assumption
is fulfilled here since we have assumed that the criterion (2) is nonnegative.

Proof of Proposition 3
Proof. Let ¢; : Xy — [0,+00] be a given measurable nonnegative numerical function, and
let Ot : H; — [O, +OO] be
ot =@roby. (44)
Let ¢, : H, — [0, +00] be the measurable nonnegative numerical function obtained by applying the
Bellman operator B, across (t:7) (see (9)) to the measurable nonnegative numerical function ¢;:

©r = Bt:r‘;ot = Br+1:r ©--+0 Bt:t—lSOt . (45)

We show that there exists a measurable nonnegative numerical function ¢, : X, — [0, 4o00] such
that

or = Proby . (46)

First, we show by backward induction that, for all s € {r,...,t}, there exists a measurable
nonnegative numerical function @, such that ¢s(hs) = @4(0r(hy), hri1:5). Second, we prove that
the function @, = p, satisfies (46).

e For s = t, we have, by (44) and by (7c), that pi(h) = @4 (Ht(ht)) = cﬁt(frzt(Hr(hr), hr+1:t)),
so that the measurable nonnegative numerical function @, is given by @ o fr.+.

e Assume that, at s + 1, the result holds true, that is, @si1(hst1) = Py (Or(hr), hrgiis41)-

29



Then, by (45),

@s(hs) - (Bs—&-l:s(ﬁs—i-l)(hs)

= inf / Ps+1 ((hs, Us, ws+1))ps:s+1( dwst1 | hs)
us€Us WS+1

(by definition (5) of the Bellman operator)

= inf @54-1 ((Hr(hr)y (hT+1187 Us, ws—i—l)))
us€Us Woi1

Ps:s+1(dwsi | hs) (by the induction assumption)

= inf / Det1 ((Hr(hr)y (hr+1137 Us, ws—i—l)))
W1

us€Us
ﬁs:s+l ( dws+1 ‘ (er(hr)a hrJrl:s))
(by compatibility (8) of the stochastic kernel)

- @s (gr(h'r’)y hr+1:s) ’
where

Ps (l‘ra hr+1:s) = ulrelfg /V\\/ ¢5+1 ((xra (hr+1:sa Us, ws+1)))
s s s+1

,bvs:s—l—l ( dws+1 | (xm hr—|—1:s)) .

Thus, we have shown that the result holds true at time s.

The induction implies that, at time r, the expression of ¢, (h,) is ¢r(hy) = @,.(0-(hy)), since the
term hyy1., vanishes. Choosing ¢, = 9, gives the expected result. O
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