A CONSERVATION LAW WITH SPATIALLY LOCALIZED SUBLINEAR DAMPING - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

A CONSERVATION LAW WITH SPATIALLY LOCALIZED SUBLINEAR DAMPING

Résumé

We consider a general conservation law on the circle, in the presence of a sublinear damping. If the damping acts on the whole circle, then the solution becomes identically zero in finite time, following the same mechanism as the corresponding ordinary differential equation. When the damping acts only locally in space, we show a dichotomy: if the flux function is not zero at the origin, then the transport mechanism causes the extinction of the solution in finite time, as in the first case. On the other hand, if zero is a non-degenerate critical point of the flux function, then the solution becomes extinct in finite time only inside the damping zone, decays algebraically uniformly in space, and we exhibit a boundary layer, shrinking with time, around the damping zone. Numerical illustrations show how similar phenomena may be expected for other equations.
Fichier principal
Vignette du fichier
ms.pdf (3.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01741189 , version 1 (23-03-2018)
hal-01741189 , version 2 (01-03-2019)

Identifiants

Citer

Christophe Besse, Rémi Carles, Sylvain Ervedoza. A CONSERVATION LAW WITH SPATIALLY LOCALIZED SUBLINEAR DAMPING. 2018. ⟨hal-01741189v1⟩
330 Consultations
186 Téléchargements

Altmetric

Partager

More