Non-Asymptotic behaviour of the spectrum of the Sinc Kernel Operator and Related Applications - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Physics Année : 2021

Non-Asymptotic behaviour of the spectrum of the Sinc Kernel Operator and Related Applications

Résumé

Prolate spheroidal wave functions have recently attracted a lot of attention in applied harmonic analysis, signal processing and mathematical physics. They are eigenvectors of the Sinc-kernel operator Qc : the time-and band-limiting operator. The corresponding eigenvalues play a key role and it is the aim of this paper to obtain precise non-asymptotic estimates for these eigenvalues, within the three main regions of the spectrum of Qc. This issue is rarely studied in the literature, while the asymptotic behaviour of the spectrum of Qc has been well established from the sixties. As applications of our non-asymptotic estimates, we first provide estimates for the constants appearing in Remez and Turàn-Nazarov type concentration inequalities. Then, we give an estimate for the hole probability, associated with a random matrix from the Gaussian Unitary Ensemble (GUE).
Fichier principal
Vignette du fichier
BJK2018-04-03.pdf (230.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01756828 , version 1 (03-04-2018)

Identifiants

Citer

Aline Bonami, Philippe Jaming, Abderrazek Karoui. Non-Asymptotic behaviour of the spectrum of the Sinc Kernel Operator and Related Applications. Journal of Mathematical Physics, 2021, 62, pp.033511. ⟨10.1063/1.5140496⟩. ⟨hal-01756828⟩
157 Consultations
428 Téléchargements

Altmetric

Partager

More