INFINITE TRANSITIVITY, FINITE GENERATION, AND DEMAZURE ROOTS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

INFINITE TRANSITIVITY, FINITE GENERATION, AND DEMAZURE ROOTS

M Zaidenberg
I Arzhantsev
  • Fonction : Auteur
K Kuyumzhiyan
  • Fonction : Auteur

Résumé

An affine algebraic variety X of dimension ≥ 2 is called flexible if the subgroup SAut(X) ⊂ Aut(X) generated by the one-parameter unipotent subgroups acts m-transitively on reg (X) for any m ≥ 1. In a preceding paper ([4]) we proved that any nondegenerate toric affine variety X is flexible. Here we show that if such a toric variety X is smooth in codimension 2 then one can find a subgroup of SAut(X) generated by a finite number of one-parameter unipotent subgroups which has the same transitivity property. In fact, four such subgroups are enough for X = A n if n ≥ 3, and just three if n = 2.
Fichier principal
Vignette du fichier
Demazure roots.pdf (459.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01745146 , version 1 (27-03-2018)
hal-01745146 , version 2 (27-08-2018)

Identifiants

Citer

M Zaidenberg, I Arzhantsev, K Kuyumzhiyan. INFINITE TRANSITIVITY, FINITE GENERATION, AND DEMAZURE ROOTS. 2018. ⟨hal-01745146v1⟩
112 Consultations
137 Téléchargements

Altmetric

Partager

More