Strong geodetic cores and Cartesian product graphs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Strong geodetic cores and Cartesian product graphs

Valentin Gledel
Vesna Iršič
  • Fonction : Auteur

Résumé

The strong geodetic problem on a graph G is to determine a smallest set of vertices such that by fixing one shortest path between each pair of its vertices, all vertices of G are covered. To do this as efficiently as possible, strong geodetic cores and related numbers are introduced. Sharp upper and lower bounds on the strong geodetic core number are proved. Using the strong geodetic core number an earlier upper bound on the strong geodetic number of Cartesian products is improved. It is also proved that sg(G K 2) ≥ sg(G) holds for different families of graphs, a result conjectured to be true in general. Counterexamples are constructed demonstrating that the conjecture does not hold in general.
Fichier principal
Vignette du fichier
sg cores March 30 - submit.pdf (180.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01756450 , version 1 (02-04-2018)

Identifiants

Citer

Valentin Gledel, Vesna Iršič, Sandi Klavžar. Strong geodetic cores and Cartesian product graphs. 2018. ⟨hal-01756450⟩
124 Consultations
170 Téléchargements

Altmetric

Partager

More