
HAL Id: hal-01756828
https://hal.science/hal-01756828

Submitted on 3 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Asymptotic behaviour of the spectrum of the Sinc
Kernel Operator and Related Applications

Aline Bonami, Philippe Jaming, Abderrazek Karoui

To cite this version:
Aline Bonami, Philippe Jaming, Abderrazek Karoui. Non-Asymptotic behaviour of the spectrum
of the Sinc Kernel Operator and Related Applications. Journal of Mathematical Physics, 2021, 62,
pp.033511. �10.1063/1.5140496�. �hal-01756828�

https://hal.science/hal-01756828
https://hal.archives-ouvertes.fr


NON-ASYMPTOTIC BEHAVIOUR OF THE SPECTRUM OF THE SINC

KERNEL OPERATOR AND RELATED APPLICATIONS.

ALINE BONAMI, PHILIPPE JAMING, AND ABDERRAZEK KAROUI

Abstract. Prolate spheroidal wave functions have recently attracted a lot of attention in applied
harmonic analysis, signal processing and mathematical physics. They are eigenvectors of the Sinc-
kernel operator Qc : the time- and band-limiting operator. The corresponding eigenvalues play
a key role and it is the aim of this paper to obtain precise non-asymptotic estimates for these
eigenvalues, within the three main regions of the spectrum of Qc. This issue is rarely studied in the
literature, while the asymptotic behaviour of the spectrum of Qc has been well established from
the sixties. As applications of our non-asymptotic estimates, we first provide estimates for the
constants appearing in Remez and Turàn-Nazarov type concentration inequalities. Then, we give
an estimate for the hole probability, associated with a random matrix from the Gaussian Unitary
Ensemble (GUE).

1. Introduction

The aim of this paper is to give precise non-asymptotic estimates to the eigenvalues associated
with the prolate spheroidal wave functions (PSFWs). They are defined as the eigenvectors of the
time and band-limiting operator given by the sinc-kernel

Qcf(x) =

∫ 1

−1

sin c(y − x)

π(y − x)
f(y) dy.

Here, we recognize the Sinc convolution kernel which is the reproducing kernel of the Paley-Wiener
space of c−bandlimited functions. From another perspective, this kernel is the well-known Dyson
Sine kernel which is related to the Wigner-Mehta-Dyson universality conjecture about the local
statistics of the eigenvalues of random Wigner matrices. The eigenvalues

(
λn(c)

)
n
corresponding

to Qc play important roles in a wide range of scientific area such as signal processing, mathematical-
physics, random matrices, numerical analysis including spectral methods, etc.

The PSFWs have been introduced into signal processing in the work of Landau, Pollak and
Slepian [15, 16, 22]. They provide an orthonormal basis of the Paley-Wiener space that is opti-
mally concentrated in the time domain. One striking result in this field is that Ω-band limited
functions that have their energy concentrated in an interval of length T are well represented by the
its expansion restricted to the first 4ΩT coefficients in that basis. The heuristics of this result is
predicted by Shannon’s sampling theorem. Lately, the PSWFs have been used in numerical analysis
[28], including the numerical schemes for solving certain PDEs (see e.g. [26]).

For random matrices, Dyson [6], (see also the work of de Cloizeaux and Mehta [4, 18]) showed that
the repulsion between eigenvalues of the Gaussian unitary ensemble (the GUE) could be described
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asymptotically in terms of the determinantal point process associated with the sine kernel. In
particular, it is well known, see for example [18, 25] that if Mn is an n × n random matrix from
the GUE and if An =

√
nMn is the fine scaled version of Mn, and if En

2 (0, c) is the probability that
there is no eigenvalues of An in an interval of length πc and located near the centre of the bulk
region of the spectrum, then En

2 (0, c) converges as n→ +∞ to the Fredholm determinant

(1.1) E2(0, c) = det(Id−Qπc/2) =
∞∏

j=0

(
1− λj

(
πc/2

))
.

For more details on the contributions of the PSWFs on these and other applications, the reader is
refereed to [9] and the relevant references therein.

Nowadays, there exists a rich literature devoted to the asymptotic behaviour as well as the nu-
merical computation of the eigenvalues

(
λn(c)

)
n
, to cite but a few [3, 7, 12, 13, 23, 27]. These

works show that the eigenvalues exhibit three kinds of behaviours, defined by the following three

distinct regions of the spectrum via a critical index nc =
2

π
c:

• The slow evolution region, where for nc − n & log(c), the change in the λn(c)’s is very slow. For
most of the values of these n, we have λn(c) ≈ λ0(c) ≈ 1 when c is large enough.

• The fast decay region, where for n−nc & log(c) we have λn(c) → 0 at a super-exponential speed.

• The plunge region, which is a transition region between the two previous ones. It is defined for
those values of n, with |n− nc| . log(c). Thus the width of this region is ≈ log(c) for c large.

Let us give more details on the literature concerning the asymptotic behaviours of the λn(c)’s
inside the three different regions. Widom in [27] has given an asymptotic formula for the super-
exponential decay rate of the λn(c). Moreover, Fuchs in [7] has shown that for fixed integer n ≥ 0,
the eigenvalue λn(c) converges to 1 at an optimal exponential rate. Also, Landau and Widom in
[17] have given a precise asymptotic estimate, valid for c≫ 1 of the number of eigenvalues lying in
the plunge region. As a consequence of this estimate, one also has an asymptotic estimate for the
eigenvalues decay inside the plunge region, as well as a precise estimate of the width of this region.
More details on these different asymptotic results will be given in the next section.

Later on, we study in more details each of the previous regions. In particular, we give some
precise details on the slow, medium and rapid changes in the spectrum, along the previous three
regions.

While the knowledge of the asymptotic behaviour of the λn(c)’s (either with respect to n or with
respect to c for fixed n) is sufficient in some applications, recent applications of the PSWFs require
the knowledge of a non-asymptotic behaviour of the λn(c)’s within the previous regions of the
spectrum. This issue is rarely explored in the literature. Recently, Israel and Osipov in [10, 21]
provided some non-asymptotic behaviours of the spectrum in a neighbourhood of the plunge region.
More precisely, in [21], the author has shown that

|Λε| ≤
2c

π
+K(log c)2,
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where K is a constant independent of c and ε. Recently, in [10], an improved non-asymptotic
estimate of the eigenvalues λn(c) in the gauge

Λ′
ε = {k ∈ N : ε < λk(c) ≤ 1− ε}, ε ∈ (0, 1/2),

has been recently given. More precisely, it is shown in [10] that for each η ∈ (0, 1/2],

|Λ′
ε| ≤

2c

π
+Kη

(
log(log(c) · ε−1)

)1+η · log(c · ε−1),

for some constant Kη, depending only on η. The present work is a new contribution in the direction
of the non-asymptotic behaviours of the spectrum of Qc within its three distinct regions and not
only in the neighbourhood of the plunge region.

Let us now describe the results of this paper. The first part of the paper consists in obtaining
new and rather sharp estimates of the decay rate of the λn(c)’s. Our main result in this direction
may be summarized as follows:

Theorem. Under the previous notation, we have:

— For any c > 0 and any 0 ≤ n <
2c

2.7
,

(1.2) 1− 7√
c

(2c)n

n!
e−c ≤ λn(c) < 1.

— For any c ≥ 22 and η = 0.069, we have, for
2c

π
+ log c+ 6 ≤ n ≤ c,

(1.3) λn(c) ≤
1

2
exp

(
−η

(
n− 2c

π

)

log c+ 5

)
.

— For any c > 0 and any n ≥ max
(ec
2
, 2
)
,

(1.4) λn(c) ≤ exp

(
−(2n+ 1) log

2

ec
(n+ 1)

)
.

The actual results are slightly more precise. The result (1.2) is obtained by exploiting the
min-max theorem tested on Hermite functions. The second form of the min-max theorem also
allows to derive (1.4). A more precise estimate can be obtained at the price of much more involved
computations by exploiting our previous work [3]. This method can be pushed almost to the plunge
region and leads to (1.3).

In the second part of this paper, we exploit these bounds in two directions. First, for ǫ > 0, we
consider the best constant Γ2(n, ε) in Remez type inequalities: for every polynomial P of degree at
most n, ∫

[−ε/2,ε/2]
|P (eit)|2 dt ≥ Γ2(n, ε)

∫

[−π,π]
|P (eit)|2 dt.

We show that 2λn(c) ≥ Γ2

(
n, 2c/(n + 1)

)
from which we deduce a new upper bound for Γ2. Also,

we give a lower bound for the constant A appearing in the Turàn-Nazarov concentration inequality
that relates for 0 ≤ q ≤ 2, the two quantities ‖P‖Lq(E) and ‖P‖Lq(T), where P is a trigonometric
polynomial over the torus and E is a measurable subset of T.

Finally, we use our lower bound of the λn(c)’s, given by (1.2), and give an estimate of the hole
probability E2(0, c), given by (1.1).
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The remaining of the paper is organized as follows. In the next section, we introduce the necessary
notation and mathematical preliminaries that we will use. Section 3 is devoted to results that we
obtain through the min-max principle while Section 4 is devoted to the precise estimates of λn(c)
built on our previous work. Finally Section 5 is devoted to the applications of those estimates.

2. Mathematical Preliminaries

2.1. Notation. As precise constants are computed, it is important to be precise with the normal-
izations used in this paper. The Fourier transform is defined for f ∈ L1(R) ∩ L2(R) by

f̂(ξ) := F [f ](ξ) :=

∫

R

f(x)e−ixξ dx.

Parseval’s theorem then reads ∫

R

|f(x)|2 dx =
1

2π

∫

R

|f̂(ξ)|2 dξ

and Fourier inversion when f̂ ∈ L1(R) reads

f(x) =
1

2π

∫

R

f̂(ξ)eixξ dξ := F−1[f̂ ](x).

The operators F and F−1 are then extended to L2(R) in the usual way. We then consider the
time-band limiting operator Qc, c > 0 as

Qcf = 1[−1,1]F
[
1[−c,c]F−1[1[−1,1]f ]

]

when seen as an operator L2(R) → L2(R) or simply Qcf = F−1
[
1[−c,c]F [f ]

]
when seen as an

operator L2([−1, 1]) → L2([−1, 1]). Note also that, applying Parseval’s identity, ‖Qcf‖L2(−1,1) ≤
‖f‖L2(−1,1). It is not hard to see that this operator is given as a Hilbert-Schmidt operator via a

sinc-kernel

Qcf(x) =

∫ 1

−1

sin c(y − x)

π(y − x)
f(y) dy.

We define the finite Fourier transform Fc : L2([−1, 1]) → L2([−1, 1]) as

Fc[f ](x) =

∫ 1

−1
f(y)e−icxy dy = F [1[−1,1]f ](cx)

and then F∗
c : L2([−1, 1]) → L2([−1, 1]) is given by

F∗
c [g](x) =

∫ 1

−1
g(y)eicxy dy.

A simple computation then shows that Qc =
2c
π F∗

cFc. This shows that Qc is self-adjoint, positive
and compact. Its eigenvalues (λn(c))n≥0 are then arranged as follows,

1 ≥ λ0(c) > λ1(c) > · · · > λn(c) > · · ·
In [22], D. Slepian and H. Pollack have pointed out the crucial property that the operator Qc

commutes with a Sturm-Liouville operator Lc, defined on C2([−1, 1]) by

(2.1) Lc(ψ) = − d

dx

[
(1− x2)

dψ

dx

]
+ c2x2ψ.
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Consequently, both operators have the same infinite and countable set of eigenfunctions ψn,c(·), n ≥
0, called prolate spheroidal wave functions (PSWFs). The eigenvalues of the differential and integral
operators Lc and Qc are denoted by χn(c) and λn(c), so that for any integer n ≥ 0, we have

(2.2) Lc(ψn,c)(x) = χn(c)ψn,c(x), Qc(ψn,c)(x) = λn(c)ψn,c(x), x ∈ [−1, 1].

Note that the eigenvalues χn(c) and λn(c) are simple. Moreover, a straightforward application of
the variational formulation of the eigenvalues of the self-adjoint operator Lc shows that

(2.3) n(n+ 1) = χn(0) ≤ χn(c) ≤ n(n+ 1) + c2, n ≥ 0.

For more details, see [22]. Also, note that in the special case c = 0, the ψn,c are reduced to the
well-known Legendre polynomials Pn.

Since λn(c) is the n + 1-th eigenvalue of Qc, the min-max theorem asserts that for I = [−1, 1],
we have

(2.4) λn(c) = min
Sn

max
f∈S⊥

n

〈Qcf, f〉L2(I)

‖f‖2
L2(I)

= min
Sn

max
f∈S⊥

n

2c

π

〈Fcf,Fcf〉L2(I)

‖f‖2
L2(I)

,

where Sn is a set of n-dimensional subspaces of L2(I). On the other hand, for f ∈ L2(R),

〈Qcf, f〉L2(I) =
〈
F
[
1(−c,c)F−1[1(−1,1)f ]

]
,1(−1,1)f

〉
L2(R)

=
1

2π

〈
1(−c,c)F−1[1(−1,1)f ],F−1[1(−1,1)f ]

〉
L2(R)

=

∥∥F−1[1(−1,1)f ]
∥∥2
L2(−c,c)

2π
.

Thus, if we identify Sm with the set of m-dimensional subspaces of the subspace of L2(R) consisting
of functions with support in [−1, 1], then the min-max Theorem implies that

λn(c) = sup
V ∈Sn+1

min
f∈V \{0}

∥∥F−1[1(−1,1)f ]
∥∥2
L2(−c,c)

2π
∥∥1(−1,1)f

∥∥2
L2(R)

= sup
V ∈Vn+1(1)

min
g∈V \{0}

‖g‖2L2(−c,c)

‖g‖2L2(R)

where Vm(a) is the set of m-dimensional subspaces of the Paley-Wiener space of a−bandlimited
functions

Ba := {g = F−1[f ] : f ∈ L2(R), Supp f ⊂ [−a, a]}.
Let g ∈ B1 and gc(x) = c1/2g(cx). Then ‖gc‖L2(R) = ‖g‖L2(R), ‖gc‖L2(−1,1) = ‖g‖L2(−c,c) and

gc = F−1[fc] where fc(y) = c−1/2f(y/c) ∈ L2(R) with support in [−c, c], thus gc ∈ Bc. We thus get

(2.5) λn(c) = sup
V ∈Vn+1(c)

inf
f∈V \{0}

‖f‖2L2(−1,+1)

‖f‖2
L2(R)

, n ≥ 0.

In particular, λ0(c) is the largest constant such that the inequality

C‖f‖2L2(R) ≤ ‖f‖2L2(−1,1)

holds for some c-band limited function f .
A compacity argument shows that there exists f0 ∈ Bc \ {0} such that λ0(c)‖f0‖2L2(R) ≤

‖f0‖2L2(−1,1). But then λ0(c) = 1 would imply that f0 is supported in [−1, 1] which is impossi-

ble since f0 6= 0 is band-limited thus an entire function. As a consequence, λ0(c) < 1.
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2.2. Previous estimates on λn(c). In the sequel, we denote by K and E, the elliptic integrals of
the first and second kind, given respectively, by

(2.6) K(t) =

∫ 1

0

ds√
(1− s2)(1 − s2t2)

E(t) =

∫ 1

0

√
1− s2t2

1− s2
ds, 0 ≤ s ≤ 1.

We first recall from the literature, some decay results of the sequence of the eigenvalues (λn(c))n.
The first asymptotic behaviour of these eigenvalues has been given by Widom, see [27],

(2.7) λn(c) ∼
(

ec

4(n+ 1
2 )

)2n+1

= λWn (c).

An important result that describes the asymptotic behaviour of the spectrum inside its slow evo-
lution region and plunge region, is given by the following Landau-Widom asymptotic eigenvalues
counting formula. More precisely, for ε ∈ (0, 1/2), let

Λε = {k ∈ N : λk(c) ≥ ε}, ε ∈ (0, 1/2).

Then, in [17], the authors have shown that for c≫ 1, we have

(2.8) |Λε| =
2c

π
+

1

π2
log

(
1− ε

ε

)
log(c) + o(log c).

On the other hand,Fuchs in [7] has shown that in the slow evolution region of the spectrum, for a
fixed integer n ≥ 0, the eigenvalue λn(c) converges exponentially to one, with respect to c. More
precisely, Fuchs asymptotic formula states that

(2.9) 1− λn(c) ∼ 4
√
π
8n

n!
cn+1/2e−2c, c≫ 1.

Recently, in [3], the authors have given a precise explicit approximation formula for λn(c), which
is valid for πn

2 − c larger than some multiple of lnn. This formula gives also the precise asymptotic
super-exponential decay rate of the spectrum of Qc. More precisely, let us denote by Φ the inverse
of the function Ψ : t 7→ t

E(t) , then this approximation formula is given by

(2.10) λn(c) ∼ λ̃n(c) =
1

2
exp


−π

2(n+ 1
2)

2

∫ 1

Φ

(

2c

π(n+1
2 )

)

1

t(E(t))2
dt


 .

As a consequence, from Corollary 3 of [3], there exist three constants δ1 ≥ 1, δ2, δ3,≥ 0 such that,
for n ≥ 3 and c ≤ πn

2 ,

(2.11) A(n, c)−1

(
ec

2(2n + 1)

)2n+1

≤ λn(c) ≤ A(n, c)

(
ec

2(2n + 1)

)2n+1

.

with

A(n, c) = δ1n
δ2

(
c

c+ 1

)−δ3

e+
π2

4
c2

n .

Moreover from Proposition 4 of [11], we have the following lower decay rate of the λn(c),

(2.12) λn(c) ≥ 7

(
1− 2c

nπ

)2 ( c

7πn

)2n−1
, n >

2

π
c.

This lower decay rate is obtained by combining the Min-Max characterization of the λn(c), and the
Turàn-Nazarov concentration inequality [19].
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3. Min-Max technique and non-asymptotic behaviour of the spectrum of the Sinc

kernel operator.

In this section, we first give a simple proof of a fairly tight upper bound of the super-exponential
decay rate of the eigenvalues of the Sinc-kernel operator. This simple proof is based on the use
of the Min-Max characterisation of the eigenvalues of a self-adjoint compact operator. Then, this
last technique is used to provide us with a lower bound of the eigenvalue λn(c), with n ≥ 0 not
too large. We should mention that this Min-Max theorem based method has the advantage to be
relatively simple to apply. Nonetheless, when used to estimate the super-exponential decay rate of
the λn(c), this method has the drawback to be valid only sufficiently far from the plunge region
around nc =

2c
π . This is given by the following theorem.

Theorem 3.1. Let c > 0 be a real number, then for any integer n ≥ max
(
2, ec2

)
, we have

(3.1) λn(c) ≤ exp

[
−(2n+ 1) log

(
2

ec
(n+ 1)

)]
.

Proof. Recall from (2.4) that

λn(c) = min
Sn

max
f∈S⊥

n

〈Qcf, f〉
‖f‖2

L2(I)

= min
Sn

max
f∈S⊥

n

2c

π

〈Fcf,Fcf〉
‖f‖2

L2(I)

,

where the Sn are n−dimensional subspaces of L2(I).
Recall that the Legendre polynomials normalized by Pn(1) = 1 are defined by the Rodrigues

formula

Pn(x) =
1

2nn!

dn

dxn
(1− x2)n

and that, if we renormalize them by P̃k =
√
k + 1/2Pk, then P̃n, n ≥ 0 form an orthonormal basis

of L2(I). We will take the following special choice of Sn in (2.4):

Sn = Span{P̃0, . . . , P̃n−1}.

Hence, if f ∈ S⊥
n , then f =

∞∑

k=n

akP̃k. We may assume that ‖f‖2L2(I) = 1, so that

∞∑

k=n

a2k = 1. It

follows that

Fcf =

∞∑

k=n

√
k + 1/2akFcPk(x)

and

‖Fcf‖ =

∞∑

k=n

√
k + 1/2|ak|‖FcPk‖ ≤

( ∞∑

k=n

|ak|2
)1/2( ∞∑

k=n

(k + 1/2)‖FcPk‖2
)1/2

≤
( ∞∑

k=n

(k + 1/2)‖FcPk‖2
)1/2

.

Combining this with (2.4), we obtain

(3.2) λn(c) ≤
2c

π

∞∑

k=n

(k + 1/2)‖FcPk‖2.



8 ALINE BONAMI, PHILIPPE JAMING, AND ABDERRAZEK KAROUI

On the other hand, it is known that, see for example [20]

(3.3) FcPk(x) =

∫ 1

−1
eicxyPk(y) dy = ik

√
2π

cx
Jk+ 1

2
(cx), x ∈ I,

where Jα is the Bessel function of the first type and order α > −1.
Further, the Bessel function Jα has the following fast decay with respect to the parameter α,

|Jα(z)| ≤
∣∣z
2

∣∣α

Γ(α+ 1)
,

where Γ(·) is the Gamma function (see e.g. [20]). Combining this with the classical estimate of the
Gamma function

Γ(x+ 1) ≥
√
2e

(
x+ 1

2

e

)x+ 1
2

we obtain

|Jk+1/2(cx)|2 ≤ 1

2(k + 1)

(
ec

2(k + 1)

)2k+1

|x|2k+1.

From this, we deduce that

‖FcPk‖2 ≤
π

c(k + 1)

(
ec

2(k + 1)

)2k+1 ∫ 1

−1
|x|2k dx =

2π

c(k + 1)(2k + 1)

(
ec

2(k + 1)

)2k+1

.

Injecting this into (3.2), we obtain

λn(c) ≤ 2

∞∑

k=n

1

(k + 1)

(
ec

2(k + 1)

)2k+1

≤ 2

(n+ 1)

∞∑

k=n

(
ec

2(k + 1)

)2k+1

.

We recall that ec ≤ n so that for k ≥ n,
(

ec

2(k + 1)

)2k+1

≤
(

ec

2(n+ 1)

)2n+1( n

2(n + 1)

)2(k−n)

.

So we have

λn(c) ≤
2

n+ 1

(
ec

2(n + 1)

)2n+1 ∞∑

k=n

(
n

2(n + 1)

)2(k−n)

≤
(

ec

2(n + 1)

)2n+1

as claimed. �

In the remaining of this section, we use a second version of the Min-Max theorem to get some

fairly precise lower bound for the first eigenvalues λ0(c), . . . , λn(c) when n ≤ c

2.7
.

Theorem 3.2. For n an integer such that 0 ≤ n ≤ c

2.7
, we have

(3.4) λn(c) ≥ 1− 7√
c

(2c)n

n!
e−c.

Proof. In order to prove the theorem, we need some notation. Let Πc be the projection from L2(R)

on Bc i.e. Πcf = F−1
[
1(−c,c)F [f ]

]
, and Π̃c = I − Πc the projection on the orthogonal of Bc. Let

Hn be the n-th Hermite polynomial given by

Hn(t) = (−1)net
2 dn

dtn
(
e−t2

)
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and ϕn(t) = αnHn(t)e
−t2/2 with αn =

1

π1/42n/2
√
n!
. It is then well known that (ϕn)n∈N is an

orthonormal basis of L2(R) of eigenfunctions of the normalized Fourier transform, 1√
2π
F [ϕn] =

i−nϕn. Further, we check the following probably known result

(3.5) |Hn(x)| ≤ 2n|x|n, ∀ |x| ≥
√
2n− 2.

From the parity of the Hermite polynomials, it suffices to check the previous inequality for x ≥√
2n− 2. It is well known that if zi denotes the largest zero of the Hermite polynomial Hi(x), then√

2n− 2 ≥ zn > zn−1 > · · · > z1 = 0.

We prove by induction that |Hn(x)| ≤ 2n|x|n for x > zn. This is valid for H1(t) = 2t. Then,
assuming that it is valid for k − 1 and since H ′

k(x) = 2kHk−1(x), the inequality for Hk follows

immediately from the fact that Hk(x) = 2k

∫ x

zk

H ′
k−1(t)dt.

Hence, by using (3.5), one gets

(3.6) |ϕn(t)| ≤
2n/2

π1/4
√
n!
|t|ne−t2/2, ∀ |t| ≥

√
2n− 2.

Next, we note that for α > 1 and a >
√
α− 1, we have

(3.7)

∫ +∞

a
tαe−t2 dt ≤ aα−1e−a2 .

In fact, under the previous conditions on a and α, the function t → tα−1e−t2/2 is decreasing on
(a,+∞) and consequently

∫ +∞

a
tαe−t2 dt ≤ aα−1e−a2/2

∫ +∞

a
te−t2/2 dt = aα−1e−a2 .

Applying (3.6), we deduce that for k ≤ a2 − 1

2
,

(3.8)

∫

|t|≥a
ϕ2
k(t) dt ≤

2k+1

π1/2k!

∫ +∞

a
t2ke−t2 dt ≤ 2k+1

π1/2k!
a2k−1e−a2 .

Next, using the fact that
∫
R
ϕ2
k(t) dt = 1, we get

(3.9)

∫

|t|≤a
ϕk(t)

2 dt ≥ 1− 2

π1/2a

(2a2)k

k!
e−a2 .

Further, we define ϕ
(c)
n (t) = c1/4ϕn(

√
ct) and note that (ϕ

(c)
n )n∈N is still an orthonormal basis of

L2(R). Let Vn(c) = Span{Πcϕ
(c)
0 , . . . ,Πcϕ

(c)
n }. From (2.5) we know that,

λn(c) ≥ inf

{
‖f‖2L2(−1,1)

‖f‖2L2(R)

: f ∈ Vn(c)

}

= inf





‖f‖2L2(−1,1)

‖f‖2L2(R)

: f =
n∑

j=0

γjΠcϕ
(c)
j ,

n∑

j=0

|γj |2 = 1



 .(3.10)

Now, take a sequence (γj)j=0,...,n with
n∑

j=0

|γj |2 = 1. Define F =
n∑

k=0

γkϕ
(c)
k and f = ΠcF .
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As Πc is an orthonormal projection on Bc, which is a closed subspace of L2(R), then we have

‖f‖L2(R) ≤ ‖F‖L2(R) =

n∑

k=0

|γj |2 = 1.

and

‖F‖2L2(R) =
∥∥∥F − Π̃cF

∥∥∥
2

L2(R)
+
∥∥∥Π̃cF

∥∥∥
2

L2(R)
, Π̃c = I −Πc.

Consequently, we have

‖f‖2L2(−1,1) = ‖ΠcF‖2L2(−1,1) =
∥∥∥F − Π̃cF

∥∥∥
2

L2(−1,1)

≥
∥∥∥F − Π̃cF

∥∥∥
2

L2(R)
−
∥∥∥F − Π̃cF

∥∥∥
2

L2
(
R\(−1,1)

)

≥ ‖F‖2L2(R) −
∥∥∥Π̃cF

∥∥∥
2

L2(R)
−
∥∥∥F − Π̃cF

∥∥∥
2

L2
(
R\(−1,1)

)

≥ 1− 3
∥∥∥Π̃cF

∥∥∥
2

L2(R)
− 2‖F‖2

L2
(
R\(−1,1)

).(3.11)

We now estimate the error terms. They will be obtained through the same computation, which
we do first for ‖F‖2

L2
(
R\(−1,1)

). We have the following inequalities.

‖F‖2
L2
(
R\(−1,1)

) =

∫

|x|>1

∣∣∣∣∣∣

n∑

j=0

γjϕ
(c)
j (x)

∣∣∣∣∣∣

2

dx =

∫

|x|>c1/2

∣∣∣∣∣∣

n∑

j=0

γjϕj(x)

∣∣∣∣∣∣

2

dx

≤
n∑

k=0

∫

|x|>c1/2
|ϕk(t)|2 dt.

We have used the inequality of Cauchy-Schwarz and the fact that

n∑

k=0

|γk|2 = 1. By using (3.6), we

obtain the inequality

(3.12) ‖F‖2
L2
(
R\(−1,1)

) ≤ 2

π1/2c1/2

n∑

k=0

(2c)k

k!
e−c.

Now, when n ≤ c
2.7 , we get

(3.13)

n∑

k=0

(2c)k

k!
≤ (2c)n

n!

∞∑

k=0

( n
2c

)k
≤ 1.23

(2c)n

n!
.

Finally, we have

(3.14) ‖F‖2
L2
(
R\(−1,1)

) ≤ 2.46

π1/2c1/2
(2c)n

n!
e−c.

Next, ∥∥∥Π̃cF
∥∥∥
2

L2(R)
=

1

2π

∥∥∥F [Π̃cF ]
∥∥∥
2

L2(R)
=

1

2π

∫

|ξ|≥c
|F [F ](ξ)|2 dξ.
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But

1√
2π

F [F ](ξ) =
1√
2π

n∑

k=0

γkF [ϕ
(c
k ](ξ)

=
n∑

k=0

c−1/4γk
1√
2π

F [ϕk](c
−1/2ξ)

=
n∑

k=0

c−1/4i−kγkϕk(c
−1/2ξ).

As we have done for the bound of ‖F‖2
L2
(
R\(−1,1)

), given by (3.14), one gets

1

2π

∥∥∥F [Π̃cF ]
∥∥∥
2

L2(R)
=

∫

|ξ|≥c

∣∣∣∣∣

n∑

k=0

c−1/4i−kγkϕk(c
−1/2ξ)

∣∣∣∣∣

2

dξ

=

∫

|η|≥c1/2

∣∣∣∣∣

n∑

k=0

i−kγkϕk(η)

∣∣∣∣∣

2

dη

≤
n∑

k=0

∫

|x|>c1/2
|ϕk(t)|2 dt ≤

2.46(2c)ne−c

π1/2
√
cn!

.

Parseval’s equality thus implies that

(3.15)
∥∥∥Π̃cF

∥∥∥
2

L2(R)
=

1

2π

∥∥∥F [Π̃cF ]
∥∥∥
2

L2(R)
≤ 2.46

(2c)ne−c

π1/2
√
cn!

.

By combining (3.15), (3.14) and (3.11), we get

‖f‖2L2(−1,1) ≥ 1− 12.3

π1/2
√
c

(2c)n

n!
e−c ≥ 1− 7√

c

(2c)n

n!
e−c.

Finally, as ‖f‖L2(R) ≤ 1, we get the desired inequality (3.4). �

Remark 1. The previous theorem gives a better estimate than Landau’s Theorem only when the
bound below, given by (3.4) is larger than 1/2. We will content ourselves to verify that the bound
below given for λn(c) has a positive sign. This is given by the following lemma.

Lemma 3.3. For any c ≥ 4 and any integer 0 ≤ n ≤ c

2.7
, we have

(3.16) 1− 7√
c

(2c)n

n!
e−c > 0.

Proof. We first rewrite the inequality (3.16) as follows

(3.17) n log(2c) − c <
1

2
log c− log 7 + log(n!).

Moreover, since n! = Γ(n + 1) and for x ≥ 0, Γ(x + 1) ≥
√
2e
(
x+ 1

2
e

)x+ 1
2
, then the previous

inequality is satisfied whenever

−c ≤ n log

(
n+ 1/2

2c

)
− n+

1

2

(
log(c(n + 1/2)) − 1 + log(2e)− 2 log 7

)
.
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Since n ≥ 0 and c ≥ 4, then elementary computations show that this last inequality holds true
whenever

n log

(
n+ 1/2

2c

)
− n > −c.

It is elementary to verify this inequality for n ≤ c
2.7 , using monotonicity of x→ x log

(
x+ 1/2

2c

)
− x

on [0, c]. We have chosen the constant 2.7 for this purpose. �

4. The Sinc kernel operator: Non-Asymptotic decay rate of the spectrum.

In this section, we need to introduce a new function related to the elliptic function E defined
in (2.6): let Φ(·) the function defined on [0, 1] as the inverse of the function t 7→ Ψ(t) = t

E(t) . We

will show that the rapid decay starts shortly after 2c
π + log c. Also, by using Landau’s asymptotic

formula for the number of eigenvalues λn(c) that are greater than a threshold 0 < ε < 1/2, we check
that our asymptotic decay rate in the previous part of the plunge region is optimal with respect to
the parameter c. We give three different statements depending on how n compares to c:

Theorem 4.1. Let c ≥ 22 be a real number, η = 0.069 and η′ = 0.12.
— For any integer n such that 2c

π + log c+ 6 ≤ n ≤ c, we have the inequality

(4.1) λn(c) ≤
1

2
exp

[
− η(n− 2c

π )

log(c) + 5

]
.

— Let 2
π ≤ δ ≤ 1. Under the assumption that n ≥ max(2cπ + log c+ 6, 2cδπ ), we have the estimate

(4.2) λn(c) ≤
1

2

(
Φ(δ)

)0.069n
.

In particular,

λn(n) ≤
1

2
e−0.015n.

— For any any integer n ≥ c such that π
2 (n− log n− 9) ≥ c, we have

(4.3) λn(c) ≤ exp
[
−η′(n− c)

]
.

Remark 2. The assumption that c ≥ 22 guarantees that there exists an integer n such that 2c
π +

log c+ 6 ≤ n ≤ c. This condition can be relaxed with the right hand replaced by 2c, for instance,
which allows to have such an estimate for smaller values of c. But the constant η is smaller.

Remark 3. In view of (4.1) one may replace the condition on n by the condition n ≥ 2c
π +δ(log c+6).

This is possible as long as δ > 2/π. As one expects, the constant η will increase with δ. This
constant is certainly far from being optimal. But the decrease in n is optimal.

Proof. We use a series of results of [2, 3]. We recall that from Theorem 2 of [2], we have

(4.4) ψn,c(1) ≥ (χn(c))
1/4
√

π

2K(
√
qn)

(
1− 3

(1− qn)
√
χn(c)

)
, qn =

c2

χn(c)
,

whenever the condition

(1− qn)
√
χn(c) ≥ 4
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is satisfied. Here, we recall that χn(c) is as given by (2.2) and satisfying (2.3). Also, from [3,
Lemma 3], the previous condition is satisfied whenever

n >
2c

π
+

2

π
(log(n) + 6) ,

or equivalently, for any

(4.5) 0 < c < c∗n :=
πn

2
− log(n)− 6.

So, under this condition, we have

(4.6) (ψn,c(1))
2 ≥ π

32

√
χn(c)

K(
√
qn)

=
π

32

c√
qnK(

√
qn)

.

Next, recall that Φ(·) denotes the inverse of the function t 7→ Ψ(t) = t
E(t) . From [2, Theorem 1],

we get

(4.7) Φ

(
2c

π(n+ 1)

)
<

√
qn < Φ

(
2c

πn

)
.

Since the function K(·) is increasing on [0, 1), we deduce from (4.6) that

(4.8)
(ψn,c(1))

2

c
≥ π

32

1

Φ
(
2c
πn

)
K
(
Φ
(
2c
πn

)) .

Note that from [13], we have λn(c
∗
n) ≤

1

2
. Moreover, from the differential equation

∂τ log(λn(τ)) = 2
(ψn,τ (1))

2

τ

and by substituting c by τ in (4.8), one gets for 0 < c < c∗n,

λn(c) ≤ 1

2
exp

(
−2

∫ c∗n

c

(ψn,τ (1))
2

τ
dτ

)

≤ 1

2
exp

(
− π

16

∫ c∗n

c

dτ

Φ
(
2τ
πn

)
K
(
Φ
(
2τ
πn

))
)

:=
1

2
exp

(
− π

16
I1,n

)
.(4.9)

At this point we fix n and c ≥ 22 such that n ≥ 2c
π + log c+6. Because of the fact that there exists

such an n which is bounded by c, for all such values of n we have the inequality c < c∗n, so that we
can use the previous formula.

To estimate the integral I1,n, we use a computational technique that we have developed in [3].

More precisely, we consider the substitution t = Φ

(
2τ

πn

)
, that is Ψ(t) =

2τ

πn
. Since Ψ′(t) =

K(t)
(
E(t)

)2 ,

see [3], then we have

I1,n =
πn

2

∫ Φ
(

2c∗n
πn

)

Φ( 2c
πn)

dt

t
(
E(t)

)2 .

We have immediately the bound below

(4.10) I1,n ≥ πn

2

Φ
(
2c∗n
πn

)
− Φ

(
2c
πn

)

(
E(Φ

(
2c
πn

)
)
)2 .
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We can replace the denominator by the constant E(Φ(2/π))−2.
Next, note that K is increasing and E is decreasing, thus Ψ′ is increasing and therefore Ψ is

convex and Φ is concave. Hence, if s < s∗ < 1, using the fact that Φ(1) = 1, we have

Φ(s∗)− Φ(s)

s∗ − s
≥ 1− Φ(s)

1− s
.

Up to now we did not use the assumption on n, which we do now. We have chosen n suffi-
ciently far from c∗n compared to the distance between c∗n and the cutoff value 2c

πn so that, when

s∗ =
2c∗n
πn

, s =
2c

πn
, one has the inequality

1− s∗

1− s
≤ 2/π.

So the previous inequality can be replaced by

(4.11) Φ(s∗)− Φ(s) ≥ (1− 2

π
)(1− Φ(s)).

It remains to prove that

(4.12) 1− Φ

(
2c

πn

)
≥ 1− 2c

πn

log c+ 5
.

Assume that x := 1− 1− 2c
πn

logn+5 , so that (4.12) can also be written as

(4.13) 1−Ψ(x) ≤ 1− 2c

πn
.

We then use Inequality (25) of [2], which we recall here:

E(x)− 1 ≤ (1− x)

(
log

(
1

1− x

)
+ 4

)
.

It follows that

(4.14) 1−Ψ(x) ≤ (1− x)

(
log

(
1

1− x

)
+ 5

)
.

We conclude for (4.13) by using the elementary inequality

log

(
1

1− x

)
= log

(
n(log c+ 5)

n− 2c
π

)
≤ log n,

which is a consequence of the assumption that n− 2c
π ≥ log c+ 5.

We have obtained (4.1) with the constant η = π2

32 × (1 − 2
π ) ×

(
E(Φ(2/π))

)−2
. The numerical

constant given in the statement is obtained from the approximations Φ(2/π) ≈ 0.8 andE(Φ(2/π)) ≈
1.276.

The proof of (4.2) is a slight modification of the last one. Instead of (4.10) we write the a priori
better estimate

(4.15) I1,n ≥ πn

2

log
(
Φ
(
2c∗n
πn

))
− log

(
Φ
(
2c
πn

))

(
E(Φ

(
2c
πn

)
)
)2 .
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The function − log(Φ(·)) is convex since Φ is concave and as before the numerator is bounded below
by (1− 2

π )(− log
(
Φ
(
2c
πn

))
. But − log

(
Φ
(
2c
πn

))
≥ − log Φ(δ). We conclude at once.

Let us finally prove (4.3). First, the condition π
2 (n− log n− 9) ≥ c is necessary to be able to use

Theorem 1 in [2]. Next, we now consider integrals from c to n. We use the same notations for the
new quantities involved. In particular (4.15) is replaced by

I1,n ≥ πn

2

log
(
Φ
(
2
π

))
− log

(
Φ
(
2c
πn

))
(
E(Φ

(
2c
πn

)
)
)2 .

The denominator can only be bounded by π2/4. For the numerator, we use again the convexity
of the function − log(Φ(·)). It follows that

log
(
Φ
(
2
π

))
− log

(
Φ
(
2c
πn

))

2
π − 2c

πn

≥ − log
(
Φ
(
2
π

))

1− 2
π

.

The constant η′ may be taken equal to
−π2 log(0.8)
16(π − 2)

≈ 0.12. One can conclude easily for the validity

of (4.3). �

Remark 4. Methods given in the proof of this theorem may be used for other corollaries of the
estimates of [3]. The same method can be used to find bounds below of eigenvalues, as in [3]. It is
one way to see that results are optimal.

We should mention that a decay estimate which is similar, but weaker than the one given by
(4.1) can be obtained from the non-asymptotic estimate of the cardinal of the subset Λε of N, given
by

Λε = {k ∈ N : λk(c) ≥ ε}, ε ∈ (0, 1/2).

In [21], the author has shown that

|Λε| ≤
2c

π
+K(log c)2 log

(1
ε

)
= β(ε),

where K is a constant independent of c and ε. Since the eigenvalues λn(c) are arranged in the
decreasing order, then the previous inequality implies that λβ(ε)(c) ≤ ε, or equivalently

(4.16) λn(c) ≤ β−1(n) = exp

(
− n− 2c

π

K
(
log(c)

)2

)
, n ≥ 2c

π
+K(log 2)

(
log(c)

)2
.

Note that for sufficiently large c and comparing to our non-asymptotic decay rate, given by (4.1),
the previous decay rate is weaker because of the power 2 on log(c). Note that the optimal upper
bound for the cardinal of the set Λε is given by (2.8). By comparing (4.1) and (2.8), one concludes
that our non-asymptotic decay estimate of the λn(c) given by (4.1) is optimal, in the considered
part of the plunge region of the spectrum.

5. Applications

In this paragraph, we describe two applications of our non-asymptotic estimates of the spectrum
of the Sinc-kernel operator. The first application is related to the estimate of constants, associated
with two concentration inequalities. The second application concerns the probability of a hole in
the spectrum of a fine scaled random matrix from the GUE.
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5.1. Estimates of constants in Remez and Turàn-Nazarov concentration inequalities.

We first recall that for f a 2π−periodic function, we have

‖f‖L2(T) =

(
1

2π

∫ π

−π
|f(t)|2 dt

)1/2

.

We consider the n+1-th eigenvalue λn(c) for n > 0. According to the min-max principle, we have

λn(c) = sup
V ∈Vn(c)

inf
f∈V \{0}

‖f‖2L2(−1,+1)

‖f‖2
L2(R)

,

where Vn(c) is the set of n+ 1-dimensional subspaces of Bc. By invariance by dilation and modu-
lation, for every M > 0 and every interval I of length |I| = 2Mc, this quantity is equal to

sup
V ∈Vn(I)

inf
f∈V \{0}

‖f‖2L2(−1/M,+1/M)

‖f‖2
L2(R)

,

where Vn(I) is the set of n + 1-dimensional subspaces of BI := {f ∈ L2(R) : supp f̂ ⊂ I}. Now
choose M so that 2Mc ≥ n + 1. Take ϕ to be a fixed L2 function such that supp ϕ̂ ⊂ [−1/2, 1/2]
and let Vn,ϕ = {P (eit)ϕ : P ∈ Pn} where Pn is the set of all polynomials of degree at most n. Note

that, if f ∈ Vn,ϕ then f =

n∑

k=0

P̂ (k)eiktϕ(t) so that

f̂(ξ) =

n∑

k=0

P̂ (k)ϕ̂(ξ − k).

In particular, supp f̂ ⊂ [−1/2, 1/2 + n], an interval of length n+ 1 = 2Mc. Further,

‖f‖2L2(R) =
1

2π
‖f̂‖2L2(R) =

1

2π

n∑

k=0

|P̂ (k)|2‖ϕ̂‖2L2(R)

= ‖P‖2L2(T)‖ϕ‖
2
L2(R) =

1

2π

∥∥P (eit)
∥∥2
L2(−π,π)

‖ϕ‖2L2(R).

On the other hand

‖f‖2L2(−1/M,1/M) =

∫ 1/M

−1/M

∣∣∣∣∣

n∑

k=0

P̂ (k)eikt

∣∣∣∣∣

2

|ϕ(t)|2 dt

≥ min
[−1/M,1/M ]

|ϕ(t)|2‖P‖2L2(−1/M,1/M).

We choose ϕ by setting ϕ̂(ξ) = 1[−1/2,1/2] cos πξ so that

‖ϕ‖2L2(R) =
1

2π

∫ 1/2

−1/2
cos2 πξ dξ =

1

4π
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and

ϕ(x) =
1

4π

∫ 1/2

−1/2
ei(π+x)ξ + ei(−π+x)ξ dξ =

1

2π

sin(π + x)/2

π + x
+

1

2π

sin(−π + x)/2

−π + x

=





cos x/2

π2 − x2
if x 6= ±π

1

4π
if x = ±π

.

Next, let M ≥ 1

π
, i.e. n+ 1 ≥ 2

π c. Then, for x ∈ [−1/M, 1/M ], ϕ(x) ≥ ϕ(1/M) ≥ ϕ(π) =
1

4π
.

Therefore, for any Taylor polynomial P of degree at most n,

(5.1) 2λn(Mc) ≥
∥∥P (eit)

∥∥2
L2(−1/M,1/M)

‖P (eit)‖2L2(−π,π)

.

Definition 1. Let Γ2(n, ε) be the best constant in the Remez type inequality
∫

I
|P (eit)|2 dt ≥ Γ2(n, ε)

∫ 2π

0
|P (eit)|2 dt,

for any P is a Taylor polynomial of degree n and any I interval of length ε.

We have just shown the following:

Proposition 5.1. Let c > 0 and n ≥ 2c

π
− 1 be an integer, then

2λn(c) ≥ Γ2

(
n, 4

c

n+ 1

)

or, equivalently, for 0 < ε < 2π

Γ2 (n, ε) ≤ 2λn

(
n+ 1

4
ε

)
.

In particular, for 0 < ε < 4 and n ≥ 33,

Γ2 (n, ε) ≤ exp

(−n
32

log
4

ε

)
.

Remark 5.2. In the particular case where M = 1
π in the inequality (5.1) and since the Remez

constant is then equal to 1 in this case, one concludes that

(5.2) λn+1

(π
2
(n+ 1)

)
≥ 1

2
,

which is the Landau’s lower bound for λn

(π
2
n
)
.

This is related to the following Turàn-Nazarov inequality, see [19]. Let T be the unit circle and
let µ be the Lebesgue measure on T, normalized so that µ(T) = 1, then for every 0 ≤ q ≤ 2, every
trigonometric polynomial

P (z) =
n+1∑

k=1

akz
αk , ak ∈ C, z ∈ T,

and every measurable subset E ⊂ T, with µ(E) ≥ 1
3 , we have

(5.3) ‖P‖Lq(E) ≥ e−Anµ(T\E)‖P‖Lq(T).
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Here, A is a constant independent of q, E and n. It has been mentioned in [19] that if moreover,

the measurable subset E is not too large in the sense that µ(E) ≤ 1− log n

n
, then the previous

inequality holds also for q > 2.
To find a bound above for γ2(n, ε) =

√
Γ2(n, ε), where Γ2(n, ε) is given by the previous definition,

it suffices to note that from our previous analysis, we have for ε = 2M−1 ≤ 8
e ,

γ2(n, ε) ≤
√
2

√
λn+1

(
n+ 1

2
ε

)
.

But from (3.1), with c =
n+ 1

4
ε, one gets

(5.4) γ2(n, ε) ≤
√
2 exp

(
−(n+ 1/2) log

( 8

eε

))
.

We compare the inequality (5.4) with (5.3) with the special cases, q = 2,

E = EM = {eit, t ∈ (−1/M, 1/M)}, 1

π
≤M ≤ 3

π
,

is an arc of T. The upper bound on M is fixed by the requirement that µ(E) =
ε

2π
=

1

πM
≥ 1/3.

In this case, we have

µ(T \E) = 1− ε

2π
= 1− 2

πM
.

Consequently, the constant A appearing in (5.3) satisfies the inequality

−An
(
1− ε

2π

)
≤ log(

√
2)− (n+ 1/2) log

(
8

eε

)
, ∀ 2π

3
≤ ε ≤ 2π.

By straightforward computations, the previous inequality holds true whenever A ≥ 1
3 and n ≥ 2.

5.2. An estimate of the hole probability in the spectrum of a random matrix from

the GUE. We first recall that an n × n random Hermitian matrix Mn =
[
Xjk

]
1≤j,k≤n

is said

to belong to the GUE, if the Xjk are i.i.d. random variables with Xkj = Xjk, Xjj ∼ N(0, 1)
and Re(Xjk) ∼ N(0, 1/2), Im(Xjk) ∼ N(0, 1/2), if j 6= k. Following the notation used in [25],
the coarse-scaled and the fine-scaled versions of the matrix Mn from the GUE, are defined by

Wn =
1√
n
Mn, An =

√
nMn. The famous Wigner’s semi-circle law states that the empirical mea-

sure
1

n

n∑

i=1

δλi(Wn) converges weakly in distribution to the semi-circle distribution function, given

by ρsc(x) =
1

2π

√
4− x21[−2,2](x). The bulk region of the spectrum of An, the fine-scaled version of

Mn, corresponds to the eigenvalues of An which are close to nu for a given u ∈ (−2, 2). It is well

known, see for example [25] that for a, b ∈ R, the probability the interval
[
nu+ a

ρsc(u)
, nu+ b

ρsc(u)

]

does not contain any eigenvalues of the matrix An =
√
nMn, converges as n→ +∞ to the Fredholm

determinant

det(Id−Qs) =
∞∏

n=0

(
1− λn(s)

)
, s =

π

2
(b− a).
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In particular, in the centre of the bulk region, that is for u = 0 and ρsc(0) = 1/π, the previous
limiting probability that an interval of length πc has no eigenvalue is given by the following infinite
product.

E2(0, c) =
∞∏

n=0

(
1− λn(

π

2
c)
)
.

To get an upper bound for the previous probability, we first use the estimate (3.4) and write

1− λk
(π
2
c
)
≤ 7

√
2

πc

(πc)k

k!
e−

π
2
c.

Next, for η > 1, we consider the finite product

(5.5) Fη =

η−1∏

k=0

7

√
2

πc

(πc)k

k!
e−

π
2
c = e−

π
2
cη

(
7

√
2

πc

)η

Aη , Aη =

η−1∏

k=0

(πc)k

k!
.

To bound the quantity Aη, we note that k! = Γ(k + 1) ≥
√
2e
(
k+ 1

2
e

)k+ 1
2
, so that we have

(5.6) Aη ≤ (2e)−η/2
η−1∏

k=0

(
πec

k + 1
2

)k√
e

k + 1
2

= (2e)−η/2Bη.

Note that

logBη =
η(η − 1)

2
log(πec) +

η

2
−

η−1∑

k=0

(
k +

1

2

)
log
(
k +

1

2

)
.

Moreover, since
η−1∑

k=0

(
k +

1

2

)
log
(
k +

1

2

)
≥
∫ η− 1

2

1
2

x log x dx− 1

2
log 2,

then straightforward computations show that

logBη ≤ 1

2
n(η − 1) log

(
πec

η − 1
2

)
+

1

4

(
η − 1

2

)2
+
η

2
− 1

7
log
(
η − 1

2

)
.

In particular, for the convenient choice of

(5.7) η = ηγ =
π

2

c

γ
+

1

2
, γ = 2.7,

one gets

(5.8) logBη ≤ 1

2

(
π2

4

c2

γ2
− 1

4

)
log(2eγ) +

π2

16γ2
c2 +

π

4γ
c− 1

7
log

(
πc

4γ

)
+

1

4
.

On the other, we already know that λn(
π

2
c) ≥ 1

2
, for all n ≤ c. Consequently, we have

(5.9) Gηγ =

c∏

n=nγ

(
1− λn(

π

2
c)
)
≤ exp

(
−c
(
1− π

2γ

)
log 2

)
= exp(−c aγ).

By combining (5.5)–(5.9) and taking into account that for all k ≥ 0, 1−λk
(
π
2 c
)
≤ 1, one can easily

check that

(5.10) E2(0, c) ≤ FηγGηγ ≤ e−αc2 exp

(
−βc

(
log(

√
πec/7) − 1/2 +

aγ
β

)
− 1

7
log(βc)

)
,
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where

(5.11) α =
π2

4γ
− π2

8γ2
log(2eγ) − π2

16γ
≈ 0.375, β =

π

2γ
≈ 0.586, aγ = 1− π

2γ
.

In particular, for c ≥ 5, we have −βc
(
log(

√
πec/7)− 1/2 +

aγ
β

)
− 1

7 log(βc) ≤ 0, so that E2(0, c) ≤
e−αc2 , α ≈ 0.374. We have just proved the following proposition.

Proposition 5.3. Let c ≥ 5, then a bound above of the probability E2(0, c) is given by

(5.12) E2(0, c) ≤ e−αc2 , α ≈ 0.374.

Note that an asymptotic expression of the probability E2(0, c), for c≫ 1, has been given in [4]

(5.13) E2(0, c) ≃ κ exp

(
−π

2

8
c2 − 1

4
log(c)

)
,

for some positive constant κ. Our proposed non-asymptotic bound above of E2(0, c) is not optimal
comparing to the previous asymptotic one, nonetheless, it is a bound above that is valid even for
intervals with relatively small lengths c ≥ 5.
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