Incremental Learning on Chip - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Incremental Learning on Chip

Résumé

Learning on chip (LOC) is a challenging problem, which allows an embedded system to learn a model and use it to process and classify unknown data, adapting to new obser- vations or classes. Incremental learning of chip (ILOC) is more challenging. ILOC needs intensive computational power to train the model and adapt it when new data are observed, leading to a very difficult hardware implementation. We adress this issue by introducing a method based on the combination of a pre-trained Convolutional Neural Network (CNN) and majority vote, using Product Quantizing (PQ) as a bridge between them. We detail a hardware implementation of the proposed method validated on an FPGA target, with substantial processing acceleration with few hardware resources.
Fichier principal
Vignette du fichier
GlobalSip_HAL.pdf (200.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01754847 , version 1 (31-05-2018)

Identifiants

Citer

Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu Arzel, Michel Jezequel. Incremental Learning on Chip. GlobalSIP 2017 : 5th IEEE Global Conference on Signal and Information Processing, Nov 2017, Montréal, Canada. ⟨10.1109/GlobalSIP.2017.8309068⟩. ⟨hal-01754847⟩
346 Consultations
409 Téléchargements

Altmetric

Partager

More