
HAL Id: hal-01754847
https://hal.science/hal-01754847v1

Submitted on 31 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Learning on Chip
Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu Arzel,

Michel Jezequel

To cite this version:
Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu Arzel, Michel Jezequel. Incre-
mental Learning on Chip. GlobalSIP 2017 : 5th IEEE Global Conference on Signal and Information
Processing, Nov 2017, Montréal, Canada. �10.1109/GlobalSIP.2017.8309068�. �hal-01754847�

https://hal.science/hal-01754847v1
https://hal.archives-ouvertes.fr


Incremental learning on chip

Abstract—Learning on chip (LOC) is a challenging problem,
which allows an embeded system to learn a model and use it
to process and classify unknown data, adapting to new obser-
vations or classes. Incremental learning of chip (ILOC) is more
challenging. ILOC needs intensive computational power to train
the model and adapt it when new data are observed, leading to a
very difficult hardware implementation. We adress this issue by
introducing a method based on the combination of a pre-trained
Convolutional Neural Network (CNN) and majority vote, using
Product Quantizing (PQ) as a bridge between them. We detail a
hardware implementation of the proposed method validated on
an FPGA target, with substantial processing acceleration with
few hardware resources.

Transfer Learning, Incremental Learning, Learning on Chip,
Convolutional Neural Network, FPGA

I. INTRODUCTION

Recently, Deep Neural Networks (DNNs) achieved signif-
icant progress and became the state-of-art in the field of
machine learning. In particular, Convolutional Neural Net-
works (CNNs) now exhibit state-of-the-art performance in
object recognition. DNNs rely on hundreds of millions of
parameters that are trained using a large amount of data,
requiring heavy computational power and memory resources.
Such resources are not readily available on embedded systems
such as smartphones running on battery power.

To address these limitations, many recent studies proposed
to reduce the size of DNNs using product quantization (PQ)
methods, in order to quantize the DNNs weights [1][2]. Other
methods proposed to binarize only DNNs weights [3], as
well as activation functions [4], with the aim to reduce both
DNNs size and computational complexity. These methods
allow the implementation of DNNs on embeded systems such
as FPGA [5][6]. However the proposed hardware implementa-
tions focus only on the inference process of pre-trained DNNs,
assuming that the training process has been done previously.
The main weakness of these methods is that they do not
propose a way to handle LOC.

LOC allows an embedded system to train a model and use
it to classify and process new data. This concept represents
one of the most active area research, because of the intensive
computation required during the training phases, and which
cannot be handled by a small embedded system with a limited
power. A more challenging problem is the incremental learning
on chip (ILOC). Incremental learning methods aim to learn
data sequentially, adapt the model to the new data, be able to
learn new examples and classes and finally do not require
access to the old data to retain and adapt the model [7].
Although models have been proposed and studied extensively
during the last decades, finding a good compromise between
accuracy and required resources remains challenging. Indeed,

most of existing works retrain the model when receiving new
data [8], [9], and reuse some prior data for the retraining
process [7], [10], which is computationally expensive and does
not meet the embedded systems requirements. In [11], the
autors introduced a new simple incremental learning method
based on transfer learning, product quantization and majority
vote (cf. 1). This method adapts the model to new observed
examples and classes without retrain or access to previous
data and, uses much less computational power than existing
conterpart and approaches state-of-art accuracy on challenging
vision datasets (CIFAR10 and ImageNet). these properties
agrees perfectly with embedded systems requirements.

In this paper we propose a hardware architecture for an
ILOC solution based on [11], with the following claims:

• It is possible to adapt the model to new data (from
scratch) without retraining it,

• It uses limited computational resources,
• It is used for the training and not only for inference

process.
The outline of the paper is as follows.In Section II we

introduce related work. In Section III we present an overview
of the proposed incremental method. Hardware architecture
and implementation is introduced in Section IV Hardware
results are outlined in Section V. Finally, Section VI is a
conclusion.

II. RELATED WORK

Learning on chip (LOC) refers to the ability of an embedded
system to learn data by it self, then process and classify new
unknown data. Some previous works have proposed solutions
to train a model on an FPGA, using neural networks [12]. This
solutions needs to implement gradient descent which is com-
putationally expensive and quickly becomes a problem when
the network size increases. Others propose to train Support
Vector Machines on FPGA [13], but still this solution requires
intensive computational power and large memory usage to
store all training data. The need of intensive computation and
memory usage during the learning phase represent a major
drawback for LOC. In the last years, the interest was focused
on large database as ImageNet,and this leads to propose big
DNNs to handle and be able to classify these datasets. As
the implementation of big DNNs is problematic, proposed
works in this context focus on inference process and assume
that the training or learning process is done on an external
server [5][6], or use SVMs already trained on a large dataset
as classifiers [14].

Incremental learning process the learning data sequentially
and being able to handle new data and new classes without the
need to retrain the whole system [15].Most of existing works

BOUKLI HACENE Ghouthi1,2, GRIPON Vincent1,2, FARRUGIA Nicolas1,2, ARZEL Matthieu1,2, JEZEQUEL Michel1,2

1 : ELEC - Dépt. Electronique (Institut Mines-Télécom-IMT Atlantique-UBL)
2 : Lab-STICC - Laboratoire en sciences et technologies de l'information, de la communication et de la connaissance (UMR 6285 - CNRS - IMT Atlantique - 
Université de Bretagne Occidentale - Université de Bretagne Sud - ENSTA Bretagne - Ecole Nationale d'ingénieurs de Brest)



either add new classifiers to accommodate new data, such as
the learn++ method [7], [10] or retrain the model using newly
received data together with the old model ([8], [9]). To avoid
training a large number of classifiers, and to address the catas-
trophic forgetting problem ([16], [17]), a combination between
SVMs and learn++ method called “SVMlearn++” ([18]) was
proposed, showing promising improvements ([19]). However,
this method still needs to retrain a new SVM each time new
data is provided, and some knowledge is forgotten while new
information is being learned. These methods need Intensive
computing for training and large memory usage, which do not
satisfy the embedded systems criterion.

In [11], the authors introduced an incremental learning
model, in which the learning process consists in making
a random sampling over input vectors, and then splits the
obtained vectors and stores them. We describe this method
in the following Section. In this paper, we will exploit the
simplicity of the learning process of this method to overcome
LOC problems and propose an ILOC solution.

III. OVERVIEW OF THE INCREMENTAL METHOD

The incremental method introduced in [11] relies on the use
of a pre-trained deep CNN as feature extractor, followed by
product random sampling to embed data in a finite alphabet.
The last step of the method consists in a majority vote. We
detail this method in the next paragraphs.

First, we use the internal layers of a pre-trained CNN [20],
that transforms an input signal sm into a feature vector xm

(cf. Figure 1 step 1). Next, each obtained feature vector xm

is embedded in a finite alphabet using a PQ technique [21].
We selected product random sampling as it achieves good
performance, yet it is computationally much lighter than other
PQ techniques such as K-means 1. Product random sampling
splits each feature vector xm into P subvectors of equal size
denoted

(
xmp

)
1≤p≤P

, which are quantized independently using
the K anchor points Yp = yp1, ..., ypK , where for each ykp ,
∃xm ∈ X, xmp = ykp .

After transforming each feature vector xm into a word
of fixed length

(
qm
p

)
1≤p≤P

(using the alphabet of anchor
points)(cf. Figure 1 step 2), we associate the corresponding
output cm (an indicator vector of the class) to the obtained
points (cf. Figure 1 step 3). The same process is done for each
new data to handle incremental learning. The combination of
the pre-trained CNN as feature extractor and the majority vote
as classifier allows example and class incremental learning
without damage previous learned knowledge [22] or retrain
the model. These properties make of the proposed method a
perfect approach to be implemented on embedded system.

The method was tested on challenging vision datasets (CI-
FAR10 and ImageNet), using Inception V3 [23] as feature
extractor. The test gave promising results, 82% of accuracy
for CIFAR10 and 8% on ten categories of ImageNet distinct
from the 1000 ones that were used to train the CNN.

IV. HARDWARE IMPLEMENTATION

In this paper, we present a hardware implementation for the
step 2 and 3, and we assume that the step 1 (feature extractor)
is done by an external CPU which will give the feature vector
xm to the FPGA.

A. Data Quantization

In addition to the quantization of the feature vectors X , we
quantize the feature vector’s values using a signed fixed point
representation on n bits with 5 bits for the integral part. The
main motivation of this step is to reduce the number of bits to
represent a value from 32 to n, where n should be lower than
18 in order to use only one DSP for each operation indeed of
2.

B. Architecture

The proposed architecture handles both the learning and
classification processes. The learning process is quite simple,
as described in [11]. After the random sampling, learning
requires splitting the feacture vectors xm into P parts, then
storing each part xm

p into RAMDp, which represents anchor
vectors denoted ymp , and the input class vector cm into
RAMCp (1 ≤ p ≤ P )(cf. Figure IV-B). The input class
vector cm containing the class of the feature vector xm is one
hot encoded. We choose the one hot encoding to simplify the
classification process described in the following paragraphs.

To classify an unlabelled feature vector xm, we split the
vector into P parts and obtain the P associated subvectors
xmp , 1 ≤ p ≤ P . The hardware architecture used to classify
the unlabelled xm is divided into two parts, the processing
and the classification part (cf. Figure IV-B). The processing
hardware architecture is made of P identical parts. For each
p part, we first compute the euclidean distance between xm

p

and y1p, and store the distance in the register rp. We do the
same process with each

(
ykp
)
1≤k≤K

, we compare the obtained
result with the distance stored in the register rp. We store the
smallest distance and the vector class cp one hot coded on C
bits, when C is the number of classes, and corresponding to ykp
which is the nearest from xmp and gives the smallest distance.
Done sequentially on all

(
ykp
)
1≤k≤K

, this process needs K
clock cycle, one clock cycle to compute one distance for each
yp. The same process is running on the P parts in parallel.

The classification hardware architecture takes as input the
(cp)1≤p≤P stored in (rp)1≤p≤P . As a first step, a bitwise
addition is computed over all vectors cp. The C results of
the additions are stored into C registers and then compared.
The comparison is done sequentially in a such way that we
compare only two results, store the highest one and its index
c (1 ≤ c ≤ C), then we compare the third result with the one
stored in the register, keep the highest one and its index c, and
so one. In the end of this process, the index c stored in the
register presents the class that the model has attributed to the
unlabelled feature vector xm.

The architecture is fully pipelined, so the number of clock
cycles to process an input data is the number needed to



Input
Signal

sm

Input
Label
cm

Pre-trained
CNN

Hidden Layer
Output

Feature
Vector

xm

Split Feature
Vector

Step 1 Step 2

Quantization

•

•
•
•

+

qm
1

Storage

Step 3

majority vote

•
• •
•

•
•
•
•

+ •
• •
•

• ••

•
+

y21

•
• •
•

n34

η8

xm1

xm2

xm3

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

Figure 1. Overview of the proposed method, comprising three main steps. Given a set of samples, we first use a pre-trained CNN for feature extraction (Step
1). Subsequently, we use a PQ technique to quantize the feature vectors (Step 2). Finally, we use a majority vote to classify the quantized data (Step 3)

compute distances with all anchor vectors ykp . This means that
the model gives a valid output every K clock cycles.

V. RESULTS

The proposed architecture has been implemented on Xilinx
Virtex 7 (xc7vx690tffg1157) Field Programmable Gate Array
(FPGA). Its functionality has been verified by comparing
the obtained misclassified feature vectors of the hardware
architecture and the software simulation. For the hardware
solution, we encoded the input feature vectors on 16 bits in
order to use only one DSP for each multiplication operation.
This encoding reduces accuracy from 82% on CIFRA10 to
81.6%. Unlike other learning methods, this proposed approach
only needs to split input vector into P parts and then store
them. This allows a light learning process in which each vector
is stored in one clock cycle, no operation is performed and
T ·K · 16 bits memory usage is used, where T is the feature
vector size (cf. Table I).

For the classification process, we obtain a result each K
clock cycles. The experience parameters used are the same as
defined in [11] to get an accuracy of 82% and 81.6% for 32 and
16 value encoding respectively. To obtain feature vectors we
use inception V3 [23] which gives a 2048 dimensional feature
vector. 2048 DSP are used, one for each vector value due to the
parallezation of processes applied to process vector’s values.
The energy consumption of the whole system is about 22 Watt
and the maximum frequency is 209 MHZ. for K = 200 the
time needed to classify an input vector is 957 ns, and the ration
between a software simulation delay using an I7 870 (2.93
GHz) processor and the FPGA when P = 64 and K = 200 is
104. The Table I shows a summary of the resource allocation
of the FPGA for the implementation of ILOC architecture.

Table I
FPGA RESULTS FOR THE ILOC ARCHITECTURE (T = 2048, P = 64,

K = 200 AND n = 16 BITS).

Memory usage dedicated to store X (bits) 6553600

Combinational Look-up Tables (LUT) 265680/433200(61%)

Combinational Look-up Tables (DSP) 2048/3600(57%)

Maximum frequency (MHz) 209

learning/classifying delay (per feature vector) 4.79ns/957ns

Software to hardware delay ratio (delay) 104

VI. CONCLUSION

We proposed a hardware architecture using limited re-
sources for an incremental learning on chip, able to train
a model incrementally from scratch on chip. The hardware
implementation is fully parallel and pipelined. This architec-
ture can be used in a variety of classification applications,
and can be embedded inside a processor chip. The proposed
architecture allows an embedded system to be trained and
tested on new data, to be dynamic and easily adaptable to new
changes. Future works will focus on proposing a hardware
implementation for the deep CNN which acts as feature
extractor to have a complete dynamic system.

REFERENCES

[1] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng,
“Quantized convolutional neural networks for mobile devices,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4820–4828.

[2] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev, “Com-
pressing deep convolutional networks using vector quantization,” arXiv
preprint arXiv:1412.6115, 2014.

[3] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David, “Bina-
ryconnect: Training deep neural networks with binary weights during
propagations,” in Advances in Neural Information Processing Systems,
2015, pp. 3123–3131.



Feature
Vector

Xm

T

Input
Register

T/P

T/P

T/P

RAM
T/P

Compute
Distance

2T/P

Compare
Distance

2T/P

Distance
Register

C

RAM
T/P

Compute
Distance

2T/P

Compare
Distance

2T/P

Distance
Register

C

RAM
T/P

Compute
Distance

2T/P

Compare
Distance

2T/P

Distance
Register

C

Majority
Vote

Output
Class

C

Controller

Figure 2. Hardware architecture of ILOC

[4] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee, “Towards the limit
of network quantization,” arXiv preprint arXiv:1612.01543, 2016.

[5] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou,
Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al., “Going
deeper with embedded fpga platform for convolutional neural network,”
in Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2016, pp. 26–35.

[6] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei
Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao, “Throughput-optimized
opencl-based fpga accelerator for large-scale convolutional neural net-
works,” in Proceedings of the 2016 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays. ACM, 2016, pp. 16–25.

[7] Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar,
“Learn++: An incremental learning algorithm for supervised neural
networks,” IEEE transactions on systems, man, and cybernetics, part C
(applications and reviews), vol. 31, no. 4, pp. 497–508, 2001.

[8] Nadeem Ahmed Syed, Syed Huan, Liu Kah, and Kay Sung, “Incremen-
tal learning with support vector machines,” 1999.

[9] Tomaso Poggio and Gert Cauwenberghs, “Incremental and decremental
support vector machine learning,” Advances in neural information
processing systems, vol. 13, pp. 409, 2001.

[10] Yu Sun, Ke Tang, Leandro L Minku, Shuo Wang, and Xin Yao, “Online
ensemble learning of data streams with gradually evolved classes,” IEEE
Transactions on Knowledge and Data Engineering, vol. 28, no. 6, pp.
1532–1545, 2016.

[11] Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu
Arzel, and Michel Jezequel, “Incremental learning with pre-trained
convolutional neural networks and binary associative memories,” 2017.

[12] Gian Marco Bo, Daniele D Caviglia, and Maurizio Valle, “An on-
chip learning neural network,” in Neural Networks, 2000. IJCNN 2000,
Proceedings of the IEEE-INNS-ENNS International Joint Conference on.
IEEE, 2000, vol. 4, pp. 66–71.

[13] Kyunghee Kang and Tadashi Shibata, “An on-chip-trainable gaussian-
kernel analog support vector machine,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 57, no. 7, pp. 1513–1524, 2010.

[14] Markos Papadonikolakis and Christos-Savvas Bouganis, “A novel fpga-
based svm classifier,” in Field-Programmable Technology (FPT), 2010
International Conference on. IEEE, 2010, pp. 283–286.

[15] Robi Polikar, Lalita Udpa, Satish S Udpa, and Vasant Honavar,
“Learn++: an incremental learning algorithm for multilayer perceptron
networks,” in Acoustics, Speech, and Signal Processing. ICASSP’00.
Proceedings.IEEE International Conference on. IEEE, 2000, vol. 6, pp.
3414–3417.

[16] Nikola Kasabov, Evolving connectionist systems: Methods and applica-

tions in bioinformatics, brain study and intelligent machines, Springer
Science & Business Media, 2013.

[17] Robert M French, “Catastrophic forgetting in connectionist networks,”
Trends in cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[18] Zeki Erdem, Robi Polikar, Fikret Gurgen, and Nejat Yumusak, “Ensem-
ble of svms for incremental learning,” in International Workshop on
Multiple Classifier Systems. Springer, 2005, pp. 246–256.

[19] José Fernando García Molina, Lei Zheng, Metin Sertdemir, Dietmar J
Dinter, Stefan Schönberg, and Matthias Rädle, “Incremental learning
with svm for multimodal classification of prostatic adenocarcinoma,”
PloS one, vol. 9, no. 4, pp. e93600, 2014.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097–1105.

[21] Herve Jegou, Matthijs Douze, and Cordelia Schmid, “Product quantiza-
tion for nearest neighbor search,” IEEE transactions on pattern analysis
and machine intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[22] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua
Bengio, “An empirical investigation of catastrophic forgetting in
gradient-based neural networks,” arXiv preprint arXiv:1312.6211, 2013.

[23] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna, “Rethinking the inception architecture for com-
puter vision,” arXiv preprint arXiv:1512.00567, 2015.


