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INFINITE TRANSITIVITY, FINITE GENERATION, AND DEMAZURE
ROOTS

I. ARZHANTSEV, K. KUYUMZHIYAN, AND M. ZAIDENBERG

Abstract. An affine algebraic variety X of dimension ≥ 2 is called flexible if the subgroup
SAut(X) ⊂ Aut(X) generated by the one-parameter unipotent subgroups acts m-transitively
on reg (X) for any m ≥ 1. In a preceding paper ([4]) we proved that any nondegenerate
toric affine variety X is flexible. Here we show that if such a toric variety X is smooth in
codimension 2 then one can find a subgroup of SAut(X) generated by a finite number of
one-parameter unipotent subgroups which has the same transitivity property. In fact, four
such subgroups are enough for X = An if n ≥ 3, and just three if n = 2.
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1. Introduction

Let K be an algebraically closed field of characteristic zero, and let X be an affine variety
over K. A one-parameter subgroup H of Aut(X) isomorphic as an algebraic group to the
additive group Ga of the base field K is called a unipotent one-parameter subgroup, or a
Ga-subgroup, for short. One can consider the subgroup SAut(X) ⊂ Aut(X) generated by all
the one-parameter unipotent subgroups. It is known ([4, Thm. 2.1]) that for a toric variety X
with no toric factor (that is, a nondegenerate toric variety) the group SAut(X) acts infinitely
transitively in the smooth locus reg(X), that is, m-transitively for any m ≥ 1. Varieties X
with this property are called flexible ([2], [4]). Actually, the simple transitivity of SAut(X) in
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reg(X) already guarantees that X is flexible ([2, Thm. 0.1]). The same is true for quasi-affine
varieties ([5], [19]). In turn, the flexibility implies several other useful properties, for instance,
the unirationality (see, e.g., [2], [11], [42]). The flexibility has found important applications,
e.g., to the Zariski cancellation problem ([20]). It is known ([19, Thm. 1.1]) that the flexibility
survives upon passing to the complement of a subvariety of codimension at least 2. Different
flexibility properties are intensively studied in complex analytic geometry, see, e.g., surveys
[2], [21], [28].

The toric affine varieties with no toric factors are flexible ([4, Thm. 2.1]). There are several
other interesting classes of flexible affine varieties (see, e.g., [2], [4], [5], [6], [16], [38], [39],
[40], [42], [43], [45]).

In fact, for a flexible X certain proper subgroups G of SAut(X) act also infinitely transi-
tively in reg(X), or at least in a Zariski dense open subset of reg(X). This is the case for a
subgroup G generated by a sufficiently rich family of Ga-subgroups of SAut(X), see [2, Thm.
2.2]. Let us stay on this in more detail.

Let LND(X) stand for the set of all nonzero locally nilpotent derivations (LNDs, for
short) of the structure algebra OX(X). Any ∂ ∈ LND(X) is a generator of a Ga-subgroup
H = exp(K∂) of Aut(X), and any Ga-subgroup H ⊂ Aut(X) has the form H = exp(K∂) for
some ∂ ∈ LND (X). If a ∈ ker∂ then a∂ is again an LND called a replica of ∂. The subgroup
H(a) = exp(Ka∂) is called a replica of H.

A family F of Ga-subgroups of Aut(X) is called saturated if
(i) any replica of H ∈ F belongs to F, and
(ii) F is closed under conjugation by the elements of the subgroup G = G(F) generated by
the members of F ([2, Def. 2.1]).
Notice ([20, Lem. 4.6]) that for any family F which verifies (i) there exists a larger family F′

satisfying both (i) and (ii) such that G(F) = G(F′). If G(F) has an open orbit in X and F
is saturated then the action of G on this orbit is infinitely transitive ([2, Thm. 2.2]). By [19,
Prop. 2.15] one can find such a family F composed by the replicas of just two LNDs.

We say that X is generically flexible if SAut(X) acts on X with an open orbit. For
instance ([26]), any Gizatullin surface X is generically flexible. Notice that the open orbit of
Aut(X) can be smaller than reg(X), see, e.g., [30] for examples of Gizatullin surfaces with
this property.

The assumption of saturation could be too restrictive in applications. The aim of the
present paper is to elaborate more moderate conditions on the family F which still guarantee
the infinite transitivity of G(F) on the open orbit. In Section 2 we formulate such conditions,
see Theorem 2.2. It occurs that for a generically flexible variety already a countable family of
Ga-subgroups generates a group acting infinitely transitively on its open orbit, see Corollary
2.8. A useful observation in Section 3 consists in the fact that the orbits and transitivity of
an algebraically generated group G ⊂ Aut(X) are not affected upon passing to the closure G,
see Proposition 3.4. The remaining part of the paper appeared as a result of our discussions
on the following

Conjecture 1.1. Any generically flexible affine variety X admits a finite collection
{H1, . . . ,HN} of Ga-subgroups of Aut(X) such that the group G = ⟨H1, . . . ,HN⟩ acts infinitely
transitively on its open orbit.
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In Section 5 we fix this conjecture for toric affine varieties under a certain mild restriction.
In Section 4 we recall some basics on toric varieties and Cox rings. We deal there with
the LNDs of the structure ring of a toric affine variety X which are normalized by the
acting torus T. The degree e of such an LND ∂ is a lattice vector called a Demazure root.
The corresponding Ga-subgroup He ⊂ Aut(X) normalized by T is called a (Demazure) root
subgroup.

Our approach exploits hardly the following phenomenon. Consider a group G acting effec-
tively on a toric affine variety X and generated by its unipotent subgroups. The closure G
of G with respect to the ind-topology could contain more Demazure root subgroups than the
group G itself. However, the multiple transitivity of G on its orbit is inherited by the group
G, see Proposition 3.4.

To describe some extra Demazure root subgroups contained in G we develop in Section
4.2 certain degeneration techniques. Given an LND ∂ ∈ Der(OX(X)) generating a one-
parameter unipotent subgroup of G we define its Newton polytope N(∂) with respect to the
acting torus. The extremal points of this polytope correspond to one-parameter unipotent
root subgroups which belong to G, see Proposition 4.16. To find a convenient (non-root)
LND ∂ we conjugate one Demazure root subgroup by a second one which does not centralize
the first. The Newton polytope N(∂) of the resulting LND ∂ occurs to be a segment whose
one end is a desired extra Demazure root. This segment can be found explicitly by using a
version of the Baker-Campbell-Hausdorff formula, see Corollary 4.14.

The simplest toric affine varieties are the affine spaces An = An
K. In this case both the

affine group Affn and the group SL(n,K) extended by just one root subgroup act infinitely
transitively on their open orbits, see, e.g., Corollary 5.3. This is based on the results of
Bodnarchuk ([9, 10]), Edo ([17]), and Furter ([24]) concerning cotame automorphisms of the
affine spaces, see Definition 5.9. We establish the following facts, see Theorems 5.16 and 5.17.

Theorem 1.2. For any n ≥ 3 one can find four Ga-subgroups of Aut(An) which generate a
subgroup acting infinitely transitively on An. The same is true for some n+ 2 Demazure root
subgroups. For n = 2, the latter holds with just three Demazure root subgroups.

Our main result in this direction for toric affine varieties (see Theorem 5.19) is the following

Theorem 1.3. For any toric affine variety X of dimension at least 2, with no toric factor,
and smooth in codimention 2 one can find a finite collection of Demazure root subgroups such
that the group generated by these ones acts infinitely transitively in the smooth locus reg(X).

2. Infinite transitivity on the open orbit

We are working over an algebraically closed field K of characteristic zero. We let An

stand for the affine space of dimension n over K, and Ga and Gm for the additive and the
multiplicative groups of K, respectively, viewed as algebraic groups.

2.1. Let X be an affine variety over K of dimension n ≥ 2. Consider a finite collection of
pairwise non-collinear locally nilpotent derivations ∂1, ∂2, . . . , ∂k of OX(X) which contains a
subset of n linearly independent derivations. For each i = 1, . . . , k fix a finitely generated
subalgebra Ai ⊂ ker∂i such that the fraction field Frac (Ai) has finite index in Frac (ker∂i).
Consider the following possibilities:

(α) OX(X) is generated by A1, . . . ,Ak;
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(β) [Frac (ker∂i) ∶ Frac (Ai)] = 1 for some value of i;
(γ) [Frac (ker∂i) ∶ Frac (Ai)] > 1 for all i = 1, . . . , k. In the latter case we fix an extra

element b1 ∈ ker∂1 such that Frac (ker∂1) is generated by b1 and Frac (A1). In cases
(α) and (β) one might consider b1 = 0.

Let G be the subgroup of SAut(X) generated by the Ga-subgroups

H0 = exp(Kb1∂1) and Hi(ai) = exp(Kai∂i) where ai ∈ Ai, i = 1, . . . , k .

Notice that G acts on X with an open orbit OG, see [2, Corollary 1.11a].

The following theorem is the main result of this section.

Theorem 2.2. The action of G on OG is infinitely transitive.

This theorem is actually a refined version of Theorem 2.2 in [2]. Its proof follows, with
some modifications, the lines of the proof of Theorem 2.2 in [2].

Lemma 2.3. Let Ω ⊂ OG be a dense open subset. Then for any finite collection of distinct
points Q1,Q2, . . . ,Qm ∈ OG there exists g ∈ G such that g(Qi) ∈ Ω for every i = 1,2, . . . ,m.

Proof. By [2, Prop. 1.5] there is a finite collection of Ga-subgroups U1, U2, . . . , UN in G such
that for any x ∈ OG we have OG = (U1 ⋅ . . . ⋅UN).x. This gives a surjective morphism

ϕx∶AN → OG, (t1, . . . , tN) ↦ (U1(t1) ⋅ . . . ⋅UN(tN)).x .
Letting ϕi = ϕQi , i = 1, . . . ,m consider the dense open subset

ω =
m

⋂
i=1

ϕ−1
i (Ω) ⊂ AN .

Pick up a point (t1, t2, . . . , tN) ∈ ω, and let g = U1(t1) ⋅ . . . ⋅ UN(tN) ∈ G. Then for any
i = 1, . . . ,m one has g(Qi) ∈ Ω. �

In the sequel we use the following notation.

Notation 2.4. Let Hi = Hi(1), i = 1, . . . , k. Letting Wi = SpecAi consider the morphism
πi∶X → Wi induced by the inclusion Ai ↪ OX(X). There is a Zariski open, dense subset
ωi ⊂ Wi such that on Ui ∶= π−1

i (ωi) there exists the geometric quotient Ui/Hi. The inclusion
Ai ⊂ OUi(Ui) induces a generically finite morphism qi∶Ui/Hi → Wi. Due to our assumption,
ωi can be chosen so that qi is a finite morphism onto its image, of degree di ∶= [Frac (ker∂i) ∶
Frac (Ai)]. One can find a dense open subset Ω ⊂ OG such that

(i) in each point x ∈ Ω the vectors ∂1(x), . . . , ∂k(x) are pairwise non-collinear and generate
the tangent space TxX;

(ii) for i = 1, . . . , k one has πi(Ω) ⊂ reg(Wi) and the restriction πi∣Ω∶Ω → Wi is a smooth
morphism;

(iii) for i = 1, . . . , k the fiber of πi∣Ω over any point w ∈ πi(Ω) is a dense open subset of the
union of di orbits of Hi;

(iv) in case (γ) for i = 1 these orbits are separated by the function b1 ∈ ker∂1 as in 2.1.

For each i = 1, . . . , k there is a factorization

πi∶Ω
piÐ→ Ω/Hi

qiÐ→Wi .

We have the following analogue of Lemma 2.10 in [2].
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Lemma 2.5. For any pair of distinct points Q1,Q2 ∈ OG there exists g ∈ G such that for
every i = 1, . . . , k the points g.Q1 and g.Q2 are separated by Ai for i = 1, . . . , k.

Proof. By Lemma 2.3 one may suppose that Q1,Q2 ∈ Ω where Ω ⊂ X is as in 2.4. Assume
first that for some i ∈ {1, . . . , k} the algebra Ai separates Q1 and Q2. This is so in cases (α)
and (β); anyway, one may consider that i = 1. Let a1 ∈ A1 be such that a1(Q1) = 0 and
a1(Q2) = 1. Then H1(a1) fixes Q1 and moves Q2 along its H1-orbit. Let

Q2(t) = exp(t∂1)(Q2), t ∈ K .

Given i ≥ 2 the condition

(1) Q2(t) ∈ Ω and πi(Q2(t)) ≠ πi(Q1)
is an open condition in t ∈ K. Since Q2 ∈ Ω, by (i) and (ii) the image πi(H1(Q2)) in Wi is
one-dimensional. It follows that (1) holds on a dense open subset in K. Moreover, the latter
is true simultaneously for all i = 2, . . . , k, as required.

Now one may restrict to case (γ). Suppose that A1 does not separate Q1 and Q2. Assume
further that H1(Q1) ≠H1(Q2). Then b1 separates Q1 and Q2 due to (iv).

Consider the flow
φt = exp(t(b1 − b1(Q1))∂1) ⊂H0 ⋅H1 ⊂ G,

and let Q2(t) = φt(Q2). Then φt fixes Q1 and moves Q2 along its H1-orbit. Now the same
argument as before applies and proves that the algebra Ai, i = 2, . . . , k separates Q1 and Q2(t)
for a general t ∈ K. Since by our assumptions k ≥ n ≥ 2, one may interchange now the role of
A1 and Ak and achieve as before that A1 separates the images of Q1 and Q2 under the action
of exp(tak∂k)(Q1) for a suitable ak ∈ Ak and a general t ∈ K. This gives the result.

Suppose further that H1(Q1) = H1(Q2). We claim that for every i = 2, . . . , k and for a
general t ∈ K the points Q1(t) and Q2(t) are separated by Ai. Indeed, assume to the contrary
that πi(Q1(t)) = πi(Q2(t)) for some i ≥ 2 and for all t ∈ K. Since the image πi(H1(Q1)) in Wi

is one-dimensional there exists ai ∈ Ai such that the restriction ai∣H1(Q1) defines a non-constant
polynomial pi ∈ K[t]. Since Q2 = Q1(τ) for some nonzero τ ∈ K one has Q2(t) = Q1(t + τ). It
follows that pi(t) = pi(t + τ) for any t ∈ K, a contradiction. The proof ends by the argument
used in the previous case for i = 1. �

Lemma 2.6. For any finite collection of distinct points Q1, . . . ,Qm ∈ OG there exists an
element g ∈ G such that the points g(Q1), . . . , g(Qm) are separated by Ai for i = 1, . . . , k.

Proof. By Lemma 2.3 we may assume that Qj ∈ Ω ∀i = 1, . . . ,m. We proceed by induction
on m. For m = 1 the assertion is evidently true. Assume that the points Q1, . . . ,Qm−1 are
already separated by Ai for i = 1, . . . , k. Applying Lemma 2.5 and its proof to Qm and Q1

one may replace the cortege (Q1, . . . ,Qm) by a new one (Q(1)1 (t), . . . ,Q(1)m (t)) so that the

separation still holds for Q
(1)
1 (t), . . . ,Q(1)m−1(t) with a generic t ∈ K, and in addition it holds for

Q
(1)
1 (t) and Q

(1)
m (t). Fixing such a value t1 ∈ K one may apply the same procedure to obtain

a new cortege (Q(2)j (t2))j=1,...,m preserving the former property and adding the separation of

Q
(2)
2 (t2) and Q

(2)
m (t2), and so for. Finally one arrives at a cortege with the desired separation

property. �

Lemma 2.7. For any finite collection of distinct points Q1, . . . ,Qm ∈ OG the stabilizer
StabQ1,...,Qm(G) acts transitively on OG ∖ {Q1, . . . ,Qm}.
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Proof. We proceed by induction on m. The assertion is evidently true for m = 0. Assuming
that it holds for a given m ≥ 0 consider a collection of m+1 distinct points Q1, . . . ,Qm,Qm+1 ∈
OG. By Lemma 2.3 one may assume that these points lie in Ω. Applying Lemma 2.6 one may
suppose that for i = 1, . . . , k the images πi(Qj) ∈ Wi, j = 1, . . . ,m + 1 are all distinct. Then
for every i = 1, . . . , k there exists ai ∈ Ai which vanishes in Q1, . . . ,Qm and does not vanish in
Qm+1.

Consider the Ga-subgroups

Hi(ai) ⊂ StabG(Q1, . . . ,Qm), i = 1, . . . , k .

The orbit of Qm+1 under the action of the stabilizer StabG(Q1, . . . ,Qm) is locally closed (see,
e.g., Proposition 1.3 in [2]) and contains the one-dimensional Hi-orbits of Qm+1, i = 1, . . . , k.
By (i) the tangent vectors to these orbits at Qm+1 span the tangent space TQm+1X. It follows
that the orbit StabG(Q1, . . . ,Qm)(Qm+1) is open in X whatever is the point Qm+1 ∈ OG ∖
{Q1, . . . ,Qm}. Since an open dense orbit is unique one has

StabG(Q1, . . . ,Qm)(Qm+1) = OG ∖ {Q1, . . . ,Qm} .

�

Proof of Theorem 2.2. We have to show that for any two ordered corteges (Q1, . . . ,Qm) and
(Q′

1, . . . ,Q
′
m) in OG there is g ∈ G such that g.Qj = Q′

j, j = 1, . . . ,m. Assuming by induction
that Qi = Q′

i, i = 1, . . . ,m − 1, by Lemma 2.7 one can find g ∈ StabG(Q1, . . . ,Qm−1) such that
g.Qm = Q′

m, as required. �

Corollary 2.8. Let X be a generically flexible affine variety 1 of dimension n ≥ 2. Then
there exists a countable collection of Ga-subgroups {H1, . . . ,Hn, . . .} such that the subgroup

G = ⟨Hi ∣ i ∈ N⟩ ⊂ SAut(X)

acts on X with an open orbit OG and is infinitely transitive on OG.

Proof. The generic flexibility of X implies that there is a collection of n linearly independent
LNDs ∂1, . . . , ∂n ∈ LND (X). Letting Hi = exp(K∂i) choose for any i = 1, . . . , n a finitely
generated subalgebra Ai ⊂ ker∂i separating the general Hi-orbits, and let {ai,j}j∈N be a
countable Hamel basis of Ai viewed as a vector space over K. Letting Hi,j = exp(Kai,j∂i)
consider the group

G = ⟨Hi,j ∣ i = 1, . . . , n, j ∈ N⟩ ⊂ SAut(X) .
Clearly, G acts on X with an open orbit OG and satisfies condition (β) of 2.1. Therefore,
Theorem 2.2 applies and gives the desired conclusion. �

Example 2.9. Let X be a toric affine variety of dimension ≥ 2 with no toric factor. Then
the subgroup G ⊂ SAut(X) generated by all the root subgroups He, where e runs over the
(countable) set of all the Demazure roots of X (see Section 4) acts infinitely transitively in
reg(X). This follows from Corollary 2.8 or, alternatively, from the proof of Theorem 2.1 in
[4].

1That is, the group SAut(X) acts on X with an open orbit.
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3. Group closures and orbits

We gather some facts that will be used in the next section.

3.1. Recall that Aut(X) has a structure of an affine ind-group; see, e.g., [33] for generalities.
In more detail, following [25] or [31, Prop. 2.1] we fix an embedding X ↪ An and introduce in
OX(X) a (positive) degree function. For α ∈ Aut(X) one defines deg(α) to be the maximum
of the degrees of components of α. One can write Aut(X) = limÐ→Σs where

● for s ≥ 1, Σs ∶= {α ∈ Aut(X) ∣ deg(α),deg(α−1) ≤ s} is a closed subvariety of the affine
variety Σs+1;

● for any r, s ≥ 1 the composition yields a morphism Σr ×Σs → Σrs;
● the inversion yields an automorphism of Σs.

The Zariski closure of a subset F ⊂ Aut(X) can be defined as

F = limÐ→(F ∩Σs)
where the overline stands for the Zariski closure in Σs. The Zariski closure of F is a closed
ind-subvariety of the ind-variety Aut(X). An algebraic subgroup of Aut(X) is a subgroup
which is a closed subvariety of some Σs.

Lemma 3.2. (a) The closure G of a subgroup G ⊂ Aut(X) is a closed ind-subgroup of
Aut(X).

(b) If ρ∶A1 → Aut(X) is a morphism such that ρ(t) ∈ G for t ≠ 0 then ρ(0) ∈ G.
(c) Any G-invariant closed subset Y ⊂X is G-invariant.
(d) If G acts on X with an open orbit OG then OG coincides with the open orbit OG of G.
(e) If a normal subgroup G ⊂ Aut(X) acts on X with an open orbit OG then OG = OAut(X).

Proof. (a) Let Gs = G∩Σs. By definition, Gs = G∩Σs. Since Gr ⋅Gs ⊂ Grs and Σr ×Σs → Σrs

is a morphism then Gr × Gs → Grs is a morphism. Since Σ−1
s = Σs and the inversion is an

automorphism of Σs one has G−1
s = Gs and the inversion Gs → Σs extends to a morphism

Gs → Σs which is still the inversion with values in Gs. Now (a) follows.
(b) One has ρ(A1) ⊂ Σs for some s ≥ 1. Hence ρ(A1 ∖ {0}) ⊂ Gs, and so, ρ(0) ∈ Gs.
(c) The statement follows immediately from the fact that the action map Σs ×X →X is a

morphism for any s ≥ 1.
(d) Suppose to the contrary that OG ⊊ OG. Then Y = OG ∖ OG is a nonempty proper

G-invariant closed subset of OG. By (c), Y is G-invariant, a contradiction.
The statement of (e) is a simple exercise. �

3.3. A subgroup G ⊂ Aut(X) generated by a family of connected algebraic subgroups of
Aut(X) is called algebraically generated ([2]). The orbits of G are locally closed subsets of
X in the Zariski toplogy; see [2, Prop. 1.3].

Proposition 3.4. Let G ⊂ Aut(X) be an algebraically generated subgroup. Then the following
hold.

(a) The orbits of G and of G in X are the same. In particular, if G acts on X with an
open orbit OG then G does and OG = OG.

(b) If G acts m-transitively on OG then also G does.

(c) If G acts infinitely transitively on OG then also G does.
7



Proof. (a) Let x ∈ X, and let Y = G.x. By Lemma 3.2(c), Y is G-invariant. The orbits G.x
and G.x ⊃ G.x are both open and dense in Y . Suppose to the contrary that G.x ≠ G.x, and
let Z = G.x ∖G.x. Then Z is a nonempty G-invariant closed subset which meets the orbit
G.x open in Y . Hence Z ⊃ G.x ⊃ G.x. This is a contradiction.

(b) Choose a cortege Q of distinct points Q1, . . . ,Qm ∈ OG. Consider the diagonal action

of Aut(X) on Xm, and let D ⊂ Xm be the union of the big diagonals. Assume that G acts
m-transitively on OG. Then the G-orbit of Q in Xm ∖ D coincides with (OG)m ∖ D. In

particular, it is open. The image of G in Aut(Xm) is contained in the closure of the image
of G in Aut(Xm). Applying (a) one concludes that G.Q = G.Q = (OG)m ∖D, that is, G acts
m-transitively on OG.

Finally, (c) is immediate from (b). �

4. Toric varieties, Cox rings, and derivations

4.1. Toric affine varieties and Demazure roots.

4.1. Recall the combinatorial description of a toric affine variety (see, e.g., [14, Ch. 1], [23,
Sec. 1.3]). Let M be a lattice of rank n, let MQ =M ⊗Q be the associated vector space over
Q, and let

σ∨ ⊂MQ

be a rational convex cone with a nonempty interior (the weight cone). Fix a basis of M .
For m = (m1, . . . ,mn) ∈M by χm one means a Laurent monomial xm1

1 . . . xmnn . Consider the
graded affine algebra

A = ⊕
m∈M∩σ∨

Kχm .

Then X = SpecA is a toric affine variety of dimension n equipped with the n-torus action
defined by the grading. In fact, any toric affine variety arises in this way. The acting algebraic
torus is the torus of characters T = Hom(M,Gm). By duality, M is the character lattice of T.

Consider the dual lattice N = Hom(M,Z) and the dual cone

σ ⊂ NQ, σ = {x ∈ NQ ∣ ⟨x, y⟩ ≥ 0 ∀y ∈ σ∨} .
A ray generator of σ is a primitive lattice vector on an extremal ray of σ. Let Ξ be the set
of ray generators of σ. Assume that X has no toric factor, that is, X cannot be decomposed
into a product Gm × Y where Y is another toric variety. The latter is equivalent to the
fact that the cone σ∨ is pointed, that is, contains no line, and also to the fact that σ is of
full dimension, that is, Ξ contains a basis of NQ. To any vector ρ ∈ N there corresponds a
Gm-subgroup Rρ ⊂ T acting via

t.χm = t⟨ρ,m⟩χm, t ∈ K∗, m ∈ σ∨ ∩M .

Definition 4.2 (Demazure roots and Demazure facets). Let X = SpecA be a toric affine
variety with no toric factor associated to a lattice cone σ∨ ⊂MQ, and let Ξ = {ρ1, . . . , ρk} be
the set of primitive ray generators of σ ⊂ NQ. A Demazure root which belongs to a primitive
ray generator ρi ∈ Ξ is a vector e ∈M such that

(i) ⟨ρi, e⟩ = −1;
(ii) ⟨ρj, e⟩ ⩾ 0 ∀j ≠ i,
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see [15, §3.1], [34], [35]. The rational convex polyhedron Si defined in the affine hyperplane
Hi = {⟨ρi, e⟩ = −1} by (ii) will be called a Demazure facet of σ∨. The Demazure roots belonging
to the ray generator ρi ∈ Ξ are the points in Si ∩M .

Definition 4.3 (Homogeneous derivations). A derivation ∂ ∈ Der(A) is called homogeneous
if ∂ respects the grading, that is, sends any graded piece to another one.

The following description of homogeneous derivations on toric affine varieties completes
the one in [35, Sect. 2].

Proposition 4.4. (a) Any homogeneous derivation ∂ has the form ∂ = λ∂ρ,e for some
λ ∈ K, ρ ∈ N , and e ∈M where

(2) ∂ρ,e(χm) = ⟨ρ,m⟩χm+e ∀m ∈ σ∨ ∩M .

(The lattice vector e is called the degree of ∂.)
(b) Let

Σ∨ = σ∨ ∪
k

⋃
i=1

Si .

Then ∂ = ∂ρ,e(A) ⊂ A if and only if e ∈ Σ∨ ∩M and, in the case where e ∈ Si ∩M ,
∂ = λ∂ρi,e for some λ ∈ K.

(c) ([35, Lem. 2.6 and Thm. 2.7]) A homogeneous derivation ∂ ∈ Der(A) is locally nilpotent
if and only if ∂ = λ∂ρi,e for a Demazure root e ∈ Si and for some λ ∈ K.

The proof is straightforward.

Remark 4.5. The kernel of ∂ρ,e is spanned by the characters χm where m ∈ M belongs to
the hyperplane section τρ of σ∨ defined by ⟨ρ,m⟩ = 0. If e ∈ Si ∩M is a Demazure root then
τi ∶= τρi = ρ∨i is a facet of σ∨. The affine hyperplane Hi spanned by the Demazure facet Si is
parallel to τi.

Definition 4.6. Given a Demazure root e ∈ Si the associated one-parameter unipotent sub-
group He = exp(K∂ρi,e) ⊂ SAut(X) is called a root subgroup.

The next lemma is mainly borrowed in [35, Lem. 1.10].

Lemma 4.7. (a) Any derivation ∂ ∈ Der(A) admits a decomposition

(3) ∂ = ∑
e∈Σ∨∩M

∂e

where ∂e is a homogeneous derivation of degree e.
(b) The set {e ∈ Σ∨ ∩M ∣∂e ≠ 0} is finite. Its convex hull N(∂) is a polytope (called the

Newton polytope of ∂).
(c) If ∂ ∈ LND (A) then for any face τ of N(∂) one has

∂τ ∶= ∑
e∈τ∩M

∂e ∈ LND (A) .

In particular, for any vertex e of N(∂) one has ∂e ∈ LND (A).

Proof. To show (c) it suffices to notice that

(∂τ)l(χm) = (∂l)lτ(χm) = 0 ∀m ∈ σ∨ ∩M and ∀l = l(m) ≫ 1 .

For the rest see [35, Lem. 1.10]. �
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The following lemma is immediate.

Lemma 4.8. The semigroup Si∩M is a finitely generated (τi∩M)-module. For any f ∈ τi∩M
one has

χf∂ρi,e = ∂ρi,e+f ∈ LND (A) .
4.1.1. Iterated commutators on toric varieties. For homogeneous derivations one has the fol-
lowing lemma (cf. [44, Prop. 1 and Lem. 2]).

Lemma 4.9. (a) For two nonzero homogeneous derivations ∂ = ∂ρ,e and ∂′ = ∂ρ′,e′ one has

(4) [∂, ∂′] = ∂ρ̂,ê where ρ̂ = ⟨ρ, e′⟩ρ′ − ⟨ρ′, e⟩ρ ∈ N and ê = e + e′ .
(b) If ρ̂ ≠ 0 then [∂, ∂′] is a homogeneous derivation of degree e+ e′ with the linear form ρ̂.

In particular, e + e′ ∈ Σ∨ ∩M .
(c) ρ̂ = 0 (that is, ∂ and ∂′ commute) if and only if one of the following holds:

– ρ and ρ′ are collinear and ⟨ρ, e⟩ = ⟨ρ, e′⟩ (this holds, in particular, if e, e′ ∈ Si for
some i ∈ {1, . . . , k});

– ρ and ρ′ are non-collinear and ⟨ρ′, e⟩ = ⟨ρ, e′⟩ = 0.

4.10. Given two derivations (or vector fields) U = ∂1 and V = ∂2 in Der(A) we let

(5) admU (V ) = [U, [U, . . . [U,V ] . . .]] =
m

∑
i=0

(m
i
)∂m−i1 ∂2(−∂1)i

where U is repeated m times, see [37]. Thus, admU ∈ End (Der(A)).
Lemma 4.11 (cf. [37]). If U ∈ LND(A) then adU ∈ End (Der(A)) is locally nilpotent, that is,
for any V ∈ Der(A) there exists c(V ) > 0 such that admU (V ) = 0 ∀m > c(V ).

Proof. Let A = K[a1, . . . , ak]. There exists N > 0 such that ∂N1 (aj) = 0 ∀j = 1, . . . , k. In the
last sum in (5) applied to aj certain members of the sum vanish so that it remains just N
first members of the sum. For m≫ 1 the first N terms vanish as well, hence admU (V )(aj) = 0
for j = 1, . . . , k, and so, admU (V ) = 0. �

4.12. We keep U = ∂1 ∈ Der(A) being locally nilpotent. In the sequel we use the following
version of the Baker-Campbell-Hausdorff formula, see, e.g., [12, Thm. 4.14]:

(6) Adexp(U)(V ) = exp(adU)(V ) = V +
∞
∑
m=1

1

m!
admU (V ) .

Due to Lemma 4.11, for a given V = ∂2 the last sum is finite, hence the formula has sense.
The second equality in (6) is just the usual exponential formula for the endomorphism adU
of the vector space Der(A). Due to the first equality in (6), if V is locally nilpotent then
exp(adU)(V ) is as well.

To apply this formula in our setting we need the following simple lemma.

Lemma 4.13. Consider two nonzero homogeneous LNDs U = ∂ρ1,e1 and V = ∂ρ2,e2 in Der(A)
where ei ∈ Si ∩M , i = 1,2. Letting

c2 = ⟨ρ2, e1⟩, d1 = ⟨ρ1, e2⟩, and δ = d1 + 1

and assuming that c2 ≥ 1 one has

admU (V ) = ∂rm,fm ∀m = 0, . . . , d1
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where

(7) rm = d1!

(d1 −m)!ρ2 −mc2
d1!

(d1 −m + 1)!ρ1 and fm =me1 + e2 .

Furthermore, for any d1 ≥ 0 one has

(8) admU (V ) = 0 ∀m ≥ δ + 1

and

(9) adδU(V ) = −c2δ!∂ρ1,fδ ∈ LND(A) where fδ = δe1 + e2 ∈ S1 ∩M .

Proof. The assertions follow immediately from (4) by recursion on m. �

Corollary 4.14. Under the assumptions of Lemma 4.13 let ∂ = Adexp(U)(V ). Then the
Newton polytope N(∂) is the segment [e2, e2 + δe1].

Proof. Applying formula (6), by Lemma 4.13 one obtains:

∂ = V +
δ

∑
m=1

1

m!
∂m

where ∂m = ∂rm,fm ∈ Der(A) is a homogeneous derivation of degree fm = me1 + e2. Now the
result follows. �

4.1.2. Der(A) as a graded Lie algebra. Given a lattice vector e ∈ Σ∨ consider the linear
subspace

Le = span{∂ρ,e}ρ∈N ⊂ Der(A)
generated by the homogeneous derivations of A of degree e. By Lemma 4.9 one has [Le,Le′] ⊂
Le+e′ . Hence, the Lie algebra Der(A) is M -graded:

Der(A) = ⊕
e∈M
Le where Le ≠ {0} ⇔ e ∈ Σ∨ ∩M ,

see Proposition 4.4(b) and Lemma 4.7(a).
Any subgroup T of the torus T acts by conjugation on Der(A), and so, induces a grading

of Der(A) compatible with the M -grading, see, e.g., [29].

Example 4.15. Consider the standard action of the 2-torus T on A2 = SpecK[x, y].
This action induces an N2-grading on Der(K[x, y]) with graded pieces Dere(K[x, y]) where
e = (i, j) ∈ Z2 runs over the lattice vectors with i, j ≥ −1 and (i, j) ≠ (−1,−1). The piece
Dere(K[x, y]) consists of all the homogeneous derivations of K[x, y] of degree e. For i, j ≥ 0
one has

Dere(K[x, y]) = {xiyj (ax ∂
∂x

+ by ∂
∂y

) ∣a, b ∈ K} .

The pieces which correspond to the Demazure facets

(10) S1 ∩M = {(−1, j) ∣ j ∈ Z≥0} and S2 ∩M = {(i,−1) ∣ i ∈ Z≥0}
are

Der(−1,j)(K[x, y]) = {ayj ∂
∂x

∣a ∈ K} resp., Der(i,−1)(K[x, y]) = {axi ∂
∂y

∣a ∈ K} .
11



Any one-parameter subgroup T ⊂ T induces a Z-grading on both K[x, y] and Der(K[x, y]).
Letting lT be the integral linear form on Z2 associated with T and lT = m be a supporting
affine line for the Newton polytope N(∂), consider the corresponding T -principal part of ∂,

(11) ∂T = ∑
e∈{lT =m}∩Z2

∂e ∈ Der(K[x, y]) ,

where ∂e stand for the homogeneous component of ∂ of degree e in decomposition (3). Ac-
cording to Lemma 4.7, if ∂ is locally nilpotent then also ∂T is. In particular, for any vertex
e of the Newton polytope N(∂) the corresponding derivation ∂e is locally nilpotent. Conse-
quently, all the vertices of the Newton polytope N(∂) are situated on the Demazure facets
(10). Hence the Newton polytope N(∂) is either a quadruple, a triangle, a line segment, or
finally a point.

4.2. Degeneration techniques. We explore the M -grading on Der(A) in the following
degeneration trick.

Proposition 4.16. Consider a subgroup G ⊂ Aut(X) normalized by a one-parameter sub-
group T of the torus T. Let H = exp(K∂) be a Ga-subgroup of G where ∂ ∈ LND (A), and let
∂T ∈ LND (A) be the T -principal part of ∂. Then HT = exp(K∂T ) is a Ga-subgroup of G.

Proof. Let N(∂) be the Newton polytope of ∂, let lT be the linear form on M associated with
T , and let

lmax = max{lT ∣N(∂)} and lmin = min{lT ∣N(∂)} .
Thus, one has ∂T = ∂τ for the face τ of N(∂) on which lT achieves its maximal value.

The action of T on Der(A) defines a Z-grading. Any ∂ ∈ Der(A) admits a decomposition
according with this grading:

∂ =
lmax

∑
s=lmin

∂s where ∂s = ∑
e∈N(∂)∩{lT =s}

∂e ∈ Der(A) with ∂e ∈ Le .

Given an isomorphism T ≅ Gm, an element tλ ∈ T with λ ∈ Gm acts on A via

tλ.χ
m = λlT (m)χm ∀m ∈ σ∨ .

It follows that
t−1
λ ○ ∂s ○ tλ = λ−s∂s .

Therefore, one has
t−1
λ ○ exp(τ∂s) ○ tλ = exp(τλ−s∂s)

and, furthermore,

t−1
λ ○ exp(τ∂) ○ tλ = exp(

lmax

∑
s=lmin

τλ−s∂s) .

Letting τ = hλlmax one obtains:

t−1
λ ○ exp(τ∂) ○ tλ = exp(h

lmax

∑
s=lmin

λ(lmax−s)∂s) Ð→ exp(h∂T ) as λ→ 0

on any monomial χm ∈ A, m ∈ σ∨. This convergence guarantees the convergence with respect
to the ind-group structure on Aut(X) associated to any given filtration A = ⋃∞

r=1Ar by finite
dimensional graded subspaces of A such that Ar ⊂ Ar+1, see Lemma 3.2(b).
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Since t−1
λ ○ exp(τ∂) ○ tλ ∈ G for any λ ∈ K∗ and τ ∈ K one concludes that exp(h∂T ) ∈ G for

any h ∈ K. �

Corollary 4.17. Under the assumptions of Proposition 4.16 suppose that G is normalized by
the torus T. Then any vertex e of the Newton polytope N(∂) belongs to a Demazure facet Si
and the root subgroup He is contained in G.

Proof. It suffices to apply Proposition 4.16 to a one-parameter subgroup T ⊂ T such that
lT ∣N(∂) achieves its maximum at e. �

Lemma 4.18. Letting n ≥ 2 consider two roots ei ∈ Si ∩M , i = 1,2. Let δ = ⟨ρ1, e2⟩ + 1.

Suppose that δe1 + e2 ∈ S1, that is, ⟨ρ2, e1⟩ ≥ 1. Then one has Hδe1+e2 ⊂ ⟨He1 , He2⟩ .
Proof. This follows by Corollaries 4.14 and 4.17 applied to U = ∂ρ1,e1 , V = ∂ρ2,e2 , and ∂ =
exp(adU)(V ) = Adexp(U)(V ), see (6). �

4.3. Cox ring and total coordinates. Let us recall some generalities on the Cox ring
R(X) of a toric affine variety X, see, e.g., [1, Ch. 2], [13, Sect. 1], [14, Ch. 5] for detailed
expositions.

4.19. As before, Ξ = {ρ1, . . . , ρk} stands for the set of primitive ray generators of the cone
σ ⊂ NQ. To any ray ρi ∈ Ξ there corresponds a facet ρ∨i of the dual cone σ∨ and a T-
invariant prime Weil divisor Di = D(ρi) on X. The classes [D1], . . . , [Dk] generate the
class group Cl(X). The Cox ring R(X) is the polynomial ring K[x1, . . . , xk] graded by the
class group Cl(X) in such a way that any variable xi is a homogeneous element of degree
deg(xi) = [Di] ∈ Cl(X), i = 1, . . . , k. This defines the grading uniquely.

Let T(k) ≅ (Gm)k be the standard k-torus acting on Ak, and let FCox = Hom (Cl(X),Gm)
be the dual group of the group Cl(X). This is a quasitorus, that is, the direct product of
an algebraic torus and a finite Abelian group. By duality, Cl(X) is the group of characters
of FCox. The Cl(X)-grading on K[x1, . . . , xk] defines an action on Ak of the quasitorus
FCox ⊂ T(k). The structure ring OX(X) is canonically isomorphic to the ring of invariants
K[x1, . . . , xk]FCox . This yields (canonical) isomorphisms X ≅ Ak//FCox and T ≅ T(k)/FCox.

The linear forms ρ1, . . . , ρk on MQ define a monomorphism of lattices ϕ∶M ↪ Zk which
extends to the linear embedding

Φ∶MQ ↪ Ak
Q, v ↦ (⟨ρ1, v⟩, . . . , ⟨ρk, v⟩) .

The coordinates of the image Φ(m) will be called the total coordinates of m ∈M .

We let ∆∨
≥0 ⊂ Ak

Q be the positive octant, and let Ŝi = Si(∆∨
≥0) be the ith Demazure facet of

∆∨
≥0. The image Φ(e) of a Demazure root e ∈ Si is a Demazure root, say, ê ∈ Ŝi. Any root

vector ê ∈ Φ(MQ)∩Zk appears in this way. The action of the root subgroup He on X induces
the action of the root subgroup HΦ(e) on Ak, see [13, Sect. 4]. In more detail, one has the
following Lemma 4.20 (cf. [13, Lem. 4.4]). Let us intruduce the necessary notation.

For an arbitrary lattice vector e = (c1, . . . , ck) ∈ Zk we let xe = xc11 ⋯x
ck
k . For e ∈ S1 ∩M one

has ê = (−1, c2, . . . , ck) ∈ Zk where ci ∈ Z≥0, i = 2, . . . , k. The root subgroup Hê acts on Ak via

(12) (x1, . . . , xk) ↦ (x1 + txê+ε1 , x2, . . . , xk), t ∈ K ,

where (ε1, . . . , εk) is the standard basis in Ak and xê+ε1 = xc22 ⋯x
ck
k .
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Lemma 4.20. (a) A Demazure root ê ∈ Ŝi∩Zk belongs to the image Φ(Si∩M) if and only
if deg(xê) = 0, that is, xê ∈ Frac (K[x1, . . . , xk])FCox.

(b) The subgroups Hê and FCox of Aut(Ak) commute if and only if ê = Φ(e) for a root e of
σ∨. In the latter case the action of the root subgroup Hê on Ak descends to the action
of the root subgroup He on X under the quotient morphism Ak →X = Ak//FCox.

Proof. (a) Recall that the lattice of T-invariant divisors on X is generated by D1, . . . ,Dk.
One may assume that i = 1. One has

deg(ê) = 0⇔ [D1] = c2[D2] + . . . + ck[Dk] in Cl(X) .
The latter equality amounts to

(13) c2D2 + . . . + ckDk −D1 = div (χm) ∈ Princ(X)T for some m ∈M
where

div (χm) =
k

∑
i=1

⟨ρi,m⟩Di .

Thus, (13) admits a solution m ∈M if and only if

⟨ρ1,m⟩ = −1 and ⟨ρi,m⟩ = ci ≥ 0 ∀i = 2, . . . , k ,

that is, if m = e ∈ S1 ∩M is a Demazure root and ê = Φ(e).
(b) The action (12) on Ak commutes with the FCox-action on Ak if and only if the LND

∂ε∨1 ,ê = x
c2
2 ⋯x

ck
k ∂/∂x1 has zero FCox-degree, that is, if deg(x1) = deg(xê+ε1) or, which is equiv-

alent,

[D1] = c2[D2] + . . . + ck[Dk] .
So, the first assertion of (b) follows by an argument used in the proof of (a). The second
one is a simple consequence of the first. Indeed, the LND ∂ε∨1 ,ê ∈ LND (K[x1, . . . , xk]) of
FCox-degree zero restricts to the ring of invariants K[x1, . . . , xk]FCox = OX(X) yielding ∂ρ1,e ∈
LND (OX(X)). Hence the Hê-action on Ak descends to the He-action on X. �

Remark 4.21. The connected group Hê normalizes FCox in Aut(Ak) if and only if these
groups commute. Indeed, Aut(FCox) is a finite extension of GL(l,Z), hence a discrete group.

5. Infinite transitivity: the case of toric varieties

In this section we apply Theorem 2.2 to toric affine varieties X with no toric factor. It
is known ([4, Thm. 2.1]) that the action of SAut(X) on the smooth locus reg(X) is infin-
itely transitive. However, SAut(X) is a huge group. Under a mild additional assumption
we construct in Theorem 5.19 a subgroup G ⊂ SAut(X) which still acts infinitely transi-
tively in reg(X) and is generated by a finite number of root subgroups, as it is predicted by
Conjecture 1.1. We start with the case where X is an affine space.

5.1. Infinite transitivity on the affine spaces: an example.

5.1. The affine space An = SpecK[x1, . . . , xn] can be regarded as a toric variety. The mutually
dual lattices N and M are the standard lattices of integer vectors N = Zn ⊂ An

Q and M =
Zn ⊂ (An

Q)∗. The cones σ ⊂ An
Q and σ∨ ⊂ (An

Q)∗ are the positive octants. The ray generators
ρ1, . . . , ρn ∈ N form the standard basis of An

Q. The dual basis (ε1, . . . , εn) is the standard base
14



of the lattice M . The LNDs associated with the Demazure roots ei = −εi ∈ Si are the partial
derivatives

∂i = ∂/∂xi = ∂ρi,ei ∈ LND (A), i = 1, . . . , n .

For a lattice vector m = (m1, . . . ,mn) ∈M we write xm = xm1
1 xm2

2 ⋯xmnn . Given a root vector
e ∈ Si ∩M the associated root subgroup

He = exp(Kxe+εi∂i) ⊂ SAut(An)
acts on An via elementary transformations

x = (x1, . . . , xn) ↦ (x1, . . . , xi−1, xi + txe+εi , xi+1, . . . , xn) where t ∈ K .

For instance, letting Hi,j = exp(Kx2
j∂i) where j ≠ i the root subgroups H1,2 and H2,3 act on

An via

(14) (x1, . . . , xn) ↦ (x1 + tx2
2, x2, . . . , xn) resp. (x1, . . . , xn) ↦ (x1, x2 + tx2

3, x3, . . . , xn)
where t ∈ K. To simplify the notation we write just the coordinates of the image for such an
action. The following result confirms Conjecture 1.1 in the case X = An, n ≥ 2.

Theorem 5.2. Consider the action of the symmetric group S(n) on An by permutations.
Then for any n ≥ 3 the subgroup

G = ⟨H1,2, S(n)⟩ ⊂ Aut(An)
acts infinitely transitively in OG = An ∖ {0}.

The following corollary is straightforward.

Corollary 5.3. For n ≥ 3 the subgroup ⟨H1,2,SL (n,K)⟩ ⊂ Aut(An) acts infinitely transitively
in An ∖ {0}.

The proof of Theorem 5.2 is preceded by the following lemmas.

Lemma 5.4. Assume that Hu ⊂ G where u = (−1, c2, . . . , cn) ∈ S1 ∩M with c2 ≥ 1. Letting
v = (0,−1,2,0, . . . ,0) ∈ S2 ∩M consider the root vector

e = u + v = (−1, c2 − 1, c3 + 2, c4, . . . , cn) ∈ S1 ∩M .

Then He ⊂ G.

Proof. This follows immediately from Lemma 4.18. Indeed, the pair (u, v) satisfies the as-
sumptions of this lemma with δ = 1. �

Lemma 5.5. For three indices s, i, j ∈ {2, . . . , n} where i ≠ j consider a root vector of the
form

(15) w = (−1,1, . . . ,1,2) + 3ksεs + ki,j(εi + εj) ∈ S1 ∩M .

Then Hw = exp(Kxw+ε1∂1) ⊂ G for any ks, ki,j ∈ Z≥0.

Proof. Let vi = −εi+2εi+1, i = 1, . . . , n−1. The Demazure root u = v1 = (−1,2,0, . . . ,0) ∈ S1∩M
generates the root subgroup Hu = H1,2 ⊂ G. Starting with u and adding v2, . . . , vn−1 one gets
the root vector w0 = (−1,1, . . . ,1,2) ∈ S1 ∩M . By Lemma 5.4 the associated root subgroup
Hw0 is contained in G. The same conclusion holds if one adds to w0 the lattice vectors

(−εi + 2εj) + (2εi − εj) = εi + εj and (εi + εj) + (2εi − εj) = 3εi .

Iterating one arrives at the desired conclusion. �
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We need also the following elementary lemma.

Lemma 5.6. For n ≥ 4 the vectors

3εi and εi + εj, i ≠ j, i, j ≥ 2

span the sublattice L = ⟨ε2, . . . , εn⟩ ⊂M of rank n − 1.

Proof. One has

ε2 = (ε3 + ε4) + 2(ε2 + ε4) − (ε2 + ε3) − 3ε4 .

Similar expressions hold for εi, i = 3, . . . , n. �

Proof of Theorem 5.2. By our assumption one has G ⊃Hi,j, i ≠ j, i, j ∈ {1, . . . , n}. By Lemma

5.5, G ⊃Hw for any root vector w in (15). Letting w0 = (−1,1, . . . ,1,2) consider

∂̂1 = xw0∂/∂x1 and A1 = K[x3
i , xixj ∣ i ≠ j, i, j ≥ 2] ⊂ ker ∂̂1 .

By Lemma 5.5, G ⊃ exp(Kf∂̂1) for any f ∈ A1. The conjugation by the S(n)-action yields a

collection {(∂̂i,Ai)}i=1,...,n and G ⊃ exp(Kf∂̂i) for any f ∈ Ai.
By Lemma 5.6 for n ≥ 4 this collection satisfies condition (β) of 2.1. For n = 3 it sat-

isfies condition (α) of 2.1, that is, the function field Frac (K[x1, x2, x3]) is generated by
{Frac (Ai)}i=1,2,3. By Theorem 2.2, G acts infinitely transitively on the open orbit OG. By
virtue of Proposition 3.4(c) the same is true for G and the open orbit OG = An ∖ {0}. �

Remarks 5.7. 1. Theorem 5.2 does not hold any longer if one replaces x1 + x2
2 in (14) by

x1 + xk2 with k ≥ 3. Indeed, under such a replacement any g ∈ G sends the pair of points
(Q, ωQ) with Q ∈ An ∖ {0} and ωk−1 = 1 to a pair (g(Q), ωg(Q)). Thus, the 2-transitivity of
G fails.

2. Theorem 5.2 does not hold in the case n = 2. More generally, fixing a, b ∈ Z≥0 consider
the root subgroups

H1 ∶ (x, y) ↦ (x + t1ya, y) and H2 ∶ (x, y) ↦ (x, y + t2xb), t1, t2 ∈ K .

Claim. If the group G = ⟨H1, H2⟩ acts 2-transitively on its open orbit then one has ab = 2.

Proof. Assume first that ab = 0; let, say, a = 0. Then H1 acts on A2 by translations, and G
acts on the first coordinate also by translations. Hence one has x(g.P )−x(g.Q) = x(P )−x(Q)
for any P,Q ∈ A2. The latter is an obstacle to the 2-transitivity.

Suppose that a = b = 1. Then G = SL(2,K). However, a linear group preserves the
collinearity, hence it does not act 2-transitively on An for n ≥ 2.

Let further ab > 2. Fixing a primitive root of unity ω of degree ab − 1 > 1 consider the set

S = {(P,Q) ∈ A2 ×A2 ∣P = (x, y), Q = (ωx, ωby)} .
It is easily seen that S is invariant under the diagonal action of G on A2 ×A2. Once again,
this makes an obstacle to the 2-transitivity. �

It would be interesting to determine the degree of transitivity of the G-action on A2 ∖ {0}
in the remaining case ab = 2. We can show that this action is 2-transitive. However, we do
not know whether a higher transitivity holds.
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5.2. Infinite transitivity on An and cotameness.

5.8. Let Affn stand for the group of affine transformations of the affine space An, and let

SAffn = {f ∈ Affn ∣Jac (f) = 1} = ⟨Transln, SL (n,K)⟩
be the subgroup of volume preserving affine transformations, where Jac stands for the Jaco-
bian. Notice that the subgroup of translations Transln has generators

Hi = exp(K∂i), i = 1, . . . , n .

Letting
H(i, j) = exp(Kxj∂i), i, j ∈ {1, . . . , n}, i ≠ j

the group SL (n,K) is generated by H(n,1) and the root subgroups {H(i, i + 1)}i=1,...,n−1

corresponding to the root system of type An−1. Therefore,

(16) SAffn = ⟨H1, H(1,2), . . . ,H(n − 1, n),H(n,1)⟩
is generated by n + 1 root subgroups. (In fact, there exists a smaller generating set.)

Definition 5.9 (cf. [18]). Let Tamen stand for the tame subgroup of Aut(An). Consider the
subgroup

STamen = {g ∈ Tamen ∣ Jac(g) = 1} ⊂ Tamen .

One says that h ∈ Aut(An) ∖Affn is cotame if ⟨Affn, h⟩ ⊃ Tamen and topologically cotame if

⟨Affn, h⟩ ⊃ Tamen.

The following result due to Edo ([17, Thm. 1.2]) extends and refines the earlier results of
Bodnarchuk ([8, Thm. 3]) and Furter ([24, Thm. D]).

Theorem 5.10. For n ≥ 2 any element h ∈ Aut(An) ∖Affn is topologically cotame.

Remark 5.11. Recall that the triangular (de Jonquères) subgroup Bn ⊂ Aut(An) is the
subgroup generated by the torus T and the triangular root subgroups exp(xm∂i) where xm =
xmi+1i+1 ⋯xmnn , i = 1, . . . , n. It is known ([9], [10, 1.4 and Thm. 1.8], [18]) that for n ≥ 3 any
triangular h ∈ Aut(An)∖Affn is cotame, while there is no triangular cotame h ∈ Aut(A2)∖Aff2.

Using Theorem 5.10 it is not difficult to deduce the following result on infinite transitivity
(see [7], [8], [10, Thm. 1.2]).

Theorem 5.12. For any n ≥ 2 and any h ∈ Aut(An) ∖Affn the group ⟨Affn, h⟩ acts infinitely
transitively on An.

Proof. According to Theorem 5.10, Affn is a maximal closed subgroup in Aut(An). Its nor-
malizer Nn is a closed subgroup of Aut(An) containing Affn. Since Affn is not a normal
subgroup of Aut(An), that is, Nn ≠ Aut(An), one has Nn = Affn.

Since h ∉ Affn it does not normalize Affn, that is, hAffn h−1 ≠ Affn. Pick up g ∈ hAffn h−1∖
Affn. By Theorem 5.10 one has ⟨Affn, g⟩ ⊃ Tamen. Letting

G = ⟨Affn, hAffnh
−1⟩ ⊃ ⟨Affn, g⟩

one obtains G ⊃ Tamen. Since Tamen acts infinitely transitively in An then also G does. The
group G is algebraically generated. By Proposition 3.4(c), G acts infinitely transitively in
An. Since G ⊂ ⟨Affn, h⟩ the latter group does as well. �
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Remark 5.13. Let g = α1g1⋯αlglαl+1 ∈ Aut(An) where Jac(gi) = 1 and αi ∈ Affn. If Jac(g) =
1 then there exists another decomposition

g = β1h1⋯βlhlβl+1 with Jac(hi) = 1 and βi ∈ SAffn, i = 1, . . . , l

where

βi = ci−1αic
−1
i , i = 1, . . . , l + 1, and hi = cigic−1

i , i = 1, . . . , l

with

c0 = 1, ci =
i

∏
j=1

dj, di = Jac(αi), and so, cl+1 =
l+1

∏
j=1

dj = 1 .

In the setting of Theorem 5.10 this observation yields the following corollary.

Corollary 5.14. For any h ∈ SAut(An) ∖ SAffn one has

⟨SAffn, h⟩ ⊃ STamen .

The group STamen acts infinitely transitively on An. This leads to the following result.

Corollary 5.15. For any n ≥ 2 and any h ∈ SAut(An) ∖ SAffn the subgroup ⟨SAffn, h⟩ ⊂
SAut(An) acts infinitely transitively on An.

Let us provide an alternative direct proof of a similar result which does not apply the
notion of cotameness.

Theorem 5.16. For any n ≥ 2 and any non-affine root subgroup Hu ⊂ Aut(An) the subgroup

⟨SAffn, Hu⟩ ⊂ STamen

generated by n+ 2 root subgroups of Aut(An) acts infinitely transitively on An. Furthermore,
for n = 2 there exists a collection of three root subgroups with the latter property.

Proof. Suppose first that n ≥ 3 and u = (−1, c2, . . . , cn) ∈ S1 ∩ Zn. Since Hu is not affine one
has c2 + . . . + cn ≥ 2. Letting ei = −εi, i = 1, . . . , n and assuming that ci ≥ 1 one can deduce
from Lemma 4.18 the relations

(i) Hu+ei ⊂ ⟨Hu,Hei⟩;
(ii) Hu+ei−ej ⊂ ⟨Hu,Hei−ej⟩ ∀j ≥ 2, j ≠ i;
(iii) H2u+ei−e1 ⊂ ⟨Hu,Hei−e1⟩.

Claim. One has Hv ⊂ G ∶= ⟨SAffn, Hu⟩ for any root subgroup Hv with v ∈ S1 ∩Zn.

Proof of the Claim. Applying (ii) and (iii) successefully to u and the vectors obtained from
u on each step one can get a root u′ ∈ S1 ∩Zn whose coordinates dominate the corresponding
coordinates of v and such that Hu′ ⊂ G. Applying now (i) one can conclude. �

Applying the cyclic permutations of coordinates one can see that the Claim holds as well
for any Demazure root v. According to Theorem 2.2 the group G acts infinitely transitivily
on its open orbit OG. Being algebraically generated the group G = ⟨SAffn, Hu⟩ does as well,
see Proposition 3.4(c). Since G ⊃ Transln one has OG = An. This gives the first assertion for
n ≥ 3.

Let further n = 2. Consider two affine and one non-affine roots

e2 = (0,−1) ∈ S2, v = e2 − e1 = (1,−1) ∈ S2, and u = (−1,2) ∈ S1 .
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We claim that the group G = ⟨He2 , Hu, Hv⟩ acts infinitely transitively on A2. Indeed, by (i)

one has Hu+e2 ⊂ ⟨Hu, He2⟩ where u + e2 = (−1,1) ∈ S1. Since

SL(2,K) = ⟨Hu+e2 , Hv⟩ and SAff2 = ⟨SL(2,K), He2⟩
it follows that ⟨SAff2, Hu⟩ ⊂ G for the non-affine group Hu.

The rest of the proof proceeds likewise in the case n ≥ 3. Notice first that He1 ⊂ SAff2 ⊂ G.
Let ui = (−1, i) ∈ S1. We know already that Hui ⊂ G for u0 = e1, u1 = u + e2, and u2 = u.
Assume by induction that Hui ⊂ G for i = 1, . . . , d where d ≥ 2. Due to (iii) one has Hu2d−1 ⊂ G
where u2d−1 = 2ud +v. Then by (i) one has Hu2d−2 ⊂ G where u2d−2 = u2d−1 + e2, etc., Hud+1 ⊂ G.

By induction, He ⊂ G for any e = ui ∈ S1 ∩M . Since SL(2,K) ⊂ G as well one has Hf ⊂ G for

any f = (j,−1) ∈ S2 ∩M . It follows by the Jung-van der Kulk Theorem that G = SAut(A2).
The latter group acts infinitely transitively in A2. Then also G does in view of Proposition
3.4(c). �

The following result completes the picture.

Theorem 5.17. For any n ≥ 3 one can find four Ga-subgroups U1, . . . , U4 ⊂ SAut(An) such
that

G = ⟨U1, . . . , U4⟩ ⊂ SAut(An)
acts infinitely transitively on An.

Proof. Let u = (−1,2,0, . . . ,0) ∈ S2. Using Lemma 4.18 one can deduce the relations

(17) Hu+e2 =He1−e2 = exp(Kx) ⊂ ⟨Hu, He2⟩ ∩ SL(n,K)
where x ∈ sl(n,K) is the infinitesimal nilpotent generator of He1−e2 . According to [27, Sect.
4.1] there exists a regular semisimple element h ∈ sl(n,K) such that sl(n,K) = Lie⟨x,h⟩.
According to [47, Thm. 1] one can write h = [y, z] where y, z ∈ sl(n,K) are nilpotent matrices.
Hence sl(n,K) = Lie⟨x, y, z⟩. Letting

Ux =He1−e2 = exp(Kx), Uy = exp(Ky), and Uz = exp(Kz)
it follows that

SL(n,K) = ⟨Ux, Uy, Uz⟩, and so, SAffn = ⟨Ux, Uy, Uz, He2⟩ ⊂ ⟨Uy, Uz, He2 , Hu⟩
where Hu is not affine. Let G = ⟨Uy, Uz, He2 , Hu⟩. By Theorem 5.16 the subgroup

⟨SAffn, Hu⟩ ⊂ G acts infinitely transitively on An. Hence G does. By Proposition 3.4(c)
the same holds for G. �

5.3. Infinite transitivity on toric varieties.

5.18. All the toric varieties in this paper are supposed to be normal, in particular, smooth in
codimension 1. We consider below the class of toric affine varieties X smooth in codimension
2. The latter condition is equivalent to the following one: any two-dimensional face τ of the
cone σ ⊂ NQ of X is regular, that is, the pair of ray generators (ρi, ρj) of τ can be included
in a base of the lattice N . For instance, the cone σ ⊂ A3

Q with the primitive ray generators

ρi = εi, i = 1,2,3, ρ4 = ε1 + ε2 − ε3

defines a toric threefold X with a single singular point; this X is smooth in codimension 2.

The following theorem is the main result of this section.
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Theorem 5.19. Let X be a toric affine variety of dimension n ≥ 2 with no toric factor.
Suppose that X is smooth in codimension 2. Then one can find a finite collection of root
subgroups H1, . . . ,HN such that the group

G = ⟨H1, . . . ,HN⟩
acts infinitely transitively in the regular locus reg(X).

Proof. If n = 2 then X is smooth, hence X ≅ A2. In this case the result (with N = 3) follows
from Theorem 5.16.

Assume in the sequel that n ≥ 3. Due to Theorem 2.1 in [4], reg(X) coincides with the
open orbit of the group SAut(X). By [2, Prop. 1.5] there exists a finite collection of root
subgroups H1, . . . ,Hr such that the group generated by H1, . . . ,Hr acts transitively in reg(X)
too. To get infinite transitivity we need to enlarge this collection.

Recall that Ξ stands for the set of the primitive ray generators ρ1, . . . , ρk of the cone
σ ⊂ NQ associated with X. Given a ray generator, say, ρ1 ∈ Ξ there exists m̄1 ∈M such that
the hyperplane Lm̄1 = {v ∈ NQ ∣ ⟨v, m̄1⟩ = 0} is strictly supporting for the ray Q≥0ρ1 of σ, that
is,

⟨ρ1, m̄1⟩ = 0 and ⟨ρj, m̄1⟩ > 0 ∀j = 2, . . . , k .

Since ρ1 is a primitive lattice vector its coordinates are coprime. So, ⟨ρ1, m̆1⟩ = −1 for some
m̆1 ∈M . Fix r ≫ 1 and a root vector

e1 = rm̄1 + m̆1 ∈ S1 where ⟨ρj, e1⟩ ≥ 2 ∀j = 2, . . . , k .

Up to renumbering one may suppose that the 2-cones τ1,2 and τ1,3 spanned by the pairs of
ray generators (ρ1, ρ2) and (ρ1, ρ3), respectively, are two-dimensional faces of σ containing
the common ray Q≥0ρ1. By our assumption, τ1,2 is regular. Hence one can find m̆1,2 ∈M such
that

⟨ρ1, m̆1,2⟩ = 0 and ⟨ρ2, m̆1,2⟩ = −1 .

Choose a strictly supporting hyperplane L1,2 = {⟨v, m̄1,2⟩ = 0} of the face τ1,2 of σ where
m̄1,2 ∈M satisfies

⟨ρ1, m̄1,2⟩ = ⟨ρ2, m̄1,2⟩ = 0 and ⟨ρj, m̄1,2⟩ > 0 ∀j ≥ 3 .

Fixing r ≫ 1 consider the root

(18) e2 = rm̄1,2 + m̆1,2 ∈ S2 with ⟨ρ1, e2⟩ = 0, ⟨ρ2, e2⟩ = −1, and ⟨ρj, e2⟩ ≥ 2 ∀j ≥ 3 .

Choose a root e3 ∈ S3 in a similar fashion. Then in the total coordinates one has

ê1 = (−1,∗, . . . ,∗), ê2 = (0,−1,∗, . . . ,∗), and ê3 = (0,∗,−1,∗ . . . ,∗)
where the stars are integers ≥ 2.

Let τ∨1,2 be the face of σ∨ of codimension 2 dual to τ1,2, that is,

τ∨1,2 = {m̄1,2 ∈M ∣ {⟨ρi, m̄1,2⟩ = 0, i = 1,2

⟨ρi, m̄1,2⟩ ≥ 0, i = 3, . . . , k
} .

Choosing n − 2 linearly independent primitive ray generators {η1, . . . , ηn−2} of τ∨1,2 consider
the sequence of roots

(19) u1 = e2, u2 = e2 + η1, . . . , un−1 = e2 + ηn−2 ∈ S2 ∩M
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with total coordinates ûi = (0,−1,∗, . . . ,∗) where ” ∗ ” ≥ 2. The lattice vectors

(20) v1 = u1 + e3 = e2 + e3, v2 = u2 + e3, . . . , vn−1 = un−1 + e3 ∈ τ1

have total coordinates v̂i = (0,∗, . . . ,∗) where ” ∗ ” ≥ 1. We claim that these vectors are
linearly independent, that is, v1 = e2 + e3 ∉ span(η1, . . . , ηn−2) =∶ W . Indeed, any η ∈ W has
total coordinates (0,0,∗, . . . ,∗) whereas ⟨ρ2, v1⟩ > 0.

Claim. Consider the cone ω ⊂ τ1 of dimension n−1 with ray generators v1, . . . , vn−1. Consider
also the submonoid M1 = Z≥0v1 + . . . +Z≥0vn−1 of ω of rank n − 1 and the subgroup

G1 = ⟨He1 ,Hu1 ,Hu2 , . . . ,Hun−1 ,He3⟩ ⊂ SAut(X) .
Then one has Hw ⊂ G1 for any root w ∈ e1 +M1 ⊂ S1 ∩M .

Proof of the claim. The assertion is true for w = e1. Assume by recursion that Hw ⊂ G1 for
some root w ∈ e1 +M1. It suffices to show that then the same holds as well for any root
w + vi ∈ e1 +M1, i = 1, . . . , n − 1.

Notice that ŵ = (−1,∗, . . . ,∗) where ”∗ ” ≥ 2. Since ⟨ρ2,w⟩ ≥ 1 the pair (w,ui) satisfies the
assumptions of Lemma 4.18 with ⟨ρ1, ui⟩ = 0 and δ = 1 for any i = 1, . . . , n − 1. Applying the
recursive hypothesis and Lemma 4.18 one deduces that

Hw+ui ⊂ ⟨Hw,Hui⟩ ⊂ G1 ∀i = 1, . . . , n − 1 .

Likewise, since ⟨ρ3,w + ui⟩ ≥ 1 the pair (w + ui, e3) satisfies the assumptions of Lemma 4.18
with ⟨ρ1, e3⟩ = 0 and δ = 1 for any i = 1, . . . , n − 1. Applying Lemma 4.18 one deduces by (20)
that

Hw+vi ⊂ ⟨Hw+ui ,He3⟩ ⊂ G1 ∀i = 1, . . . , n − 1 .

This yields the inductive step and ends the recursion. �

Now one can constitute the data verifying the assumptions 2.1 of Theorem 2.2. Recall that
we fixed already a collection of root subgroups H1, . . . ,Hr such that the open orbit of the
group ⟨H1, . . . ,Hr⟩ coincides with reg(X).

Letting ∂1 = ∂ρ1,e1 ∈ LND(OX(X)) consider the subalgebra

A1 = K[χv ∣ v ∈ M1] = K[χv1 , . . . , χvn−1] ⊂ ker(∂1) ,
see Remark 4.5. According to the Claim for any f ∈ A1 the replica exp(Kf∂1) of He1 is a
subgroup of G1. Since rank (M1) = n − 1 one has

[Frac(ker(∂1)) ∶ Frac(A1)] < +∞ .

Hence there exists b1 ∈ ker∂1 such that Frac (ker∂1) is generated by b1 and Frac (A1). Accord-
ing to Remark 4.5 one can write b1 = ∑s

j=1 cjχ
mj where mj ∈ τ1 ∩M . Then H = exp(Kb1∂1) is

contained in the product of the root subgroups Hr+j ∶= exp(Kχmj∂1), j = 1, . . . , s.
Choose linearly independent ray generators ρ1, . . . , ρn ∈ Ξ. Repeating the same construction

one obtains for any i = 1,2, . . . , n a triple (Gi, ∂i,Ai) with properties similar to the ones of
(G1, ∂1,A1). Let now

G = ⟨H1, . . . ,Hr+s,G1, . . . ,Gn⟩ ⊂ SAut(X) .
The group G satisfies the assumptions 2.1(γ) of Theorem 2.2. Due to this theorem, G acts
infinitely transitively on its open orbit OG = OG = reg(X). By virtue of Proposition 3.4(c)
the same is true for G. �
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5.3.1. Final remarks. Theorem 5.19 leads to the following questions.

5.20. Problem. Let X be a toric affine variety with no toric factor. What is the smallest
number of root subgroups (Ga-subgroups, respectively) H1, . . . ,Hs of Aut(X) such that G =
⟨H1, . . . ,Hs⟩ acts on X with an open orbit and is infinitely transitive on this orbit?

We cannot exclude that this number equals 2, at least in the setup of arbitrary Ga-
subgroups; cf. Theorem 5.17. Let us remind the question (V. L. Popov [41, Problem
3.1]) as to when (the closure of) the subgroup G = ⟨H1,H2⟩ generated by Ga-subgroups
H1,H2 ⊂ Aut(An) is an algebraic group. The third author thanks Hanspeter Kraft for an in-
spiring example of two root subgroups of Aut(A2) whose product is an (infinite dimensional)
free product. The discussions with Hanspeter Kraft resulted in the following theorem ([32,
Thm. 5.5.1]) which answers, in particular, the question above.

Theorem 5.21. Given an affine variety X the subgroup G ⊂ Aut(X) generated by a family
F of connected algebraic subgroups of Aut(X) is a (closed) algebraic group if and only if the
Lie algebras Lie (H) for H ∈ F generate a finite dimensional Lie algebra.

The following conjecture arises naturally (cf., e.g., Lemma 4.18).

Conjecture 5.22. Let X be an affine variety, and let A = OX(X) be its structure algebra.
Consider the group G = ⟨H1, . . . ,Hk⟩ generated by a finite collection of Ga-subgroups Hi =
exp(K∂i) ⊂ SAut(X) where ∂i ∈ LND(A), i = 1, . . . , k. Then the Ga-subgroup H = exp(K∂) ⊂
SAut(X) where ∂ ∈ LND(A) is contained in G if and only if ∂ ∈ Lie ⟨∂1, . . . , ∂k⟩.

Of course, the latter holds if G is an algebraic group. One more justification is provided by
Lemmas 4.13 and 4.18. Indeed, letting X = Spec(A) be a nondegenerate toric affine variety
of dimension n ≥ 2, in the notation of Lemma 4.13 for two LNDs U = ∂1 and V = ∂2 of
A and for m = δ the nonzero homogeneous derivation W = adδU(V ) is an LND. According
to Lemma 4.18 the associated root subgroup HW = exp(KW ) is contained in the closure G
where G = ⟨HU , HV ⟩.
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