Tail expectile process and risk assessment - Archive ouverte HAL Access content directly
Journal Articles Bernoulli Year : 2020

Tail expectile process and risk assessment

Abstract

Expectiles define a least squares analogue of quantiles. They are determined by tail expectations rather than tail probabilities. For this reason and many other theoretical and practical merits, expectiles have recently received a lot of attention, especially in actuarial and financial risk management. Their estimation, however, typically requires to consider non-explicit asymmetric least squares estimates rather than the traditional order statistics used for quantile estimation. This makes the study of the tail expectile process a lot harder than that of the standard tail quantile process. Under the challenging model of heavy-tailed distributions, we derive joint weighted Gaussian approximations of the tail empirical expectile and quantile processes. We then use this powerful result to introduce and study new estimators of extreme expectiles and the standard quantile-based expected shortfall, as well as a novel expectile-based form of expected shortfall. Our estimators are built on general weighted combinations of both top order statistics and asymmetric least squares estimates. Some numerical simulations and applications to actuarial and financial data are provided.
Fichier principal
Vignette du fichier
DGS_XES_Bernoulli_main_revised_final.pdf (3.35 Mo) Télécharger le fichier
DGS_XES_Bernoulli_suppl_revised_final.pdf (1.64 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01744505 , version 1 (27-03-2018)
hal-01744505 , version 2 (30-07-2018)
hal-01744505 , version 3 (28-06-2019)

Identifiers

Cite

Abdelaati Daouia, Stéphane Girard, Gilles Stupfler. Tail expectile process and risk assessment. Bernoulli, 2020, 26 (1), pp.531-556. ⟨10.3150/19-BEJ1137⟩. ⟨hal-01744505v3⟩
793 View
637 Download

Altmetric

Share

Gmail Facebook X LinkedIn More