Degenerations of SL(2,C) representations and Lyapunov exponents - Archive ouverte HAL
Article Dans Une Revue Annales Henri Lebesgue Année : 2019

Degenerations of SL(2,C) representations and Lyapunov exponents

Résumé

We study the asymptotic behavior of the Lyapunov exponent in a meromorphic family of random products of matrices in SL(2, C), as the parameter converges to a pole. We show that the blow-up of the Lyapunov exponent is governed by a quantity which can be interpreted as the non-Archimedean Lyapunov exponent of the family. We also describe the limit of the corresponding family of stationary measures on P 1 (C).
Fichier principal
Vignette du fichier
degenerations_SL2.pdf (446.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01736453 , version 1 (17-03-2018)

Identifiants

Citer

Romain Dujardin, Charles Favre. Degenerations of SL(2,C) representations and Lyapunov exponents. Annales Henri Lebesgue, 2019, ⟨10.5802/ahl.24⟩. ⟨hal-01736453⟩
497 Consultations
189 Téléchargements

Altmetric

Partager

More