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DEGENERATIONS OF SL(2,C) REPRESENTATIONS AND LYAPUNOV

EXPONENTS

ROMAIN DUJARDIN AND CHARLES FAVRE

Abstract. We study the asymptotic behavior of the Lyapunov exponent in a meromorphic
family of random products of matrices in SL(2,C), as the parameter converges to a pole. We
show that the blow-up of the Lyapunov exponent is governed by a quantity which can be
interpreted as the non-Archimedean Lyapunov exponent of the family. We also describe the
limit of the corresponding family of stationary measures on P1(C).
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Introduction

Let G be a finitely generated group, endowed with a probability measure m, satisfying the
following two conditions:

(A1) Supp(m) generates G;

(A2)

∫
length(g)dm(g) <∞.

In a few occasions we shall also require the following stronger moment condition:

(A2+) there exists δ > 0 such that

∫
(length(g))1+δdm(g) <∞.

In (A2) and (A2+), length(·) denotes the word-length relative to some fixed, unspecified,
finite symmetric set of generators of G. It depends of course of the choice of generators but
the moment conditions do not.

If ρ : G → SL(2,C) is any representation, the random walk on G induced by m gives rise
through ρ to a random product of matrices in SL(2,C). If ‖·‖ denotes any matrix norm
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2 ROMAIN DUJARDIN AND CHARLES FAVRE

on SL(2,C), then under the moment condition (A2) we can define the Lyapunov exponent
χ = χ(G,m, ρ) by the formula

(1) χ = lim
n→∞

1

n

∫
log ‖ρ(gn · · · g1)‖ dm(g1) · · · dm(gn) = lim

n→∞
1

n

∫
log ‖ρ(g)‖ dmn(g),

where mn is the image of m⊗n under the n-fold product map (g1, . . . , gn) 7→ gn · · · g1. Observe
that the limit exists because if we choose the matrix norm to be submultiplicative then the
sequence of integrals is subadditive. The Lyapunov exponent is the most basic dynamical
invariant associated to the random product of matrices, and its properties have been the
object of intense research since the seminal work of Furstenberg [Fg] in the 1960’s.

It is quite customary that (ρ,m) depends on certain parameters, in which case the depen-
dence of χ as a function of the parameters becomes an interesting problem. One famous
instance of this problem, motivated by statistical physics, is the study of discrete Schrödinger
operators, which involves random products of matrices of the form

(
E − v −1

1 0

)
,

where v is a real random variable and E (the energy) is a real or complex parameter (see e.g.
[BL]).

We are interested in the situation where the representation depends holomorphically on
a complex parameter t, that is, we consider a family of representations (ρt) such that for
every g ∈ G, t 7→ ρt(g) is holomorphic. Then the Lyapunov exponent defines a function
χ(t) = χ(G,m, ρt) on the parameter space. Recall that a representation ρ : G → SL(2,C)
is said non-elementary1 if there exist two elements g1, g2 ∈ G such that ρ(g1) and ρ(g2) are
both hyperbolic (i.e. their eigenvalues have modulus 6= 1) and have no common eigenvectors.
A celebrated result due to Furstenberg [Fg] (see also [FKi]) asserts that if t0 is such that ρt0
is non-elementary, then under the assumptions (A1-2), χ(t) is positive and continuous at t0.
Hölder continuity can also be derived under stronger moment conditions (see [L]). And it was
recently proved by Bocker and Viana [BV] that if m is finitely supported then χ is continuous
at elementary representations as well.

It is a classical observation that t 7→ χ(t) is subharmonic. In [DD1, DD2] Deroin and the
first named author have studied the complex analytic properties of the Lyapunov exponent
function in relation with the classical bifurcation/stability theory of Kleinian groups (designed
by Bers, Maskit, Sullivan, etc.) and established that the harmonicity of χ over some domain
is equivalent to the structural stability of the corresponding family of representations.

Our purpose in this paper is to study the asymptotic properties of χ(t) in non-compact
family of representations with “algebraic behavior” at infinity. To be specific, we consider
a holomorphic family (ρt)t∈D∗ of representations of G into SL(2,C), parameterized by the
punctured unit disk, and such that t 7→ ρt(g) extends meromorphically through the origin for
every g. An obvious but crucial observation is that this data is equivalent to that of a single
representation with values in SL(2,M) where M is the ring of holomorphic functions on the
punctured unit disk with meromorphic extension through the origin.

We will show that the behavior of χ(t) at t → 0 is controlled by a quantity which can be
interpreted as a non-Archimedean Lyapunov exponent associated to the family (ρt)t∈D∗ . To
make sense of this statement, observe first that M may be viewed as a subring of the field of

1Another common terminology is “strongly irreducible and proximal”.
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formal Laurent series2 L := C((t)), which is a complete metrized field when endowed with the
t-adic norm |f |

na
= exp(− ordt=0(f)). A representation ρ : G → SL(2,M) thus canonically

yields a representation ρna : G → SL(2,L) and exactly as in (1) we define χna to be the
Lyapunov exponent of the representation ρna, where the matrix norm ‖·‖ is now associated
to the t-adic absolute value on L.

We are now in position to state our main result.

Theorem A. Let (G,m) be a finitely generated group endowed with a measure satisfying (A1)
and (A2+), and let ρ : G→ SL(2,M) be any representation. Then

(2)
1

log |t|−1χ(t) −→ χna as t→ 0.

To illustrate the result in a simple case, consider a random product of Schrödinger matrices
of the form

(3)

(
1
t (E − v) −1

1 0

)
,

where v is a bounded random variable, E is fixed, and t → 0. Then it is easy to show in
this case that χ(t) ∼ log |t|−1 as t→ 0. One reason for this ease is that the pole structure of
the n-fold product of such matrices is explicit and easy to describe: such a product will be

of the form 1
tn

(
O(1) O(t)

O(t) O(t2)

)
. Avron, Craig and Simon [ACS] gave in this situation a refined

asymptotics of χ(t) at the order o(1) (and a conjectural asymptotics at the order O(t2)).
For a general random product of matrices with meromorphic coefficients, the poles can

add up or cancel in a rather subtle way, and the non-Archimedean formalism allows to deal
efficiently with this algebra. The idea of using non-Archimedean representations to describe
the degenerations of SL(2,C) representations is now classical and was pioneered by Culler
and Shalen [CS]. One main input of the present work is the incorporation of this technique
into the theory of random matrix products.

Let us explain the strategy of the proof of Theorem A. Since L is a metrized field it
makes sense to talk about hyperbolic elements in SL(2,L) so we can define natural notions of
elementary and non-elementary subgroups. We refer to §2 for a thorough discussion of these
concepts.

The proof of Theorem A splits into two quite different parts according to the elementary or
non-elementary nature of ρna. The easier case is when ρna is elementary: then either the family
is holomorphic at the origin (after conjugation by a suitable meromorphic family of Möbius
transformations and possibly taking a branched 2-cover of the base) or ρt is elementary for all
t ∈ D∗. In the former case, χna = 0 and it follows from Furstenberg’s theory that χ(t) = O(1)
so we are done. In the latter case, up to meromorphic conjugacy, the image of ρt in SL(2,C)
is either upper triangular or lies in an index 2 extension of the diagonal subgroup. The
result then follows from a careful application of the law of large numbers. The details of the
arguments are explained in §5. Note that this is the only place where we use the stronger
integrability condition (A2+).

Let us now assume that ρna is non-elementary. A first observation is that ρt is then non-
elementary for small enough t (see Lemma 4.3; by rescaling we may assume that this holds

2Beware that in some of the references cited in our bibliography, L denotes the completion of the algebraic
closure of C((t)).
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for |t| < 1) so we may apply Furstenberg’s theory to analyze the Lyapunov exponent χ(t).
The main step of the proof of the continuity of χ in the classical setting is the study of the
Markov chain on P1 induced by the image measure ρ∗m in SL(2,C). More specifically, the
measure µt = (ρt)∗m acts by convolution on the set of probability measures on the Riemann
sphere by ν 7→ µt ∗ ν, where µt ∗ ν =

∫
γ∗ν dµt(γ). A stationary measure is by definition

a fixed point of this action. A fundamental result is that when ρt is non-elementary, there
is a unique stationary probability measure νt. Furthermore, the Lyapunov exponent χ(t) is
positive and can be expressed by an explicit formula involving νt:

(4) χ(t) =

∫
log

‖γ · v‖

‖v‖
dµt(γ) dνt(v) .

The continuity of χ at non-elementary representations immediately follows: since νt is unique
it varies continuously with t, and (4) implies the result.

The first step of the proof consists in extending these results to random products in SL(2,L).
We actually work over an arbitrary complete metrized field k and show in §3 how to generalize
the above results to any non-elementary representation ρ : G → SL(2, k). Of particular
interest to us is the fact that the representation ρna admits a unique stationary measure
νna which lives on the Berkovich analytification P

1,an
L of the projective line and for which

a non-Archimedean analog of (4) holds. In particular we obtain the positivity of the non-
Archimedean Lyapunov exponent.

Let us point out that this positivity also follows from the recent work of Maher and
Tiozzo [MT] on random walks on groups of isometries of non-proper Gromov hyperbolic
spaces. Maher and Tiozzo also discuss stationary measures, however, they work in a com-
pactification which is a priori hard to relate to the Berkovich space.

From this point, two different paths lead to the main theorem. Both of them deal with the
asymptotic properties of the stationary measure νt and can be seen as ways to imitate the
Furstenberg argument for the continuity of the Lyapunov exponent.

The first method belongs to complex geometry and is described in §4. It relies on a
correspondence between certain finite subsets of P1,an

L and models of D× P1
C. Here by model

we mean a complex surface Y endowed with a birational map π : Y → D × P1
C which is a

biholomorphism over D∗ × P1
C.

For t 6= 0 we denote by νYt the pull-back to νt on Y , which should be understood as “the
measure νt viewed on the model Y ”. We obtain the following result.

Theorem B. Let (G,m) be a finitely generated group endowed with a measure satisfying (A1)
and let ρ : G→ SL(2,M) be a non-elementary representation.

Then for every model Y → D× P1, the canonical family of stationary probability measures
νYt converges as t→ 0 to a purely atomic measure νY .

Furthermore if νna denotes the unique stationary probability measure on P
1,an
L , then νY =

(resY )∗νna is the residual measure of νna on Y .

Here the residue map resY is a canonical anti-continuous map from P
1,an
L to the C-scheme

π−1({0}×P1
C). In particular the push-forward of a non-atomic measure on P

1,an
L is an atomic

measure on Y . We refer to §4.3 for a detailed discussion on this map. The asymptotics (2)
of the Lyapunov exponent in Theorem A then follows from an analysis of (4) as t → 0 in a
carefully chosen family of models.
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The second approach to Theorem A relies on the notion of hybrid (Berkovich) space. This
is a topological space which allows to give a precise meaning to the intuitive idea that νt “con-
verges” to νna as t→ 0, and derive the asymptotics (2) directly from this weak convergence.

This space was first constructed by Berkovich in [Ber]. It has been recently realized by
Boucksom and Jonsson in [BJ] and by the second named author in [Fav] that it is well-
adapted to the description of the limiting behavior of families of measures such as the (νt)t∈D∗ .
Concretely, P1

hyb is a compact topological space endowed with a continuous surjective map3

phyb : P1
hyb → D1/e such that p−1

hyb(0) can be identified with the non-Archimedean analytic

space P1,an
L while phyb is a trivial topological fibration over D

∗
1/e with P1 fibers. More precisely

there exists a canonical homeomorphism ψ : D
∗
1/e × P1 → p−1

hyb(D
∗
1/e) such that phyb ◦ ψ is

the projection onto the first factor. Likewise we denote by ψna the canonical identification
P
1,an
L → p−1

hyb({0}).

A key point in the construction of P1
hyb is that its topology is designed so that for every

g ∈ G the function

(t, v) 7−→
1

log |t|−1
log

‖ρt(g) · v‖

‖v‖
extends continuously to the hybrid space for t = 0. Theorem A hence follows immediately
from:

Theorem C. Let (G,m) be a finitely generated group endowed with a measure satisfying (A1)
and ρ : G→ SL(2,M) be a non-elementary representation.

Then in P1
hyb, we have that (ψt)∗(νt) −→ (ψna)∗νna as t → 0 in the weak topology of

measures, where νt is the unique stationary probability measure under µt, and ψt(·) = ψ(t, ·).

We discuss the construction of the hybrid space and prove Theorem C in §6.

⋄

As for [DD1, DD2], this work was prompted by analogous results in the context of iteration
of rational mappings, in accordance with the celebrated Sullivan dictionary. Consider a
holomorphic family of rational maps (ft)t∈D∗ of degree d ≥ 2 that extends meromorphically
through 0, and denote by µft their measure of maximal entropy. In this context, the analogue
of A is a formula for the blow-up of the Lyapunov exponent of µft which follows from the
work of DeMarco [dM1, dM2] (see also [Fav] for generalizations to higher dimension), and
Theorem B was proven by DeMarco and Faber [dMF1] . It is particularly interesting to
note that proving the convergence of the measures µft relies on pluripotential theory and the
interpretation of µft as the Monge-Ampère measure of a suitable metrization on an ample
line bundle, whereas in our case it follows from the uniqueness of the stationary measure.

Our work raises several natural open questions.

(1) Is it possible to estimate the error term χ(t)−χna log |t|
−1? The answer is easy when

χ(t) is harmonic in a punctured neighborhood of the origin, in which case one obtains
an expansion of the form

χ(t) = χna log |t|
−1 + Cst + o(1)

(this situation happens e.g. in (3)). In the general case, continuity holds under
appropriate moment assumptions if ρna is elementary (see §5.4). However in the

3The choice of the value 1/e for the radius is convenient, of course any other would do.
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nonelementary case our method seems to produce errors of magnitude ε log |t|−1 (see
§4.5) so new ideas have to be developed.

(2) Can our results be extended to higher dimensions? Random matrix products in arbi-
trary dimension over an Archimedean or a local field are well-understood. Some of our
arguments should carry over to the study of the extremal Lyapunov exponents, even
if we use the hyperbolic structure of P1,an

L at some places. Note however that even
the Oseledets theorem does not seem to have received much attention over arbitrary
metrized fields.

⋄

The plan of the paper is as follows. In section 1 we recall some basics on Berkovich theory.
In section 2 we classify subgroups of PGL(2, k) for an arbitrary complete metrized field k.
In particular we define the notion of non-elementary subgroup and classify elementary ones.
Part of this material follows from the classical theory of group acting on trees. In section
3 we develop the non-Archimedean Furstenberg theory. The complex geometric proof to
Theorem A and is given in sections 4 (in the non-elementary case, including B) and 5 (for
the elementary case). The hybrid formalism and Theorem C are explained in §6.

Acknowledgement. We are grateful to Bertrand Deroin for many useful conversations.

1. The Berkovich projective line

In this section, we collect some basic facts on the Berkovich analytification of the projective
line over a complete non-trivially metrized field (k, | · |). Observe that we do not assume k to
be algebraically closed (since we apply these results to k = C((t)) later on) which leads to a
few subtleties. The reader is referred to [Ber, T] for a general discussion on Berkovich spaces,
and to [BR, J] for a detailed description of the Berkovich projective line.

1.1. Analytification of the projective line. We denote by P1
k the projective line over a

field k, viewed as an algebraic variety, endowed with its Zariski topology, and by P1(k) its
set of k-points which is in bijection with k ∪ {∞}. When k = C, we often simply denote by
P1 = P1(C) the Riemann sphere, that is, the complex projective line with its usual structure
of compact complex manifold4.

In the remainder of this section, we suppose that (k, | · |) is a complete metrized non-
Archimedean field. We also assume that the norm on k is non-trivial, so in particular k is
infinite. We denote by P

1,an
k the Berkovich analytification of P1

k which is a compact topological
space endowed with a structural sheaf of analytic functions. Only its topological structure
will be used in this paper, and we refer the interested reader to [Ber] for the description of
the structural sheaf.

The Berkovich space P
1,an
k is defined as follows. The analytification of the affine line A

1,an
k

is the space of all multiplicative semi-norms on k[Z] whose restriction to k coincides with | · |,
endowed with the topology of pointwise convergence.

Given a point x ∈ A
1,an
k and a polynomial P ∈ k[Z], the value of the semi-norm defined

by x on P is usually denoted by |P |x ∈ R+. It is also customary to denote it by |P (x)|,
the reason for this notation should be clear from the classification of semi-norms below. The

4Note that formally P1 can be viewed as the analytification P1,an

C
of the variety P1

C.
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Gauß norm
∑

i aiZ
i 7→ max |ai| defines a point denoted by xg, and referred to as the Gauß

point.
The Berkovich projective line can be defined as a topological space to be the one-point

compactification of A1,an
k so that we write P

1,an
k = A

1,an
k ∪ {∞}. More formally it is obtained

by gluing two copies of A1,an
k in a standard way using the transition map z 7→ z−1 on the

punctured affine line (A1)∗,ank .

A rigid point in P
1,an
k is a point defined by a multiplicative semi-norm having a non-

trivial kernel. For any point z lying in a finite extension of k, the semi-norm |·|z defined by

P 7→ |P (z)| is a rigid point in A
1,an
k . The induced map yields a canonical bijection between

closed points of the k-scheme P1
k and rigid points in P

1,an
k . In particular P1(k) naturally

embeds as a set of rigid points in P
1,an
k , and in the following we simply view P1(k) as a subset

of P1,an
k .

The Berkovich projective line P
1,an
k is an R-tree in the sense that it is uniquely pathwise

connected, see [J, §2] for precise definitions. In particular for any pair of points (x, y) ∈ P
1,an
k

there is a well-defined segment [x, y]. Recall that the convex hull of a subset F in an R-tree is
the smallest connected set Conv(F ) which contains F , that is the union of all segments [x, y]

with x, y ∈ F . Any point in P
1,an
k admit a well defined projection to a closed convex subset.

In this paper, by measure on P
1,an
k we mean a Radon measure, that is a Borel measure

which is internally regular, or equivalently a bounded linear functional on the vector space of
continuous functions on P

1,an
k endowed with the sup norm.

Using the tree structure, one can show the following result (see [FJ, Lemma 7.15]).

Lemma 1.1. The support of any measure in P
1,an
k is compact and metrizable.

1.2. Balls in the projective line and semi-norms. We still assume that the norm on k
is non-Archimedean and non-trivial. Closed and open balls in k (of radius R ∈ R+)

B(z0, R) = {z ∈ k, |z − z0| ≤ R} and B(z0, R) = {z ∈ k, |z − z0| < R},

are defined as usual. By definition, a ball in P1(k) is either a ball in k of the complement of
a ball in k.

Any closed (or open) ball B ( P1(k) determines a point xB ∈ P
1,an
k . When B or its

complement is a singleton {z}, this point xB is the rigid point attached to z. When B is a

(open or closed) ball of finite radius in k, we let xB be the point in A
1,an
k corresponding to

the semi-norm |P (xB)| := supB |P |. Otherwise the complement of B is a ball of finite radius
in k, and we set |P (xB)| := supk\B |P |. Observe that a closed ball xB is rigid iff its diameter
is zero, and that the Gauß point is equal to xB(0,1).

Remark 1.2. When |k∗| is dense in R+, we have xB(z0,R) = xB(z0,R) for all z0 ∈ k and R ∈ R+.

Otherwise k is discretely valued, |k∗| = rZ for some r > 1, and we have xB(z0,rn) = xB(z0,rn−1).

1.3. The spherical metric. Let (k, | · |) be any non-Archimedean complete metrized field.
We can endow P1(k) with the spherical metric:

(1.1) dsph([z0 : z1], [w0 : w1]) =
|z0w1 − z1w0|

max{|z0|, |z1|} max{|w0|, |w1|}
.
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and its spherical diameter is equal to 1. For any z ∈ P1(k) and r ≤ 1 we define closed and
open spherical balls

B
sph

(z, r) = {dsph(·, z) ≤ r} and Bsph(z, r) = {dsph(·, z) < r} .

Observe that for all r ≥ 1, B
sph

(z, r) = P1(k). A spherical ball is either P1(k) or a ball in
P1(k) in the sense of the previous section. Conversely a ball in P1(k) is either a spherical ball
or the complement of a spherical ball.

1.4. The hyperbolic space (k algebraically closed). Let (k, | · |) be any algebraically

closed non-Archimedean complete metrized field, and let us describe the geometry of P1,an
k

under this assumption. First observe that rigid points are in bijection with balls of zero
diameter. Following the Berkovich terminology we say that points corresponding to balls of
diameter diam(B) ∈ |k∗| (resp. diam(B) /∈ |k∗|) are of type 2 (resp. of type 3). Rigid points
are said to be of type 1.

More generally, points in P
1,an
k are in bijection with (equivalence classes of) decreasing

sequences of balls, see [BR, Theorem 1.2]. When k is spherically complete, that is, every

decreasing intersection of balls is non-empty, then P
1,an
k consists of type 1, 2 or 3 points. In

general, there may exist a fourth type of points, associated with decreasing sequences of balls
with empty intersection. All these types of points (whenever non-empty) yield dense subsets

of P1,an
k .

Types of points relate with the tree structure as follows. Type 1 and 4 points are precisely
the ones at which the R-tree P1,an

k has only one branch, that is, they are endpoints of the tree.

Type 2 points are branching points (i.e. P1,an
k has at least three branches at these points) and

type 3 points are regular points (i.e. P1,an
k has exactly two branches at these points).

The hyperbolic space Hk is by definition the complement of the set of rigid points in P
1,an
k ,

i.e. Hk = P
1,an
k \ P1(k). It is a proper subtree of P1,an

k \ P1(k) which contains no rigid point
and is neither open nor closed.

To describe the structure of Hk, for any r ∈ R+ introduce the semi-norm xr ∈ A
1,an
k defined

by

|P (xr)| = max {|an|r
n, an 6= 0}

where P (Z) =
∑
anZ

n. In particular xr = xB̄(0,r). Let H◦
k be the orbit under PGL(2, k) of

the ray {xr, r ∈ R∗
+}. Then H◦

k is a dense subtree of Hk, and Hk \H
◦
k coincides with the set

of type 4 points in P
1,an
k .

By [BR, Prop. 2.30], one can endow H◦
k with a unique PGL(2, k)-invariant metric such

that

dH(xr1 , xr2) = log

∣∣∣∣
r1
r2

∣∣∣∣

for any r1 ≥ r2 > 0. Observe that

dH(xB1
, xB2

) = log

(
diam(B2)

diam(B1)

)
,

for any closed two balls B1 ⊂ B2 ⊂ k (the diameter is relative to the metric induced by the
norm | · |).

A proof of the next result can be found in [BR, Prop. 2.29].
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Lemma 1.3. The metric defined above on H◦
k extends to a distance on Hk, which makes

(Hk, dH) a complete metric R-tree upon which PGL(2, k) acts by isometries.

Recall that by metric R-tree we mean that for any pair of distinct points x, y there exists
a unique isometric embedding γ : [0, dH(x, y)] → Hk such that γ(0) = x, γ(1) = y, and
dH(γ(t), γ(t

′)) = |t− t′|.

1.5. Field extensions. Let K/k be any complete field extension. The inclusion k[Z] ⊂ K[Z]

yields by restriction a canonical surjective and continuous map πK/k : P
1,an
K → P

1,an
k , and the

Galois group Gal(K/k) acts continuously on P
1,an
K .

Let k̄a be the completion of an algebraic closure of k. Then P
1,an
k is homeomorphic to the

quotient of P1,an
k̄a

by Gal(k̄a/k), see [Ber, Corollary 1.3.6]. The group Gal(k̄a/k) preserves the

types of points in P
1,an
k̄a

, so that we may define the type of a point x ∈ P
1,an
k as the type of

any of its preimage by πk̄a/k in P
1,an
k̄a

. Note that since the field extension k̄a/k is not algebraic

in general, it may happen that some type 1 points in P
1,an
k are not rigid (this phenomenon

occurs when k is the field of Laurent series over any field).

By [BR, Prop. 2.15], the natural action of PGL(2, k) on P
1,an
k̄a

preserves the types of points

so the same holds for its action on P
1,an
k .

Proposition 1.4. The following assertions are equivalent.

(1) The point x ∈ P
1,an
k belongs to the orbit of the Gauß point under the action of

PGL(2, k) (in particular it is of type 2).
(2) There exists z ∈ k and r ∈ |k∗| such that x = xB̄(z,r).

Proof. Pick z ∈ k and assume r ∈ |k∗| that there exists y ∈ k∗ with r = |y|. The image
of B̄(0, 1) by the affine map Z 7→ yZ + z is equal to B̄(z, r) hence (2)⇒(1). Conversely
any element in PGL(2, k) can be decomposed as a product of affine maps and the inversion
Φ(Z) := 1/Z. Thus we conclude that (1)⇒(2) by observing that Φ(xB̄(z,r)) = xB̄(z−1,r/|z|2) if
r ≤ |z|, Φ(xB̄(0,r)) = xB̄(0,r−1) and A(xB̄(z,r)) = xB̄(az+b,|a|r) if A(Z) = aZ + b. �

Proposition 1.5. Suppose x, y, z belongs to the orbit of xg under PGL(2, k). Then the
projection of z on [x, y] also belongs to the orbit of xg under PGL(2, k).

Proof. We can normalize the situation so that x = xg = xB̄(0,1) and y = xB̄(0,r) for some

1 < r ∈ |k∗|. Let z = xB̄(a,r′). If B̄(a, r′) is disjoint from B̄(0, 1) or contains it then the

projection is the Gauss point and we are done. Otherwise B̄(a, r′) ⊂ B̄(0, 1) with |a| ≤ 1
and r′ < 1. If B̄(a, r′) ⊂ B̄(0, r) the projection equals B̄(0, r) and again we are done. The
remaining case is when |a| > r, in which case the projection is B̄(0, |a|) and we conclude by
Proposition 1.4. �

1.6. The hyperbolic space (k arbitrary). The Galois group Gal(k̄a/k) acts on k̄a by
isometries, so the diameter of balls is Gal(k̄a/k)-invariant. As a consequence the action of

Gal(k̄a/k) on (Hk̄a , dH) is also isometric. Let H̃k ⊂ Hk̄a be the set of fixed points of this
action.

Lemma 1.6. The set of fixed points of the action of Gal(k̄a/k) on P
1,an
k̄a

is Conv(P1(k)).
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Proof. Denoting by F this set of fixed points, it is clear that F contains P1(k). Since the
Galois action preserves the tree structure we infer that F ⊃ Conv(P1(k)) and since it is

weakly continuous we finally deduce that F contains Conv(P1(k)).
Suppose by contradiction that there exists a point x ∈ F which does not belong to

Conv(P1(k)). Since type 2 points are dense on any ray in the tree P
1,an
k̄a

, we may suppose

x = xB̄(z,r) for some z ∈ k̄a and r ∈ |k∗|Q. It is enough to show that B̄(z, r) contains a point

of k. Indeed in this case we get that x ∈ Conv(P1(k)) which contradicts our assumption.
To show this, first note that algebraic points over k are dense in k̄a, hence we may assume

that z is algebraic over k. Let P be its minimal polynomial, and suppose first that its degree
d is prime to the characteristic of k. The point x is fixed by Gal(k̄a/k) hence so does B̄(z, r),
so this ball contains all the roots z = z1, . . . , zd of P (repeated according to their multiplicity
if needed). In particular letting z∗ = 1

d (z1 + · · · + zd) we have that |z∗ − z| ≤ r and z∗ ∈ k
and we are done.

When d is not prime to the characteristic, we modify this argument as follows. Fix a ∈ k∗

such that |a| · |z|d+1 ≪ |P (x)| (recall that |P (x)| = supB |P |) and consider the polynomial

P̃ (X) = aXd+1 + P (X). By definition of P we have |P̃ (z)| = |a| · |z|d+1, and on the other

hand |P̃ (x)| ≥ |P (x)|. This classically implies the existence of a root of P̃ in B̄(z, r), so P̃ is
a polynomial in k[X] of degree d + 1 with a root in B̄(z, r) and we can apply the previous

argument to P̃ . �

By the previous lemma we have that in P
1,an
k̄a

,

H̃k := Conv(P1(k)) \ P1(k). In particular (H̃k, dH) is a complete metric R-tree by §1.4.

Since P
1,an
k is homeomorphic to the quotient of P1,an

k̄a
by Gal(k̄a/k), the restriction map

πk̄a/k induces a homeomorphism from H̃k onto its image, which we denote by Hk and call the

hyperbolic space over k 5. We endow it with the metric dH making πk̄a/k : (H̃k, dH) → (Hk, dH)
an isometry.

The following proposition summarizes the properties of Hk obtained so far.

Proposition 1.7. The hyperbolic space Hk is the closure of the convex hull of P1(k) in P
1,an
k

from which P1(k) is removed, that is Hk := Conv(P1(k)) \ P1(k) ⊂ P
1,an
k . Endowed with the

metric dH, it is a complete metric R-tree upon which PGL(2, k) acts by isometries.

Let K/k be any complete field extension, then there is a canonical PGL(2, k)-equivariant

continuous map σK/k : Conv(P1(k)) → P
1,an
K such that πK/k ◦ σK/k = id and which sends the

point xB̄(0,r) ∈ P
1,an
k to the corresponding point xB̄(0,r) ∈ P

1,an
K for all r ∈ R+. A detailed

discussion of this map can be found in [P]. The map σK/k is injective hence induces a

homeomorphism from Conv(P1(k)) in P
1,an
k onto its image which is the closure of the convex

hull of P1(k)) in P
1,an
K .

Proposition 1.8. For any pair (x, y) of points in Hk lying in the orbit of xg under PGL(2, k),

there exists a quadratic extension K/k and g ∈ PGL(2,K) such that g ·xg ∈ P
1,an
K is the middle

point of the segment [σK/k(x), σK/k(y)].

Proof. Applying a suitable Möbius transformation, we may assume that x = xg = xB̄(0,1) and

y = xB̄(0,r) with r ∈ |k∗|. Fix z ∈ k∗ such that |z| = r, and pick any square root z′ of z. The

5When k is a p-adic field, Hk is not the Drinfeld upper half-plane which is equal as a set to P1,an

k \ P1(k).
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middle point of the segment [x, y] := {xB(0,t), t ∈ [1, r]} is the type 2 point xB̄(0,
√
r) which

lies in the orbit of xg by PGL(2, k(z′)). The assertion is proved with K = k(z′). �

1.7. Balls and simple domains in P
1,an
k . For any a ∈ k and any r ≥ 0, set

(1.2) B̄an(a, r) =
{
x ∈ A

1,an
k , |Z − a|x ≤ r

}
or Ban(a, r) =

{
x ∈ A

1,an
k , |Z − a|x < r

}
.

When no confusion can arise, we drop the “an” subscript.
A closed ball in the Berkovich projective line is a set of the form B̄an(a, r) or the complement

of a set of the form Ban(a, r) in P
1,an
k . One defines similarly open balls. Observe that any ball

in P
1,an
k not containing ∞ is of the form (1.2). A closed (resp. open) ball is a closed (resp.

open) subset of P1,an
k with one single boundary point. When the ball is B̄an(a, r) or Ban(a, r),

or their complements, this boundary point is xB̄(a,r).

When k is algebraically closed, a closed (resp. open) ball in P
1,an
k is the convex hull of a

closed (resp. open) ball in P1(k).

Following the terminology of [BR], by a simple domain we mean any open set U ⊂ P
1,an
k

whose boundary is a finite set of type 2 points. Open balls are simple domains, and it follows
from [Ber, Thm 4.2.1] that simple domains form a basis for the topology of P1,an

k .
The next result will play an important role in our approach to Theorem A.

Proposition 1.9. Let ν be any probability measure on P
1,an
k having no atom.

Then for every ε > 0 there exists a finite set S of type 2 points such that every connected
component U of P1,an

k \ S satisfies ν(U) < ε.

Proof. Pick any ε > 0. Since ν is a Radon measure, any point x is included in a simple
domain Ux such that ν(Ux) ≤ ε. By compactness, we may cover the support of ν by finitely
many of these domains Ux1

, . . . , Uxn . Let S be the union of all boundary points of Uxi
for

i = 1, . . . , n. Any connected component U of P1,an
k \S intersects one of the open sets say Ux1

.
Since U ∩ ∂Ux1

= U ∩ S = ∅, it follows that U ⊂ Ux1
and ν(U) ≤ ε as claimed. �

2. Subgroups of PGL(2, k)

In this section (k, |·|) is an arbitrary non-trivially valued field that is complete and non-
Archimedean and by k◦ its valuation ring. The case of most interest to us is L := C((t)) which
is a complete metrized field when endowed with the t-adic norm |f |

na
= exp(− ordt=0(f)).

We consider a subgroup Γ ≤ PGL(2, k) = Aut(P1
k) and study the geometric properties of

its action on the projective and Berkovich spaces. Much of this material is a reformulation in
our context of classical results on groups acting on trees (see e.g. [CM, K, O], and also [YW]
for related material).

Over the complex numbers the corresponding results are well-known (see [Bea]).

2.1. Basics. As in the complex setting, there is a morphism SL(2, k) → PGL(2, k), defined
by associating a Möbius transformation to a 2-by-2 matrix by the usual formula

(
a b
c d

)
7−→

(
z 7→

az + b

cz + d

)
,

whose kernel is {± id}.
Beware that in general this morphism is not surjective. It is so when the field k is al-

gebraically closed, but not for instance in the case k = C((t)). The trouble is that for a
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general Möbius transformation az+b
cz+d , the determinant ad − bc need not be a square in k.

Thus, if we denote by ε the generator of the Galois group of the quadratic field extension
C((t1/2))/C((t)) (i.e. ε · t1/2 = −t1/2), we have a surjective morphism from the subset of

matrices M ∈ SL(2,C((t1/2))) for which ε · M = ±M onto PGL(2,C((t))) whose kernel is
again {± id}. In other words, after a base change we can always lift a meromorphic family of
Möbius transformations to a family of matrices in SL(2,M). The same phenomenon happens
for triangular matrices over k and the affine group Affk.

Working with matrices is often more convenient for calculations, and when no confusion
can arise, we simply identify γ ∈ SL(2, k) with the corresponding Möbius transformation,
denoted by by z 7→ γ(z).

An element of PGL(2, k) induces an automorphism of P1,an
k preserving P1(k) and Hk. Recall

that it preserves the types of points and acts by isometries on (Hk, dH).

For A =
(
a b
c d

)
∈ SL(2, k) we denote by ‖A‖ = max (|a| , |b| , |c| , |d|), which in the ultramet-

ric case is the matrix norm associated to the sup norm on k2.
When γ ∈ PGL(2, k) as explained above there exists a quadratic extension K/k and A ∈

SL(2,K) inducing γ on P1(k), and we set ‖γ‖ := ‖A‖. This is well-defined since K carries a
unique complete norm whose restriction to k is | · | and A is defined up to multiplication by
± id. Likewise, we define |tr(γ)| := |tr(A)|.

Proposition 2.1. For all γ and γ′ in SL(2, k), we have that:

(i) ‖γ‖ ≥ 1,
(ii) ‖γγ′‖ ≤ ‖γ‖ · ‖γ′‖,
(iii) ‖γ‖ =

∥∥γ−1
∥∥,

(iv) if furthermore γ ∈ SL(2, k◦), then γ induces an isometry of (P1(k), dsph).

The proof is left to the reader (note that (i) follows from the ultrametric property of the
absolute value).

2.2. Classification of elements in PGL(2, k).

Proposition 2.2. Let γ ∈ PGL(2, k), γ 6= id. Then exactly one of the following holds:

− |tr(γ)| > 1: then γ is diagonalizable over k and has one attracting (resp. repelling)

fixed point xatt ∈ P1(k) (resp. xrep ∈ P1(k)). Furthermore for every x 6= xrep in P
1,an
k ,

the sequence γn · x converges to xatt when n→ ∞.
− |tr(γ)| ≤ 1: then γ admits a fixed point in Hk and more precisely:

– tr2(γ) = 4: then γ is not diagonalizable, and is conjugate in PGL(2, k) to z 7→

z + 1; thus it fixes a segment [x, y] ∈ P
1,an
k where x (resp. y) is a type 2 (resp.

type 1) point belonging to the PGL(2, k) orbit of the Gauß point.
– tr2(γ) 6= 4: then in some at most quadratic extension K/k the matrix γ is diag-

onalizable; in addition it is conjugate to an element in PGL(2,K◦) and fixes a
type 2 point in Hk.

In accordance with the terminology of group actions on trees, when |tr(γ)| > 1 we say that
γ is hyperbolic, otherwise it is said elliptic. When required we can be more precise: if γ is
elliptic and γ 6= id, we say that γ is parabolic when tr2(γ) = 4 and strictly elliptic otherwise.

One cannot say much more on the action of γ on P1
k in the elliptic case. It depends heavily

on the residue field k̃. When the characteristic of k̃ is p > 0, then the closure of the subgroup
generated by γ is isomorphic to Zp and γp

n

→ id when n→ ∞.
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Following standard terminology, we say that γ has good reduction if it fixes the Gauß
point (i.e. belongs to PGL(2, k◦)), and potential good reduction over K/k if it is conjugate
in SL(2,K) to a map having good reduction. With notation as in §1.6 this is equivalent to

saying that γ fixes a type 2 point x ∈ P
1,an
k such that σK/k(x) lies in the PGL(2,K)-orbit of

the Gauß point.

Proof. The diagonalizability of γ depends on the roots of its characteristic polynomial. If
char(k) 6= 2, this can be read off the discriminant tr2(γ)− 4.

Suppose that |tr(γ)| > 1.
Then γ is diagonalizable in a quadratic extension K of k and its eigenvalues have respective

norms norm larger and smaller than 1. This implies that there exists a global attracting
point P1(K) which in particular attracts all elements of k. Hence by completeness this fixed
point belongs to P1(k). Applying the same reasoning to the inverse, we conclude that γ is
diagonalizable over k.

Suppose now that char(k) 6= 2 and tr2(γ) = 4. Then (up to sign) 1 is an eigenvalue of
multiplicity 2, hence since γ is not the identity it is conjugate in PGL(2, k) to ( 1 1

0 1 ) and γ(z)
is conjugate to a translation. If char(k) = 2 and tr(γ) = 0, then the characteristic polynomial
is X2 + 1 = (X − 1)2 and the same discussion applies.

Suppose finally that |tr(γ)| ≤ 1 and tr(γ) 6= 2. Then γ is diagonalizable over an extension
K of k of degree at most 2, and both eigenvalues belong to K◦. If K = k, then the existence
of the announced fixed point is clear. Otherwise consider the geodesic in P

1,an
K joining the

two fixed points. The Galois group K/k acts on this geodesic and permutes these two points.
Thus it admits a fixed point which is of type 2 and lies in Hk. �

Here is a noteworthy consequence of this classification.

Corollary 2.3. For γ ∈ PGL(2, k), ‖γn‖ → ∞ as n→ ∞ if and only if γ is hyperbolic.

The next result is an analogue of the Cartan KAK decomposition in the non-Archimedean
setting. It will play an important role in the following.

Proposition 2.4. Any element γ ∈ SL(2, k) can be decomposed as a product γ = m ·a ·n with
m,n ∈ SL(2, k◦) and a = diag(λ, λ−1) with λ ∈ k, |λ| ≥ 1. Furthermore ‖γ‖ = ‖a‖ = |λ|.

Proof. Let xg be the Gauß point. Pick an element m ∈ SL(2, k◦) such that m−1γ · xg belongs
to the segment [xg,∞]. Likewise, choose n ∈ SL(2, k◦) such that n−1γ−1 · xg belongs to the
segment [xg, 0]. Then γ

′ = m−1γn either fixes xg or maps xg into (xg,∞) and its inverse into
(xg, 0).

In the former case γ′ belongs to SL(2, k◦) hence γ too and we can choose a = id, m = γ,
n = id.

In the latter case, γ′ is hyperbolic with two fixed points |c+| > 1 and |c−| < 1. We claim
that in this case we can conjugate it by an element in SL(2, k◦) so that it becomes diagonal.
Indeed we first conjugate by

(
1 −c−

0 1

)
(i.e. by the translation z 7→ z − c−), which belongs to

SL(2, k◦), to send c− to 0. This maps c+ to c̃+ = c+ − c− which has the same norm. Then

we use the element
(

1 0
−1/c̃+ 1

)
∈ SL(2, k◦) to send c̃+ to ∞, and we are done.

To prove the identity on ‖γ‖ simply observe that ‖γ‖ = ‖man‖ ≤ ‖a‖ and ‖a‖ =∥∥m−1γn−1
∥∥ ≤ ‖γ‖. �
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2.3. Norms of elements in SL(2, k).

Lemma 2.5. For γ ∈ PGL(2, k), one has the identity dHk
(xg, γ · xg) = log ‖γ‖.

Proof. Any element in PGL(2, k◦) has norm 1 and also fixes the Gauß point so the formula
is clear in this case. In the general case we use the KAK decomposition and write γ = man.
Then dHk

(xg, γ · xg) = dHk
(xg, a · xg) = ‖a‖ = ‖γ‖. �

A similar argument shows:

Lemma 2.6. For γ ∈ PGL(2, k) and x, y ∈ P1(k), then

‖γ‖−2 dsph(x, y) ≤ dsph(γx, γy) ≤ ‖γ‖2 dsph(x, y)

and this bound is optimal.

The following geometric consequence of Proposition 2.4 will be very useful.

Proposition 2.7. For every γ ∈ PGL(2, k), there exist two closed balls Batt(γ) and Brep(γ)

in P
1,an
k of spherical radius ‖γ‖−1 and such that γ(P1,an

k \Brep(γ)) ⊂ Batt(γ).

Proof. This is a straightforward consequence of Proposition 2.4. Indeed, with notation as
in Proposition 2.4, the result is obvious for a, with Brep(a) = B

an
(0, |λ|−1) and Batt(a) =

B
an
(∞, |λ|−1) = P

1,an
k \B(0, |λ|).

In the general case, writing γ = man, it is enough to put Brep(γ) = n−1(B
an
(0, |λ|−1)) and

Batt(γ) = m(B
an
(∞, |λ|−1)). �

For γ =
(
a b
c d

)
∈ SL(2, k) and v ∈ P1(k), let

(2.1) σ(γ, v) = log
‖γV ‖

‖V ‖
= log (max(|ax+ by| , |cx+ dy|)) ,

where V ∈ k2 is any representative of v, and (x, y) ∈ k2 is a representative of v with

max(|x| , |y|) = 1. The second equality shows that σ(γ, ·) extends continuously to P
1,an
k ,

and we have the cocycle relation

(2.2) σ(γ1γ2, v) = σ(γ1, γ2 · v) + σ(γ2, v),

for all γ1, γ2 ∈ SL(2, k) and for any v ∈ P
1,an
k .

Lemma 2.8. For any γ ∈ SL(2, k) we have that

− log ‖γ‖ ≤ σ(γ, v) ≤ log ‖γ‖,

and if furthermore v /∈ Brep(γ), then σ(γ, v) = log ‖γ‖.

Proof. The first assertion is obvious from (2.1). For the second one, observe first that σ(γ, v) =
0 for all v when γ ∈ SL(2, k◦). Then, writing γ = man with as in Proposition 2.4 we are
reduced to the case of a = diag(λ, λ−1) and the result follows easily. �

Lemma 2.9. For any hyperbolic element γ ∈ SL(2, k) the balls Batt(γ) and Brep(γ) are
disjoint and we have

(2.3) ‖γ‖ =
|tr(γ)|

min{δ, 1}

where δ = dsph(Batt(γ), Brep(γ)) = supx∈Batt(γ) infy∈Brep(γ) dsph(x, y).
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Proof. If γ is hyperbolic the disjointness of the two balls Batt(γ) and Brep(γ) follows from their
construction and the ultrametric property implies that δ = dsph(x, y) for any pair (x, y) ∈
Batt(γ)×Brep(γ).

We follow the reasoning of [DD1, Lem. 2.1]. Conjugate γ by some element in SL(2, k◦) to
send the attracting fixed point to ∞. This does not affect neither ‖γ‖ nor tr(γ), and after
this conjugacy we have

γ =

(
a b
0 1/a

)

so that as a Möbius transformation γ(z) = a2z+ab for some |a| > 1. The repelling fixed point
is ab/(1 − a2), and its distance to ∞ is equal to δ = min{1, |(1 − a2)/ab|} = min{1, |a|/|b|}.
We then have

‖γ‖ = max{|a|, |b|} =
|a|

min{1, |a|/|b|}
=

| tr(γ)|

min{1, δ}
,

as was to be shown. �

Let us point out a kind of converse to the previous lemma.

Lemma 2.10. Let γ ∈ PGL(2, k) be such that there exist two disjoint balls Ba and Br of
radius < 1 such that γ(Bc

r ) ⊂ Ba. Then γ is hyperbolic with attracting and repelling fixed
points respectively contained in Ba and Br.

Proof. Since the complement of a ball is a ball, the existence of an attracting (resp. repelling)
type 1 fixed point in Ba (resp. Br) follows from [BR, Thm. 10.69]. The result follows. �

Lemma 2.11. For any pair of distinct points z1, z2 ∈ P1(k), there exists a constant C =
C(z1, z2) > 0 such that

|max{σ(γ, z1), σ(γ, z2)} − log ‖γ‖| ≤ C

for all γ ∈ SL(2, k).

Proof. Since σ(γ, z) ≤ log ‖γ‖, we only need to prove the lower bound max{σ(γ, z1), σ(γ, z2)} ≥
log ‖γ‖ − C. Pick g ∈ SL(2, k) sending z1 to 0 and z2 to ∞. We have

max{σ(γ, z1), σ(γ, z2)} = max
{
σ(γg−1, 0) + σ(g, z1), σ(γg

−1,∞) + σ(g, z2)
}

≥ log ‖γg−1‖ − log ‖g‖ ≥ log ‖γ‖ − 2 log ‖g‖ .

This concludes the proof. �

2.4. Elementary and non-elementary subgroups. A subgroup Γ ≤ SL(2, k) (resp. Γ ≤
PGL(2, k)) is said reducible if its action on P1(k) fixes a point, and irreducible otherwise. It
is strongly irreducible if it does not admit a finite orbit in P1(k).

We say that Γ has good reduction if it takes values in SL(2, k◦), or equivalently, fixes the
Gauß point. It has potential good reduction if there exists a finite field extension K/k such
that Γ is conjugate in SL(2,K) to a subgroup of SL(2,K◦). Finally, Γ is proximal if it
contains at least one hyperbolic element.

Proposition 2.12. A finitely generated subgroup Γ of PGL(2, k) is either proximal or has
potential good reduction. If moreover k is discretely valued, then Γ is conjugate to a subgroup
of SL(2,K◦) in some quadratic extension K/k.
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Observe that the groups of translations is not proximal but has not potential good reduction
when the norm on k is non-trivial, so that the assumption that Γ is finitely generated is
necessary in the previous statement.

This proposition is essentially a formulation in our language of the well-known fact that
a group acting on a tree with only elliptic elements has a global fixed point. We sketch the
proof for convenience.

The key is the following lemma (see [K, Lemma 10.4] or [O, Lemme 40]).

Lemma 2.13. Any finitely generated semi-group of SL(2, k) which does not contain any
hyperbolic element fixes a type 2 point lying in Hk.

Proof. Let S be a finitely generated semi-group which does not contain any hyperbolic ele-
ment. We shall prove by induction on the number of generators the existence of a type 2
point in Hk fixed by S.

When S is generated by a single element thisis a direct consequence of Proposition 2.2.
If S is generated by two elements g and h, pick x, y ∈ Hk two type 2 points fixed by g
and h respectively. Let x′ be the unique point satisfying [x, g(y)] ∩ [x, y] = [x, x′]. By
Proposition 1.5 this is a type 2 point. Similarly define y′ to be the unique type 2 point
satisfying [y, h(x))]∩ [y, x] = [y, y′]. If the segment [x′, y′] is degenerate, the segment [y′, h(y′)]
is a fundamental domain for the action of gh which is therefore hyperbolic. Otherwise gh
fixes pointwise [x′, y′]. This proves the result when S is generated by two elements.

Now suppose S is generated by g1, . . . , gl with l ≥ 3, and that the result is known for semi-
groups generated by l − 1 elements. For i = 1, 2, 3, let Si be generated by {g1, . . . , gl} \ {gi}.
By the induction hypothesis Si admits a type 2 fixed point xi ∈ Hk. Then the projection of
x3 on [x1, x2] is a type 2 point in Hk fixed by S and we are done. �

Proof of Proposition 2.12. It follows from Lemma 2.13 that if Γ is not proximal then it fixes
a type 2 point x⋆ in Hk. Using the notation of §1.6 this means that σk̄a/k(x⋆) lies in the

PGL(2, k̄a)-orbit of the Gauß point. Since algebraic points over k are dense in k̄a, the ball
corresponding to σk̄a/k(x⋆) contains a point of ka so we get that σk̄a/k(x⋆) lies in fact in the

PGL(2, ka)-orbit of the Gauß point. In other words, we can find a finite field extension K/k
and conjugate Γ by a matrix in PGL(2,K) so that it fixes the Gauß point.

Assume now that k is discretely valued so that Hk is a simplicial tree. The point x⋆ is
either in the PGL(2, k)-orbit of the Gauß point or it belongs to a unique segment [x0, x1] of
Hk whose extremities lie in the PGL(2, k)-orbit of the Gauß point. Any element fixing x⋆
either fixes pointwise [x0, x1] or acts upon it as an involution switching the two extremities. It
follows that the middle point of [x0, x1] is fixed by Γ. We conclude using Proposition 1.8. �

There is a simple classification of subgroups that are not strongly irreducible, analogous to
the Archimedean case.

Proposition 2.14. Let Γ ≤ PGL(2, k) be a finitely generated subgroup that is not strongly
irreducible. Then one of the following situations occurs:

(1) Γ has potential good reduction;
(2) Γ is conjugate to a subgroup of the affine group {z 7→ az + b, a ∈ k×, b ∈ k};
(3) Γ is conjugate to a subgroup of {z 7→ λz±1, λ ∈ k}.

Proof. By assumption there exists a finite Γ-orbit x1, . . . , xn on P1(k). If n = 1 then Γ is
conjugate to a subgroup of the affine group. If n = 2, we may assume that x1 = 0 and x2 = ∞
and it follows that any element Γ is conjugate to λ/z or λz for some λ ∈ k∗.
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Assume now that Γ leaves invariant a set of n ≥ 3 distinct points E = {x1, . . . , xn} in P1(k).
The first observation is that for every γ ∈ Γ, some iterate γm fixes E pointwise, therefore
γm = id. All elements of Γ are thus elliptic and the previous proposition shows that Γ has
potential good reduction. �

Remark 2.15. If char(k) = 0, then by the Selberg lemma (see e.g. [A]) the existence of a
finite orbit of cardinality n ≥ 3 implies that Γ is finite.

Proposition 2.16. Let Γ ≤ PGL(2, k) be a finitely generated subgroup. If Γ is proximal and
strongly irreducible then it contains two hyperbolic elements with disjoint sets of fixed points.

Proof. Since Γ is proximal, it contains a hyperbolic element g. Denote by xatt/rep its fixed
points. We claim that there exists an element h ∈ Γ such that h({xatt, xrep})∩{xatt, xrep} = ∅.
Indeed since Γ is strongly irreducible, {xatt, xrep} is not a Γ-orbit so that there exists h ∈ Γ
satisfying h(xatt) /∈ {xatt, xrep}. There are 3 possibilities:

− h(xrep) /∈ {xatt, xrep};
− h(xrep) = xatt: then either hgh or h2 sends {xatt, xrep} to a disjoint pair;
− h(xrep) = xrep: then there exists j ∈ Γ such that j(xrep) /∈ {xatt, xrep} and hgnj−1 is

convenient for large n (use Proposition 2.7).

In any case there exists k such that k({xatt, xrep})∩{xatt, xrep} = ∅, thus k−1γk is a hyperbolic
element whose fixed points are disjoint from {xatt, xrep}. �

Proposition 2.16 motivates the following definition.

Definition 2.17. A finitely generated subgroup Γ of PGL(2, k) is non-elementary if it is
proximal and strongly irreducible.

A finitely generated subgroup Γ of SL(2, k) if its image in PGL(2, k) is non-elementary.

Propositions 2.12 and 2.14 imply the following characterization of non-elementary sub-
groups. The details are left to the reader.

Proposition 2.18. Let Γ ≤ PGL(2, k) be a finitely generated subgroup. The following asser-
tions are equivalent:

(1) Γ is non-elementary;

(2) Γ does not admit a finite orbit on P
1,an
k ;

(3) for every z ∈ P
1,an
k , #Γ · z ≥ 3.

Let us note for further reference the following variation on Proposition 2.16.

Lemma 2.19. Let Γ be a non-elementary finitely generated subgroup of PGL(2, k). Then
for every set S of generators of Γ, the semi-group generated by S contains two hyperbolic
elements with distinct attracting fixed points.

Proof. First note that since Γ is finitely generated, there is a finite subset S′ ⊂ S such that
〈S′〉 contains a finite set of generators of Γ, hence 〈S′〉 = Γ, so, replacing S by S′ we may
assume that S is finite. Denote by G0 the semi group generated by S. Since 〈S〉 = Γ the
elements of S do not admit a common fixed point, hence by Lemma 2.13 there exists a
hyperbolic element g ∈ G0. Thus, letting ρ = ‖g‖ > 1 we infer that for n ≥ 0, gn maps

B(xrep(g), ρ
n)c into B(xatt(g), ρ

n) (all the balls here are in P
1,an
k ). Since S has no fixed point

there exists h ∈ S such that h(xatt(g)) 6= xatt(g). Then for every n ≥ 1, hgn belongs to G0

and maps B(xrep(g), ρ
n)c into B(h(xatt(g)), Cρ

n) for some C = C(h). If h(xatt(g)) 6= xrep(g),
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from Lemma 2.10 we infer that for large n hgn is hyperbolic, and its attracting fixed point is
close to h(xatt(g)), hence distinct from xatt(g).

If h(xatt(g)) = xrep(g), then h
−1(xrep(g)) = xatt(g), and we consider hgnh instead of hgn.

Indeed for some C we have that

B(xatt(g), C
−1ρn)c

h
−→ B(xrep(g), ρ

n)c
gn
−→ B(xatt(g), ρ

n)
h

−→ B(xrep(g), Cρ
n),

so again we see that hgnh is hyperbolic for large n, and its attracting fixed point is distinct
from xatt(g). �

2.5. The limit set.

Theorem 2.20. Let Γ be a finitely generated and non-elementary subgroup of PGL(2, k).
Then the following sets coincide:

− the closure in P
1,an
k of the set of fixed points of all hyperbolic elements of Γ;

− the smallest non-empty Γ-invariant closed subset of P1,an
k ;

− for any given x ∈ P
1,an
k , the set of points y such that there exists a sequence (gn) ∈ ΓN

such that ‖gn‖ → ∞ and gn · x→ y.

This set is compact, metrizable, and included in Conv(P1(k)) = Hk∪P1(k). It is by definition
the limit set Lim(Γ) of Γ.

Proof. Denote by Λ0 the set of fixed points of all hyperbolic elements, and by Λ the smallest
closed Γ-invariant subset of P1,an

k . If x is fixed by some hyperbolic element g, then for every

h ∈ Γ, h(x) is fixed by hgh−1. We infer that Λ0 is a closed Γ-invariant set thus Λ ⊂ Λ0.
Conversely, pick any x ∈ Λ. By Proposition 2.16 there exists a hyperbolic element g ∈ Γ

whose fixed point set {xatt, xrep} is disjoint from x. Since g±n(x) → xatt/rep it follows that
{xatt, xrep} ⊂ Λ so Λ admits at least three points. Therefore, for an arbitrary hyperbolic
element g′ ∈ Γ with fixed point set {x′att, x

′
rep}, there exists y ∈ Λ \ {x′att, x

′
rep}. Then

(g′)±n(y) → x′att/rep as n→ ∞, from which we infer that Λ0 ⊂ Λ. We conclude that Λ = Λ0.

Fix now any point x ∈ P
1,an
k and denote by Λ1 the set of all y for which there exists a

sequence (gn) with ‖gn‖ → ∞ and gn · x→ y. Observe that Λ1 is Γ-invariant and non-empty
since Γ contains a hyperbolic element. We claim that it is also closed. Indeed by a theorem
of Poineau [P, Théorème 5.3], for any y′ in the closure of Λ1 there exists a sequence yn ∈ Λ1

such that yn → y′. For each n, pick a sequence with ‖gm,n‖ ≥ m+ n such that gm,n · x→ yn.
The set {gm,n · x} contains {yn} in its closure hence y′ too. Again by Poineau’s theorem,
there exists a subsequence gmj ,nj

· x→ y. This shows that Λ1 ⊃ Λ.

Now suppose ‖gn‖ → ∞ and gn · x → y ∈ Λ1. We want to show that y belongs to Λ. If
x belongs to Λ then the closure of Γ · x is contained in Λ and the result follows. So suppose
that x does not belong to Λ.

Recall from Proposition 2.7 that we can associate to every g ∈ PGL(2, k) two closed

balls Batt(g) and Brep(g) in P
1,an
k such that g(P1,an

k \ Brep(g)) ⊂ Batt(g). We claim that for
large enough n, Batt(gn) intersects Λ. Indeed pick any 2 distinct points in Λ. Then since
‖gn‖ → ∞, for large n one of these points does not belong to Brep(gn), hence its image under
gn belongs to Batt(gn), and also to Λ by invariance, so we get that Batt(gn)∩Λ 6= ∅. Similarly,
Brep(gn) ∩ Λ 6= ∅.

In particular we see that for large n, x /∈ Brep(gn). Indeed otherwise since the diameter of
Brep(gn) tends to zero we would infer that x belongs to Λ, which is not the case. Thus we
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conclude that gn · x ∈ Batt(gn) for large n, so every neighborhood of y intersects Λ and it
follows that Λ1 ⊂ Λ.

The limit set is a closed subset of P1,an
k which is compact, hence it is also compact. Since

Γ is countable hence Λ0 is countable too. It follows that Λ is included in the closure of the
convex hull of a countable set. Such a set is always metrizable (see e.g. the proof of [FJ,
Lemma 7.15], or [BR, Lemma 5.7]). Finally Λ0 is a subset of P1(k), hence Lim(Γ) is included
in its closure which is contained in Hk ∪ P1(k). �

3. Random products of matrices in SL(2, k)

In this section we work on an arbitrary complete non-trivially valued field (k, |·|) –shortly
to be assumed non-Archimedean. We keep the notation of the previous section. We consider
a measure µ with at most countable support in SL(2, k), and make the following assumptions:

(B1) Γ = 〈Supp(µ)〉 is non-elementary.

(B2) µ has finite first moment

∫
log ‖γ‖ dµ(γ) <∞.

The measure µ acts by convolution on the set of probability measures on P
1,an
k by ν 7→ µ∗ν.

The measures invariant under this action are called stationary. We use the probabilistic
notation (Ω,P) = (SL(2, k)N

∗
, µN

∗
), and for ω = (γn)n≥1 ∈ Ω we respectively let rn(ω) =

γ1 · · · γn and ℓn(ω) = γn · · · γ1 the nth step of the right and left random walk on Γ with
transition probabilities given by µ. We denote by µn the nth convolution power of µ, that is
the image of µ⊗n under the map (g1, . . . , gn) 7→ g1 · · · gn. It is also the distribution of rn(ω)
and ℓn(ω).

The Lyapunov exponent of µ is defined to be the following non-negative real number:

(3.1) χ(µ) := lim
n→∞

1

n

∫
log ‖γ‖ dµn(γ) = lim

n→∞
1

n

∫
log ‖γ1 · · · γn‖ dµ(γ1) · · · dµ(γn) .

It follows from Kingman’s sub-multiplicative ergodic theorem that χ(µ) = limn→∞
1
n log ‖ℓn(ω)‖

for P-a.e. ω.

The main result of this section is the following theorem. Recall the notation σ(γ, v) =
log ‖γV ‖, where V = (V1, V2) is a lift of norm 1 of v and ‖V ‖ = max(|V1| , |V2|).

Theorem 3.1. Let µ be a probability measure with countable support in SL(2, k), satisfying

(B1). Then there a unique stationary probability measure ν on P
1,an
k , that is stationary under

the action of µ. This measure has no atoms, it is supported on the limit set of Γ, and when
k is non-Archimedean it gives full mass to P1(k) so that ν(Hk) = 0.

If furthermore (B2) holds, then the Lyapunov exponent χ(µ) of the associated random
product of matrices is positive and satisfies the following formula

χ(µ) =

∫
σ(γ, v) dµ(γ) dν(v).(3.2)

Finally for P-a.e. ω and for ν-a.e. v, we have:

χ(µ) = lim
n→∞

1

n
log σ(ℓn(ω), v).(3.3)

Remark 3.2. If Γ is generated by Supp(µ) as a semi-group then Supp(ν) = Lim(Γ). Indeed
Supp(ν) is contained in Lim(Γ), closed, and Supp(µ)-invariant, hence Γ-invariant. In the
general case, however, the inclusion Supp(ν) ⊂ Lim(Γ) can be strict.
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There are many statements of this kind in the literature, and when k is archimedean this
statement is precisely Furstenberg’s theorem on random products of matrices [Fg] (see [BL,
Chap. II] for a simple exposition). In the non-Archimedean setting, it was observed by several
authors (see in particular [G]) that Furstenberg’s theory can be adapted without much harm
to local fields. The novelty here is that k is arbitrary, in particular may not be locally compact.
This leads us to resort to Berkovich theory, and also prevents us from taking cluster limits of
sequences of elements in SL(2, k), which is commonplace in the classical presentation of the
topic.

On the other hand it was recently proved by Maher and Tiozzo [MT] that non-elementary
random walks on non-necessarily proper Gromov hyperbolic spaces have positive drift, from
which the first conclusion of the theorem follows.

Nevertheless we provide a complete proof of the theorem for at least two reasons: first
our algebraic setting allows us to provide a relatively short and self-contained proof, and also
the conclusion on the stationary measure does not straightforwardly follow from [MT] since
Maher and Tiozzo work in a horofunction compactification that is not directly related to the
Berkovich projective line.

As in the classical case, the uniqueness of the stationary measure and the positivity of
the Lyapunov exponent follow from a contraction statement, which asserts that if ν is any
stationary measure, then for P-a.e. ω, ‖rn(ω)‖ → ∞ and (rn(ω))∗ν converges to a Dirac mass
at a point e(ω) which does not depend on ν (see below Lemma 3.5). To prove this result, we
adapt the arguments of Guivarc’h and Raugi [GR].

In the remaining of this section we assume that the norm on k is non-Archimedean.

3.1. Uniqueness of the stationary measure. As a first step towards Theorem 3.1 in this
section we prove the following result.

Theorem 3.3. Let µ be a probability measure with countable support in SL(2, k), satisfying
(B1), and suppose ν is a µ-stationary measure having no atom and such that ν(P1(k)) = 1.

(1) There exists a measurable map e : Ω → P1(k) such for a.e. ω, rn(ω)∗ν → δe(ω). More-

over for a.e. ω we have ‖rn(ω)‖ → ∞, and dsph(e(ω), Batt(rn(ω))) ≤ 2‖rn(ω)‖
−1.

(2) The identity ν =
∫
δe(ω) dP(ω) holds, and ν is the unique µ-stationary measure which

has no atom and gives full mass to P1(k).

We start with the following classical lemma.

Lemma 3.4. Under the assumptions of Theorem 3.3, for P-a.e. ω there exists a probability
measure νω such that for every γ belonging to the semi-group generated by Supp(µ), the
sequence rn(ω)∗g∗ν converges weakly to νω. This measure a.s. puts full mass on P1(k) and
ν =

∫
νω dP(ω).

Proof. The support of ν is a compact metrizable space by Lemma 1.1, so that we may apply
[BL, Lemma 2.1 p.19]. We obtain for P-a.e. ω the existence of a probability measure νω such
that for µ∞-a.e. γ, rn(ω)∗γ∗ν converges weakly to νω, where µ

∞ =
∑∞

n=0 2
−n−1µn. Since

Γ is countable the measure µ is purely atomic and its support is precisely the semi-group
generated by Supp(µ). Thus for every γ in this semi-group, we obtain rn(ω)∗γ∗ν ⇀ νω.

The stationarity property implies that for every n, ν =
∫
rn(ω)∗ν dP(ω), and the dominated

convergence theorem implies ν =
∫
νω dP(ω). In particular νω(P

1(k)) = 1 almost surely. �

Next we prove the divergence of the norms of generic random products.
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Lemma 3.5. For P-a.e. ω we have that ‖rn(ω)‖ → ∞.

Proof. Let ω ∈ GN be a sequence satisfying the conclusion of Lemma 3.4, and let us show
that ‖rn(ω)‖ → ∞. We proceed by contradiction, so assume there exists a subsequence (nj)
such that ‖rnj

(ω))‖ ≤ C for some C ≥ 1. Since Γ is non elementary, by Lemma 2.19 the semi-
group generated by Supp(µ) contains two hyperbolic elements γ1, γ2 with distinct attracting
fixed points, that we fix from now on. Denoting by xatt(γi) the respective attractive fixed
points, we fix r small enough so that d(xatt(γ1), xatt(γ2)) > 2r(C2 + 1).

The measure νω charges P1(k), so that one can find a point z ∈ P1(k) such that m :=
νω(B(z, r)) > 0. Since the measure ν has no atom, for i = 1, 2 ν(B(xrep(γi), ρ)) tends to 0
when ρ→ 0, so we can fix N (large) such that

((γN1 )∗ν)(B(xatt(γ1), r)) ≥ 1−
m

4
and ((γN2 )∗ν)(B(xatt(γ2), r)) ≥ 1−

m

4
.

Since on the other hand B(z, r) is open, from the choice of ω, there exists j such that
(
rnj

(ω)∗(γ
N
1 )∗ν

)
(B(z, r)) ≥

m

2
and

(
rnj

(ω)∗(γ
N
2 )∗

)
(B(z, r)) ≥

m

2
.

Applying Lemma 2.6 it follows that for i = 1, 2,

(γNi )∗ν(B(rnj
(ω)−1z, rC2)) ≥ m/2,

hence

B(rnj
(ω)−1z, rC2) ∩B(xatt(γi), r) 6= ∅.

which implies that d(xatt(γ1), xatt(γ2)) ≤ 2rC2 + 2r, a contradiction. �

The proof of Theorem 3.3 will be complete if we prove that

Lemma 3.6. For P-a.e. ω, the measure νω is a Dirac mass at a point e(ω) ∈ P1(k) which
does not depend on ν, and satisfies dsph(e(ω), Batt(rn(ω))) ≤ 2‖rn(ω)‖

−1.

The proof of this lemma relies on the following elementary fact which asserts that the
measure of small balls is uniformly small.

Lemma 3.7. Let ν be an atomless Borel probability measure on a complete metric space
(X, d). There exists a function η : R+ → R+ such that η(r) → 0 as r → 0 such that for every
x ∈ X we have that ν(B(x, r)) ≤ η(r).

Proof. Assume by way of contradiction that there exists η > 0, a sequence (xn) ∈ XN and
a sequence of radii rn → 0 such that ν(B(xn, rn)) ≥ η. Extracting a subsequence we may
assume that

∑
rn converges. We will show that (xn) admits a Cauchy subsequence (xnj

),
thus converging to some x. Since for any r > 0, we have that B(xnj

, rnj
) ⊂ B(x, r) for large

j, it follows that ν(B(x, r)) ≥ η for every r, contradicting the assumption on ν.
To show that (xn) admits a Cauchy subsequence, we define the set

A = {n ∈ N, ∀p > n, B(xp, rp) ∩B(xn, rn) = ∅} .

Write A as an increasing sequence A = {a1, a2, . . .}. By construction, for every k > l,
B(xak , rak) ∩ B(xal , ral) = ∅. Since each of these ball has mass at least η, there are at most
1/η of them, hence A is finite.

Now if n1 > maxA, by assumption there exists n2 > n1 such that B(xn2
, rn2

)∩B(xn1
, rn1

) 6=
∅. Repeating this process we construct a subsequence (nj)j≥1. Since the series

∑
rn con-

verges, the sequence (xnj
) is Cauchy, and the lemma follows. �
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Proof of Lemma 3.6. Recall the definition of Batt(γ) and Brep(γ) from Proposition 2.7: these

are two balls in P
1,an
k of spherical diameter ‖γ‖−1 such that γ(P1,an

k \ Brep(γ)) ⊂ Batt(γ).
Observe that they necessarily intersect P1(k).

From Lemmas 3.4 and 3.5, for almost every ω we have that (rn(ω))∗ν ⇀ νω and ‖rn(ω)‖ →
∞. With η as in Lemma 3.7, we have that ν(Brep(rn(ω))) ≤ η(‖rn(ω)‖

−1), hence

(3.4) ν(Batt(rn(ω))) ≥ 1− η(‖rn(ω)‖
−1) ≥

3

4

for n large enough. For each n choose any xn ∈ Batt(rn(ω)) ∩ P1(k). Then (3.4) implies
dsph(xn, xm) ≤ 2‖rn(ω)‖

−1 for all m ≥ n hence xn forms a Cauchy sequence. Observe that
the limit of this sequence belongs to P1(k), is at distance at most 2‖rn(ω)‖

−1 from Batt(rn(ω)),
and does depends neither on the choice of the sequence (xn), nor on the stationary measure.
We may thus denote it by e(ω).

Finally, for each r > 0, we have that Batt(rn(ω)) ⊂ B(x∞, r) for large n since ‖rn(ω)‖
−1 →

0. We conclude that ν(B(e(ω), r)) ≥ lim infnBatt(rn(ω)) = 1, so that νω = δe(ω). �

3.2. Proof of Theorem 3.1. Recall that µ is a measure with countable support on SL(2, k)
satisfying condition (B1). We first show the existence and uniqueness of a µ-stationary mea-
sure, and then prove that this measure has no atom and puts full mass on P1(k). Then
assuming (B2) we establish the analog of Furstenberg’s formula that expresses the Lyapunov
exponent χ(µ) in terms of the stationary measure. The positivity of χ(µ) and the identi-
ties (3.2) and (3.3) follow from this formula.

Recall first from Theorem 2.20 that the limit set of Γ is a compact metrizable space. For
any x ∈ Lim(Γ), one can thus extract a converging subsequence from 1

n

∑n−1
i=0 µ

i ∗ δx, and
the limit measure ν is µ-stationary. The uniqueness of the stationary measure then follows
from Theorem 3.3 together with the next lemma whose proof will be given at the end of this
section.

Lemma 3.8. Let µ be a probability measure with countable support in SL(2, k), satisfying

(B1). If ν is any µ-stationary probability measure on P
1,an
k , then ν has no atom and gives full

mass to P1(k).

By Lemma 3.4 the support of ν is contained in the limit set. It remains to prove (3.2), (3.3)
and the positivity of the Lyapunov exponent. From now on we assume that the moment
condition (B2) holds, and proceed in several steps.

Step 1. We first claim that for (P × ν) a.e. (ω, v), one has σ(ℓn(ω), v) → ∞.

To see this we introduce the reversed random walk on Γ, that is the random walk associated
to µ̌, the image of µ under the involution γ 7→ γ−1. It satisfies the assumptions (B1-2) so

from what precedes we know that it admits a unique stationary measure ν̌ on P
1,an
k having

no atom and putting full mass on P1(k). Define an involution GN → GN by ω = (γn)n≥1 7→
ω̌ = (γ−1

n )n≥1, so that ℓn(ω) = rn(ω̌)
−1, and Brep(ℓn(ω)) = Batt(rn(ω̌)).

By Theorem 3.3, we have ‖ln(ω)‖ → ∞ for a.e. ω, and there exists a measurable map
ě : Ω → P1(k) such that ν̌ =

∫
δě(ω)dµ̌(ω), and dsph(ě(ω), Batt(ln(ω))) ≤ 2‖ln(ω)‖

−1.

If v ∈ P1(k) is different from ě(ω), then for n large enough, v /∈ Brep(ℓn(ω)) hence
σ(ℓn(ω), v) = ‖ℓn(ω)‖ by Lemma 2.8. Since ν gives no mass to points, for P-a.e. ω and
for ν-a.e. z, we have σ(ℓn(ω), v) → ∞, thus by Fubini’s theorem, σ(ℓn(ω), v) → ∞ holds
(P × ν) a.s., as claimed.
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Denote by θ : Ω → Ω the shift map ω = (γn)n≥1 7→ θ(ω) = (γn+1)n≥1, and observe that
the skew product map Θ(ω, v) = (θ(ω), l1(ω) · v) preserves the measure m = P× ν.

Step 2. We next show that P× ν is ergodic under Θ.

From (Kifer’s version of) the Kakutani random ergodic theorem (see [Fn, Thm. 3.1]), it
is sufficient to prove that for any Borel set E such that ν(E∆γE) = 0 for µ-a.e. γ, then we
have ν(E) = 0 or 1.

Pick such a set E. First note that by stationarity and by the countability of Supp(µ), for
µ-a.e. γ ∈ Γ, we have γ∗ν ≪ ν. In particular, we get γ∗ν(E∆γE) = 0 so that

µ ∗ (ν|E) =

∫
γ∗ν 1γ(E) dµ(γ) =

∫
γ∗ν 1E dµ(γ) = ν|E .

By the uniqueness of the µ-stationary measure, we conclude that ν(E) = 0 or 1, as required.

Step 3. Proof of (3.2) and (3.3).

The Birkhoff ergodic theorem applied to Θ and the function σ(l1(ω), v), together with the
cocycle relation (2.2) now yield for (P, ν)-a.e. (ω, v)

(3.5) lim
n→∞

1

n
σ(ln(ω), v) =

∫
σ(l1(ω), v) dP(ω) dν(v) =

∫
σ(γ, v)dµ(γ)dν(v).

By Fubini’s theorem, for P-a.e. ω we have that for ν-a.e. v, the limit in (3.5) exists. Since ν
gives no mass to points, this holds for at least two distinct points so by Lemma 2.11 we get
that for such ω

(3.6) lim
n→∞

1

n
log ‖ln(ω)‖ = lim

n→∞
1

n
σ(ln(ω), v) .

Thus, combining (3.5) and (3.6) we get (3.2) and (3.3).

Step 4. Positivity of the Lyapunov exponent.

To that end we rely on the following general lemma, a proof of which can be found in [BL,
Lemma 2.3, p. 22]. For simplicity we write F+ = max{0, F}.

Lemma 3.9. Let Θ be a measurable map on a probability space (X,m). If F : X → R is

a measurable function such that
∫
F+dm < ∞ and limn→∞

∑n−1
i=0 F ◦ Θi = +∞ a.s., then

F ∈ L1(X,m) and
∫
F dm > 0.

We apply the previous lemma to the function F : (ω, v) 7→ σ(ℓ1(ω), v) on X = Ω × P
1,an
k ,

and to the skew product map Θ(ω, v) = (θ(ω), l1(ω) · v). By Step 1 for P × ν-a.e (ω, v) we
have that

lim
n→∞

n−1∑

i=0

F ◦Θi(ω, v) = lim
n→∞

σ(ln(ω), v) = +∞.

Therefore Lemma 3.9 yields

(3.7)

∫
σ(γ, v) dµ(γ)dν(v) > 0 ,

and the proof of Theorem 3.1 is complete.

Proof of Lemma 3.8. Assume by contradiction that ν charges a point in P
1,an
k . Then for every

α > 0, the set {x, ν({x}) > α} is finite, thus there exists an atom of maximal mass α0. It
follows that the set {x, ν({x}) = α0} is finite and invariant under every element of Supp(µ),
hence Γ-invariant, which is impossible since Γ is non-elementary.
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For second assertion, we start by proving that that ν(Hk) = 0. Observe first that any

closed ball for the hyperbolic metric is also closed in P
1,an
k hence is a Borel set. Denote by

B(x,R) = {dH(·, x) < R} (resp. B(x,R) = {dH(·, x) ≤ R}) the open (resp. closed) ball of
radius R relative to the hyperbolic metric. It is thus enough to prove that for every x ∈ Hk

and every R > 0, ν(B(x,R)) = 0.
By Lemma 2.19, the semi-group generated by Supp(µ) contains a hyperbolic element h.

Replacing µ by some µk if necessary (this does not affect the stationarity of ν) we may assume
h ∈ Supp(µ). Put s = supx∈Hk

ν(B(x,R)) and suppose by way contradiction that s > 0.

Since the series
∑

n≥0 ν
(
B(xg, (n + 1)R) \ B(xg, R)

)
converges, there exists B such that

for dH(x, xg) > B, ν(B(x,R)) ≤ s/2. Since h is hyperbolic and is an isometry for dH, we
have dH(h

m(xg), xg) → ∞, hence there exists an integer m such that dH(x, xg) ≤ B implies
dH(h

m(x), xg) ≥ 2B hence ν(B(hm(x), R)) ≤ s/2.
Put ε = µm({hm}) and pick x ∈ Hk such that ν(B(x,R)) ≥ s(1 − ε/3). In particular

dHk
(x, xg) ≤ B. The invariance relation µm ∗ ν = ν yields

s
(
1−

ε

3

)
≤ ν(B(x,R)) =

∑

γ∈Γ
µm({γ})ν(γ(B(x,R)))

≤
∑

γ∈Γ\hm

µm({γ})ν(B(γx,R)) + µm({hm})ν(B(hm(x), R))

≤ (1− µm({hm}))s + µm({hm})
s

2
= s

(
1−

ε

2

)
.

From this contradiction we conclude that ν(Hk) = 0.
To prove that ν gives full mass to P1(k), consider the projection π on the closed subtree

Conv(P1(k)) = Hk ∪ P1(k). Since Hk ∪ P1(k) is Γ-invariant, for any x ∈ P
1,an
k and any γ ∈ Γ

we have that π(γ(x)) = γ(π(x)). It follows that π∗ν is stationary. By the first part of
the proof, π∗ν gives full mass to P1(k) (which is a Borel set). Hence ν gives full mass to
π−1(P1(k)) = P1(k). This completes the proof. �

3.3. Distribution of attracting and repelling fixed points. In the course of the proof
of our main result we shall need the following interpretation of the stationary measures as
the distribution of fixed points of hyperbolic elements.

Recall that the dual measure µ̌ is defined as the image of µ under the involution γ 7→ γ−1,
and that the measure µ satisfies (B1) (resp. (B2)) iff µ̌ does. We also set ω̌ = (γ−1

n ) when
ω = (γn) so that ln(ω) = rn(ω̌)

−1. Observe that ‖ln(ω)‖ = ‖rn(ω̌)
−1‖ = ‖rn(ω̌)‖ hence

χ(µ̌) = χ(µ).

Theorem 3.10. Let µ be a probability measure with countable support in SL(2, k), satisfying
(B1). Then

(3.8) P ({ω, rn(ω) is hyperbolic }) −→
n→∞

1.

In addition, the asymptotic distribution for the weak-∗ topology on P
1,an
k of the attracting

(resp. repelling) fixed point of rn(ω) is given by the unique µ-stationary (resp. µ̌-stationary)
probability measure ν (resp. ν̌).

If furthermore µ satisfies (B2), then for every ε > 0

(3.9) P

({∣∣∣∣
1

n
log |tr(rn(ω))| − χ(µ)

∣∣∣∣ < ε

})
−→
n→∞

1.
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Remark 3.11. The meaning of the statement on the distribution of periodic points is the
following. For each n let Ωn be the set of ω ∈ Ω such that rn(ω) is hyperbolic. One can
then define the measurable map attn, repn : Ωn → P1(k) by sending ω to the attracting and
repelling fixed points of rn(ω). The theorem asserts that P(Ωn) → 1 when n → ∞, and
attn∗P → ν, and repn∗P → ν̌ as n→ ∞.

Remark 3.12. Under stronger moment assumptions on µ, (3.8) can be turned into an almost
sure limit. For instance it is shown in [MT, Thm. 1.4] that if µ has bounded support
the probability in (3.8) is exponentially close to 1, thus by Borel-Cantelli, 1

n log |tr(rn(ω))|
converges a.s. to χ(µ).

Proof. Consider the probability measure ν × ν̌ on the product space P1(k) × P1(k). This
measure is the image of P under the measurable map ω 7→ (e(ω), e(ω̌)).

By Fubini, and since the measures ν and ν̌ do not have any atom, we have ν × ν̌(∆) = 0
where ∆ denotes the diagonal in P1(k)× P1(k). It follows that

(3.10) (ν × ν̌)
{
(x, y) ∈ P1(k)2, dsph(x, y) ≤ δ

}
−→
δ→0

0 .

By Theorem 3.3 ‖rn(ω)‖ → ∞ a.s. and the asymptotic distribution of the Batt(rn(ω)) is
given by ν. Similarly the asymptotic distribution of the Brep(rn(ω)) is given by ν̌, so that for
each δ > 0, we infer that

lim sup
n→∞

P {dsph(Batt(rn(ω)), Brep(rn(ω))) ≤ δ} ≤ (ν × ν̌)
{
(x, y) ∈ P1(k)2, dsph(x, y) ≤ δ

}
,

which can be made as small as we wish.
Fix any real number ε > 0, and choose δ > 0 such that the left hand side in (3.10) is at

most ε/2. Then there exists N = N(ε) and a set Ωε with P(Ωε) ≥ 1−ε/2, such that if Ω ∈ Ωε

and for n ≥ N(ω), we have

dsph(Batt(rn(ω)), Brep(rn(ω))) > δ .

In addition ‖rn(ω)‖ → ∞ a.s, so increasing N and discarding a set of probability ε/2 we may
further assume that

‖rn(ω)‖ ≥ 2δ−1 on Ωε .

Now if we pick ω ∈ Ωε and n ≥ N . The two closed balls Batt(rn(ω)), Brep(rn(ω)) have

diameter at most δ/2 hence are disjoint. Since rn(ω) maps P1,an
k \Brep(rn(ω)) into Batt(rn(ω)),

we conclude by Lemma 2.10.
If furthermore (B2) holds then from Lemma 2.9, we conclude that

|log | tr(rn(ω)| − log ‖rn(ω)‖| ≤ − log min{1, δ} ,

and (3.9) follows since limn→∞ 1
n log ‖rn(ω)‖ = χ(µ̌) = χ(µ). �

4. Degenerations: non elementary representations

In this section we fix a finitely generated group G, endowed with some probability measure
m. Recall the notation L = C((t)) and that M is the ring of holomorphic functions in D with
meromorphic extension at the origin. We fix a representation ρ : G → SL(2,M), that is a
family of representations ρt : G → SL(2,C) for t ∈ D∗ such that for any g ∈ G t 7→ ρt(g) is
holomorphic on D∗ and extends meromorphically through the origin. We suppose that

(A1) Supp(m) generates G;
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(A2) m has finite first moment

∫
length(g)dm(g) <∞.

We also assume that if ρna denotes the induced representation ρna : G → SL(2,L), then
ρna(G) is non-elementary. Our aim is to prove Theorem B and to infer the non-elementary
case of Theorem A.

4.1. Basic remarks on meromorphic families of representations. Since we have to
deal with both Archimedean and non-Archimedean objects, we slightly change notation:
‖·‖ denotes the operator norm in SL(2,C) associated to any norm on C2, say ‖(x, y)‖ =
max(|x| , |y|), and ‖·‖

na
denotes the non-Archimedean norm on SL(2,L) associated to the

t-adic norm in M given by |f |
na

= exp(− ordt=0(f)). More generally we use the subscript na
to label non-Archimedean objects.

For any t ∈ D∗, we set Γt = ρt(G) and let µt be the push-forward of µ under ρt. Analogously,
denoting by ρna : G → SL(2,L) the non-Archimedean representation naturally associated to
ρ, we let Γna = ρna(G) and µna = (ρna)∗µ.

Observe that for every g ∈ G, log ‖ρ(g)‖
na

≤ C length(g) for some uniform constant C > 0,
and likewise for log ‖ρt(g)‖. In particular we have

Lemma 4.1. The condition (A2) implies the moment condition (B2) for the measures µt
and µna.

We will need some uniformity on the control of ‖ρt(g)‖.

Lemma 4.2. For every homomorphism ρ : G → SL(2,M) there exists C = C(ρ) > 0 such

that for every g ∈ G one can write ρt(g) = t− log ‖ρ(g)‖na · γ̃(t), with γ̃ ∈ SL(2,O(D)), and

(4.1)
∣∣∣log ‖γ̃‖L∞(D(0,1/2))

∣∣∣ ≤ C length(g).

Proof. let (si) be a finite symmetric set of generators of G and write g as a reduced word in
G, g = si1 · · · sin , n = length(g). Let σi = ρ(si) and write σi = t−αi σ̃i with αi = log ‖σi‖na
and σ̃i holomorphic and non vanishing at 0, so that

ρt(g) = t
−

∑n
j=1 αij σ̃i1 · · · σ̃in .

Set A := maxαi, and write ρt(g) = t− log ‖ρ(g)‖na · γ̃(t) with γ̃ ∈ SL(2,O(D)). Then we get that
γ̃(t) = t−α · σ̃i1 · · · σ̃in(t) with 0 ≤ α =

∑n
j=1 αij − log ‖ρ(g)‖na ≤ An. By using the maximum

principle we can estimate

sup
|t|≤1/2

|γ̃(t)| ≤ sup
|t|=1/2

|γ̃(t)| ≤ (1/2)−α
n∏

j=1

(
sup

|t|=1/2

∣∣σ̃ij (t)
∣∣
)

≤ 2An

(
max

i
‖σ̃i‖L∞(D(0,1/2))

)n

≤ Dn

for some D ≥ 1. Likewise we have that

sup
|t|≤1/2

|γ̃(t)| ≥ sup
|t|=1/2

|γ̃(t)| ≥ (1/2)−α sup
|t|=1/2

|σ̃i1 · · · σ̃in(t)| = (1/2)−α |σ̃i1 · · · σ̃in(0)| ≥ En

for some E > 0 and we are done. �

Let us also note the following basic but crucial observation.
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Lemma 4.3. If Γna is non-elementary, then for small enough t ∈ D∗, Γt ≤ SL(2,C) is
non-elementary.

Proof. By definition Γ contains two hyperbolic elements γ1 and γ2 with disjoint fixed points
on P

1,an
L . Since for i = 1, 2 |tr(γi)|na > 1, it follows that |tr(γi,t)| → ∞ as t → 0. Thus

γ1,t and γ2,t are loxodromic for small t, and they have well-defined attracting and repelling

fixed points att(γi,t), rep(γi,t). Saying that γ1 and γ2 have disjoint fixed points sets on P
1,an
L

implies that the formal expansions of the curves t 7→ att(γi,t) and t 7→ rep(γi,t) are all distinct,
thus the corresponding points in P1 must be disjoint in some punctured neighborhood of the
origin. �

4.2. Models and P
1,an
L . In this paragraph we review the notion of model. Set X = D× P1

C.
A (bimeromorphic) model of X is a surface Y together with a bimeromorphic holomorphic
map πY : Y → X that is biholomorphic above X \ ({0} × P1). The fiber π−1

Y ({t} × P1) will
be denoted by Yt. We will only consider the case where Y is smooth, in which case πY is
simply a composition of point blow-ups above the central fiber and Y0 is a divisor with simple
normal crossings.

We say that a model Y ′ dominates a model Y if the birational map πY ′ : Y ′ → X factors
through Y . The set of models is then directed in the sense that given two models Y and Y ′,
there exists a third one Y ′′ dominating both.

We now explain the basic correspondence between models and finite subsets of P1,an
L . Recall

as a set, P1,an
L is the one point compactification of the space of multiplicative semi-norms on

L[z] whose restriction to L is the t-adic norm. Let Y be any model, and pick any irreducible

component E of Y0: we will define a type 2 point ζE ∈ P
1,an
L .

Observe that any element f ∈ C(t)[z] defines a rational function on D× P1
C so that we can

define

|f |ζE = |f(ζE)| = exp

(
−

1

bE
ordE(f ◦ πY )

)

where bE = ordE(t◦πY ). Dividing by bE guarantees that ζE|L = |·| and also that the definition
is model-independent in the sense that if Y ′ dominates Y and E′ is the strict transform of
E then ζE = ζE′. Since the field C(t) is dense in L, it follows that ζE extends uniquely to a

semi-norm on L[z] hence defines a point in P
1,an
L . This point is of type 2 and is defined over

the field extension C((t1/bE )). Conversely, any type 2 point of P1,an
L is equal to ζE for some

irreducible component E of the central fiber of some model Y over X, see [Fan, Lemma 7.16].

We denote by S(Y ) the set of all type 2 points ζE ∈ P
1,an
L where E ranges over the set of

irreducible components of Y0. It is an elementary fact that S(Y ′) ⊃ S(Y ) if and only if Y ′

dominates Y .

Proposition 4.4. (see [dMF2, §4.1]) Let S be any finite set of type 2 points in P
1,an
L . Then

there exists a (smooth) model Y such that S ⊂ S(Y ).

Remark 4.5. In fact there is an isomorphism of partially ordered sets between finite sets of
type 2 points endowed with the inclusion and proper bimeromorphic maps π : Y → P1

C × D

with Y a normal complex analytic variety, see [Fan, Theorem 7.18].

The previous proposition together with Proposition 1.9 yield the following corollary.
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Corollary 4.6. Let ν be any probability measure on P
1,an
L which is non atomic and gives

zero mass to HL. Then for every ε > 0 there exists a model Y such that every connected
component U of P1,an

L \ S(Y ) satisfies ν(U) < ε.

Remark 4.7. Suppose that ν puts full mass on the set P1,an(L) of points of type 1 defined
over L. Then one can actually choose π : Y → P1

C × D to be a composition of blow-ups at
free points, i.e. lying in the regular locus of the central fiber. In other words, one can choose
the central divisor π∗(P1

C × {0}) to be reduced.

4.3. Reduction map and action of SL(2,M). Fix any model Y , and let ζ be any type 2

point in P
1,an
L . Then we can find a model Y ′ dominating Y and an irreducible component E

of Y ′
0 such that ζ = ζE . If the natural map πY ′,Y : Y ′ → Y contracts E to a point, we set

redY (ζE) = πY ′,Y (E). Otherwise we let redY (ζE) be the generic point of the curve πY ′,Y (E)
which is a (non-closed) point in the C-scheme Y0. The mapping redY is called the reduction

map. It extends canonically to an anti-continuous map redY : P1,an
L → Y0 (i.e. the preimage

of a closed set in the Zariski topology is open for the Berkovich topology), see e.g. [T, §5.2.4],
or [dMF2, §4.2].

It can be shown that it ηE is the generic point of an irreducible component E of Y0, then
red−1

Y (ηE) = {ζE}. If p ∈ Y0 is a closed point then red−1
Y (p) is a connected component of

P
1,an
L \ S(Y ) whose boundary consists of the points ζE where E ranges over all irreducible

components of Y0 containing p. In particular the boundary of red−1
Y (p) consists of one or two

points.
The reduction map behaves well under proper modifications.

Lemma 4.8. If π : Y ′ → Y is a birational morphism, then redY = π ◦ redY ′ .

Proof. If ζ is any type 2 point, there exists a model Y ′′ dominating Y ′ such that ζ = ζE for
some component E of Y ′′

0 . Then it follows immediately from the definitions that redY (ζ) =

π ◦ redY ′(ζ). This identity then extends to P
1,an
L because redY and redY ′ admit unique anti-

continuous extensions to P
1,an
L and π is continuous for the Zariski topology. �

Let us now pick γ ∈ SL(2,M), and denote by γna its natural image in SL(2,L). Observe
that γ induces a biholomorphism from D∗ × P1

C to itself commuting with the first projection,
and extending meromorphically to D × P1

C. More generally given any two models Y, Y ′ this
biholomorphism extends to a bimeromorphic map γY,Y ′ : Y 99K Y ′. Its properties can be
described from γna and the reduction map as follows.

Proposition 4.9. Let Y, Y ′ be two models over X, and pick γ ∈ SL(2,M).

(1) The induced bimeromorphic map γY,Y ′ : Y 99K Y ′ has an indeterminacy point at

p ∈ Y0 iff there exists a type 2 point ζ ∈ red−1
Y (p) such that γna(ζ) ∈ S(Y ′).

(2) Suppose γY,Y ′ is holomorphic at p ∈ Y0. Then for any ζ ∈ red−1
Y (p), we have

γY,Y ′(p) = red′Y (γna(ζ)).

Proof. The proposition follows easily from the basic properties of the reduction map together
with the following lemma. �

Lemma 4.10. Let ζ ∈ P
1,an
L be a type 2 point. Fix a model Y1 dominating Y and a component

E of (Y1)0 such that ζ = ζE. Let ζ ′ = γna(ζ), and fix a model Y ′
1 dominating Y ′ and a

component E′ of (Y ′
1)0 such that ζ ′ = ζE′. Then γY1,Y ′

1
(ηE) = ηE′, where ηE (resp. ηE′) is

the generic point of E (resp. E′).
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Conversely, given any two models Y1, Y
′
1 and respective irreducible components E ⊂ (Y1)0

and E′ ⊂ (Y ′
1)0, if γY1,Y ′

1
(ηE) = ηE′ then ζE′ = γna(ζE).

Proof. The pull-back by γ of any rational function on Y ′
1 vanishing at ηE′ necessarily vanishes

at ηE since ζE′ = γna(ζE). Since for any point p not lying on E′ there exists a rational function
on Y ′

1 which is non-zero at p, and zero on E′, the first claim follows.
For the second claim, pick f a rational function on Y ′

1 , and choose points p ∈ E, p′ ∈ E′

such that γY1,Y ′
1
is regular at p, p′ = γY1,Y ′

1
(p), and E (resp. E′) is regular at p (resp. at

p′). Then we may choose coordinate (x, y) at p and (x′, y′) at p′ such that E = {x = 0},
E′ = {x′ = 0} and γY1,Y ′

1
(x, y) = (xk, ⋆). It follows that

− log |f(γna(ζE))| =
1

bE
ordE(f ◦ γY1,Y ′

1
) =

k

bE
ordE′(f)

which implies bE′ = bE/k and ζE′ = γna(ζE). �

Using the reduction map, one can see that for large ‖γ‖
na
, the meromorphic map γY acts

on the central fiber Y0 like a (brutal) North-South transformation.

Proposition 4.11. Let Y be any model.
There exists a constant C = C(Y ) depending only on Y such that for any γ ∈ SL(2,M) such

that ‖γ‖
na

≥ C, there exist two points att(γY ) and rep(γY ) in Y0 (not necessarily distinct)
such that the induced bimeromorphism γY : Y 99K Y is holomorphic on Y0 \ rep(γY ) and
γY (Y0 \ rep(γY )) = att(γY ).

Proof. Choose C > maxS(Y ) exp(dH(ζ, xg)), and pick γ of norm ≥ C.
By Proposition 2.7 there exist two disjoint closed Berkovich disks Batt(γ) and Brep(γ) of

spherical diameter ‖γ‖−1
na

such that γ(P1,an
L \Brep(γ)) ⊂ Batt(γ).

Observe that Brep(γ) cannot contain any point ζ ∈ S(Y ) since otherwise we would get

that dH(ζ, xg) ≥ log ‖γ‖−1
na

, contradicting the choice of C. Thus, Brep(γ) ∩ S(Y ) = ∅, and

since Brep(γ) is connected, it is contained in a connected component of P
1,an
L \ S(Y ). It

follows that Brep(γ) ⊂ red−1
Y (rep(γY )). Similarly we have Batt(γ) ∩ S(Y ) = ∅, and Batt(γ) ⊂

red−1
Y (att(γY )).

Now pick any point p ∈ Y0 different from rep(γY ). Then red−1
Y (p) is disjoint from Brep(γ)

so it is mapped into Batt(γ) by γna. The first item of Proposition 4.9 then asserts that γY is
holomorphic at p and the second one that γY (p) = redY (Batt(γ)) = att(γY ). �

Remark 4.12. The proof shows that rep(γY ) = redY (ζ) for any ζ ∈ Brep(γ). In particular if
γ is hyperbolic and ζrep is its repelling fixed point, then rep(γY ) = redY (ζrep). Also if S(Y )
contains the Gauß point then taking C > exp(diamH(S(Y ))) is enough.

Let ν be any Radon measure on the Berkovich projective line P1,an
L . Then by definition the

residual measure (redY )∗ν is the atomic measure on Y0 satisfying

(redY )∗ν({p}) = ν(red−1
Y (p)) ,

for any closed point p ∈ Y0. Note that if ν gives no mass to S(Y ) (redY )∗ν is the push forward
of ν in the usual sense. Since the union of the open sets red−1

Y (p) as p ranges through closed

points of Y0 is equal to the complement of S(Y ) in P
1,an
L , it follows that the total mass of

(redY )∗ν is equal to the mass of the restriction of ν to P
1,an
L \ S(Y ).
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Lemma 4.13. If νn converges weakly to ν and ν(S(Y )) = 0, then (redY )∗νn converges in
mass to (redY )∗ν.

Proof. Pick any closed point p ∈ Y0. Recall that Radon measures are regular. Since νn → ν
and red−1

Y (p) is open we deduce that

lim inf
n→∞

(redY )∗νn{p} ≥ (redY )∗ν{p} .

On the other hand, since the boundary of red−1
Y {p} is included in S(Y ), the assumption

ν(S(Y )) = 0 implies that

lim sup
n→∞

(redY )∗νn({p}) ≤ ν
(
red−1

Y {p}
)
= (redY )∗ν({p}) .

Therefore we conclude that for every p ∈ Y0, (redY )∗νn({p}) → (redY )∗ν({p}). Since all these
measures are atomic and of uniformly bounded mass, the result follows. �

4.4. Proof of Theorem B. Let (G,m) satisfying (A1), and a representation ρ : G →
SL(2,M), and suppose that the induced representation ρna : G→ SL(2,L) is non-elementary.
Lemma 4.3 implies that ρt : G → SL(2,C) is also non-elementary for small t so by Theorem
3.1 (in the complex case) it makes sense to talk about the unique probability measure νt on
P1(C) that is stationary under µt = (ρt)∗m. We also denote by νna the unique probability

measure on P
1,an
L that is stationary under µna = (ρna)∗m.

Fix a model Y . Since πY : Y → D × P1
C is a biholomorphism outside the central fiber, we

can view νt as a probability measure on Yt, which we denote by νYt . Our aim is to prove that
νYt converges as t→ 0 to an atomic measure on the central fiber given by (resY )∗νna.

Fix ε > 0, and choose a model6 Y ′ such that the conclusion of Corollary 4.6 holds for the
unique stationary probability measure ν̌na associated to the reversed random walk. We can
assume that Y ′ dominates Y , and write νY ′

t
for the stationary measure on Y ′

t .

Consider the Markov operator Pt =
∫
(γt)∗dµt(γ) acting on the space of probability mea-

sures on Y ′
t , whose n-fold iterate is Pn

t =
∫
(γt)∗dµnt (γ). Observe that for every n ≥ 1 we have

that Pn
t νY ′

t
= νY ′

t
. To analyze this identity as t tends to 0, we extract a sequence tj → 0 such

that νYtj
and νY ′

tj
converge to respective probability measures νY0

on Y0, and νY ′
0
on Y ′

0 . Note

that by construction the push-forward of νY ′
0
under the canonical projection map Y ′ → Y is

νY0
. We will show that νY0

= (resY )∗νna.
Let C = C(Y ′) be the constant given by Proposition 4.11, and define A = A(C) =

{γ ∈ SL(2,L), ‖γ‖ ≥ C}. We define two measurable maps on An with values in Y ′
0 , namely

attY ′(γ) := att(γY ′) and repY ′(γ) := rep(γY ′). The image µn
na
|A under repY ′ (resp. attY ′(γ))

is by definition the distribution of repelling (resp. attracting) points on Y ′ for the random
walk at time n.

Lemma 4.14. The sequence of atomic measures (repY ′)∗(µnna|A) (resp. (attY ′)∗(µnna|A)) con-
verges in mass to (resY ′)∗ν̌na (resp. to (resY ′)∗νna).

Taking this lemma for granted for the moment, let us complete the proof of the theorem.
Observe first that for any γ ∈ A, from the description of the action of γ in Proposition 4.11,
we see that any cluster value of (γtj )∗νY ′

tj
is of the form

(
1− νY ′

0
({rep(γY ′)})

)
δatt(γY ′) + error = δatt(γY ′ ) + error

6Observe that Remark 4.7 applies here so that we can further assume the central fiber to be reduced.
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where the error on the right hand side is a signed measure of total mass ≤ 2νY ′
0
({rep(γY ′)}).

Using the identity νY ′
t
= Pn

t νY ′
t
and letting t = tj → 0 we infer that

(4.2) νY ′
0
=

∫

A
δatt(γY ′)dµ

n
na
(γ) + error

where the mass of the error is

M(error) ≤ 2

∫

A
νY ′

0
({rep(γY ′)}) dµn

na
(γ) + |1− µn

na
(A)|

= 2

∫

x∈Y ′
0

νY ′
0
({x})d ((repY ′)∗(µ

n
na
|A)) + |1− µn

na
(A)| .(4.3)

By Lemma 4.14, (repY ′)∗(µnna|A) converges in mass towards (resY ′)∗ν̌na. Since every atom of
the latter measure has mass ≤ ε by construction, we get that every atom of (repY ′)∗(µn|A)
has mass ≤ 2ε for n large enough. It follows that the integral in (4.3) is bounded by ≤ 2ε.
Since in addition µn(A) → 1 by Lemma 3.5, we conclude that for n large enough

(4.4) νY ′
0
−

∫

A
δatt(γY ′ )dµ

n
na
(γ)

has total mass ≤ 5ε.
To conclude, we observe that applying Lemma 4.14 again, the sequence of measures

∫

A
δatt(γY ′)dµ

n
na
(γ) =

∫

x∈Y ′
0

δxd ((attY ′)∗(µ
n
na
|A))

converges in mass to (resY ′)∗ν. We thus infer that νY ′
0
− (resY ′)∗νna has total mass ≤ 5ε.

Pushing down this information to Y we get the same bound for νY0
−(resY )∗νna on Y . Since Y

does not depend on ε and ε can be made arbitrarily small, we conclude that νY0
= (resY )∗νna,

as required. �

Proof of Lemma 4.14. Let (Ω,P) = (SL(2,L)N
∗
, µN

∗

na
), and consider the set

Ωn = {ω ∈ Ω, rn(ω) ∈ SL(2,L) is hyperbolic} .

If repn
na

: Ωn → P
1,an
L denotes the measurable map sending ω to the repelling fixed point of

rn(ω), then by Theorem 3.10 P(Ωn) → 1 and (repn
na
)∗P → ν̌na. Pushing forward this conver-

gence by the residue map redY ′ and applying Lemma 4.13, we thus get that (redY ′)∗(repnna)∗P
converges in mass to (redY ′)∗ν̌na.

Now define Ω′
n = Ωn ∩ r−1

n (A), which also satisfies P(Ω′
n) → 1 by Lemma 3.5. It follows

from Remark 4.12 that for ω ∈ Ω′
n, repY ′(rn(ω)) = redY ′(repn

na
(ω)), in other words, the

repelling fixed point of rn(ω) is mapped under redY ′ to repY ′(rn(ω)). We thus obtain that

(redY ′)∗(rep
n
na
)∗P = (repY ′)∗(µ

n
na
|A) + error

where the mass of the error tends to 0 as n→ ∞. This completes the proof. �

4.5. Proof of Theorem A in the non-elementary case. As in the previous section we
work with a representation ρ : G→ SL(2,M) such that the induced representation ρna : G→
SL(2,L) is non-elementary, and further assume that (A1) and (A2) hold. For t ∈ D∗ we set
µt = (ρt)∗m and we also put µna = (ρna)∗m. Recall that for t 6= 0 the Lyapunov exponent

χ(t) := lim
n→∞

1

n

∫
log ‖γ‖ dµnt (γ)
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is a well defined positive number, and that the non-Archimedean Lyapunov exponent

χna := lim
n→∞

1

n

∫
log ‖γ‖

na
dµn

na
(γ)

is also well-defined and positive by Theorem 3.1.
We have to show that

(4.5)
1

log |t|−1χ(t) −→ χna as t → 0.

If (K, |·|) is any metrized field, and z = [z1 : z2] ∈ P1(K), recall the notation

σ(γ, z) = log
‖γZ‖

‖Z‖
,

where Z = (z1, z2) ∈ K2 \ {0} and ‖Z‖ = max(|z1| , |z2|). To establish (4.5), we first need
to relate the classical and non-Archimedean expansion rates for a single group element. We
start with the following consequence of Lemma 4.2.

Lemma 4.15. There exists a constant C > 0, such that for any model Y , any g ∈ G, and
any point yt ∈ Yt with |t| ≤ 1/2, we have

(4.6)

∣∣∣∣
1

log |t|−1
σ(γt, y)

∣∣∣∣ ≤ log ‖γ‖
na

+
C length(g)

log |t|−1 ,

where γ = ρ(g) ∈ SL(2,M).

Proof. As before for t 6= 0 we can naturally identify the fibers Yt and {t} × P1, and we write
yt = [z1t : z2t], with Zt = (z1t, z2t) and max{|z1t|, |z2t|} = 1. The upper bound

σ(γt, yt) = log ‖γtZt‖ ≤ log ‖γt‖ ≤ (log |t|−1) log ‖γ‖
na

+ C length(g)

follows directly from the definitions and Lemma 4.2. To get the lower bound it is enough to

write ‖γtZt‖ ≥
∥∥γ−1

t

∥∥−1
‖Zt‖ and remind that ‖γt‖ =

∥∥γ−1
t

∥∥. �

The main step of the proof is the following proposition.

Proposition 4.16. For every model Y , there exists a constant c(Y ) > 0 satisfying the fol-
lowing property. For every γ ∈ SL(2,M), there exists a point α(γ) ∈ Y such that if tj → 0
and (ytj ) ∈ Ytj is any sequence not accumulating α(γ), then

(4.7) lim inf
j→∞

1

log |tj|
−1σ(γtj , ytj ) ≥ log ‖γ‖

na
− c(Y ).

This says that the (positive) upper bound that was obtained in (4.6) is almost achieved
everywhere on Y when t → 0, except at one point, up to an error that is uniform in γ
(compare Lemma 2.8).

Let us postpone the proof of the proposition to the end of the section, and first complete
the proof of (4.5).

Fix ε > 0. Apply Corollary 4.6 to get a model Y in which all the atoms of the residual
measure νY0

= (redY )∗νna are smaller than ε. By Theorem B, we have that νYt → νY0
as

t→ 0 where νYt is the pull-back of νt to Y .



DEGENERATIONS OF SL(2,C) REPRESENTATIONS AND LYAPUNOV EXPONENTS 33

We first work with a fixed g ∈ G, and as usual we write γ = ρ(g) ∈ SL(2,M). By
Lemma 4.15, we have that

(4.8) lim sup
t→0

1

log |t|−1

∫
σ(γt, y)dνt(y) ≤ log ‖γ‖

na
.

To obtain a lower bound, we fix a small neighborhood U of α(γ) in Y such that νt(U) ≤ 2ε
for any t. This is possible because νt → νY0

and νY0
(α(γ)) ≤ ε. Then Proposition 4.16 shows

that if η ≪ 1 is fixed, then for every small enough t, for y ∈ Yt \ U we get

1

log |t|−1
σ(γt, y) ≥ log ‖γ‖

na
− c(Y )− η,

whereas for y ∈ Yt ∩ U , Lemma 4.15 implies that

1

log |t|−1
σ(γt, y) ≥ − log ‖γ‖

na
− η.

Combining these two estimates we infer that

1

log |t|−1

∫

Yt

σ(γt, y)dνt(y) ≥ (1− 2ε)(log ‖γ‖
na

− c(Y )− η)− 2ε(log ‖γ‖
na

+ η),

therefore since η is arbitrary,

lim inf
t→0

1

log |t|−1

∫

Yt

σ(γt, y)dνt(y) ≥ log ‖γ‖
na

− (1− 2ε)c(Y )− 2ε log ‖γ‖
na
.

Using this inequality and (4.8) we finally obtain

(4.9) lim sup
t→0

∣∣∣∣
1

log |t|−1

∫

Yt

σ(γt, y)dνt(y)− log ‖γ‖
na

∣∣∣∣ ≤ 2c(Y ) + 4ε log ‖γ‖
na
.

To conclude the argument we integrate this estimate with respect to g. Fix an integer n
so large that

2c(Y )

n
< ε and

∣∣∣∣
1

n

∫
log ‖γ‖

na
dµn

na
(γ)− χna

∣∣∣∣ < ε.

We observe that the Furstenberg formula for the Lyapunov exponent iterated n times and
read in the model Y expresses as

χ(t) =
1

n

∫

Yt×Γ
σ(γt, y)dνt(y)dµ

n
t (γ),

so we can write∣∣∣∣
1

log |t|−1χ(t)− χna

∣∣∣∣ =
∣∣∣∣
1

n

∫

Yt×Γt

σ(γt, y)

log |t|−1dνt(y)dµ
n
t (γ)− χna

∣∣∣∣

≤

∣∣∣∣
1

n

∫

Yt×Γt

σ(γt, y)

log |t|−1dνt(y)dµ
n
t (γ)−

1

n

∫
log ‖γ‖

na
dµn

na
(γ)

∣∣∣∣+ ε

=: ∆(t) + ε .

By the moment assumption (A2), there exists a finite subset G′ ⊂ G such that

(4.10)

∫

G\G′

length(g)dmn(g) ≤ ε and
1

n

∫

Γna\Γ′
na

log ‖γ‖
na
dµn

na
(γ) ≤ ε
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where Γ′
na

:= ρna(G
′). To bound the quantity ∆(t) we split the integrals according to the

decomposition G = G′ ∪ G \ G′. If ∆′(t) denotes the contribution coming from G′, using
(4.10) and Lemma 4.15, we get

∆(t) ≤ ∆′(t) + 2

∫

Γna\Γ′
na

1

n
log ‖γ‖

na
dµn

na
(γ) +

C

log |t|−1

∫

G\G′

length(g)dmn(g)

≤ ∆′(t) + (C + 2)ε ,

From (4.9) we have that

lim sup
t→0

∆′(t) = lim sup
t→0

∣∣∣∣∣
1

n

∫

Yt×Γ′
t

σ(γt, y)

log |t|−1dνt(y)dµ
n
t (γ)−

∫

Γ′
na

1

n
log ‖γ‖

na
dµn

na
(γ)

∣∣∣∣∣

≤
1

n

∫

G′

lim sup
t→0

∣∣∣∣
∫

Yt

σ(ρt(g), y)

log |t|−1 dνt(y)− log ‖ρna(g)‖

∣∣∣∣ dm
n(g)

≤
2c(Y )

n
+

4ε

n

∫

Γ′

log ‖γ‖
na
dµn

na
(γ) ≤ ε+ 4ε(χna + ε) ,

where in the second line we use µt = (ρt)∗m and µna = (ρna)∗m. Finally we conclude that

lim sup
t→0

∣∣∣∣
1

log |t|−1χ(t)− χna

∣∣∣∣ ≤ ε+ (C + 2)ε+ ε+ 4ε(χna + ε)

Since this estimate makes no reference to the model Y and ε is arbitrary, the theorem follows.

Proof of Proposition 4.16. We first need a version of Proposition 2.4 for SL(2,M). Indeed
since M is neither a field, nor complete this proposition cannot be applied directly. Let
us explain how to adapt the argument to this concrete setting. We first introduce some
notation: for r > 0 denote by Or (resp. Mr) the ring of holomorphic functions in D(0, r)
(resp. of holomorphic functions in D(0, r) \ 0 admitting a meromorphic extension at the
origin).

Lemma 4.17. For every γ ∈ SL(2,M) there exist r > 0, m,n ∈ SL(2,Or) and a ∈ SL(2,Mr)
diagonal such that γ = m · a · n and ‖a‖

na
= ‖γ‖

na
.

Proof. Observe first that a meromorphic family of matrices (γt) in SL(2,M) extends holomor-
phically at the origin if and only if for any triple {a, b, c} of distinct points in P1(C), then as
t→ 0, there exists distinct a′, b′, c′ such that γt(a) → a′, γt(b) → b′, and γt(c) → c′.

Let now γ ∈ SL(2,M) and assume that γ /∈ SL(2,O). Then on X = D × P1
C, γ contracts

X0 \ {rep(γX)} to {att(γX)}. Pick m ∈ SL(2,O) such that m−1(att(γX)) = ∞ and n ∈
SL(2,O) such that n(rep(γX)) = ∞. Then γ′ = m−1γn−1 maps X0 \{0} to ∞, which implies
that for small t, γ′t is loxodromic with an attracting fixed point att(γt) close to ∞ and a
repelling fixed point rep(γt) close to 0. Thus there exists r > 0 and h ∈ SL(2,Or) such that
ht(att(γt)) = ∞, ht(rep(γt)) = 0 and ht(1) = 1. Then a = hγ′h−1 fixes 0 and ∞, so it is
diagonal.

By the first observation, t 7→ ht extends holomorphically at the origin, that is h ∈ SL(2,Or).
So the desired decomposition is γ = (h−1m)a(nh). The equality ‖a‖

na
= ‖γ‖

na
follows

easily. �

We are now ready to prove Proposition 4.16. We start by working on X. Pick a sequence of
points (xtj ) converging to the central fiber, and consider the quantities σ(γtj , xtj ) =

∥∥γtjXtj

∥∥.
Extract so that (xtj ) converges and drop the index j for notational simplicity. Ifm ∈ SL(2,O)
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then for every Z ∈ O
2, ‖mtZt‖ ≍ ‖Zt‖ so by the previous lemma we can assume that γ is

diagonal, γt = diag(λt, λ
−1
t ). If (xt) does not converge to [0 : 1], then ‖γtXt‖ ≍ ‖γt‖ so the

desired estimate holds, therefore the interesting case is when (xt) converges to [0 : 1]. In
this case a lift of norm 1 of xt will be of the form Xt = (ξt, ηt) with |ηt| = 1, so σ(γt, xt) =

max(|λtξt| , |λt|
−1). From this formula we infer that if for some l > 0, |ξt| ≥ |t|l when t → 0

then

lim inf
t→0

1

log |t|−1σ(γt, xt) ≥ |λ|
na

− l = ‖γ‖
na

− l.

We rely on the following elementary geometric fact.

Lemma 4.18. Let π :M → D2 be a composition of N blow-ups above the vertical fiber {0}×D

in the unit bidisk, and denote M0 = π−1({0} × D). Then if ℓ > N , the open set

π−1
({

(t, x) ∈ D∗ × D, |x| < |t|ℓ
})

clusters at a unique point of M0.

Proof. The open set
{
(t, x) ∈ D∗ × D, |x| < |t|ℓ

}
is the union of the curves

{
x = ctℓ

}
in

D∗ ×D, where c ranges over |c| < 1. These curves get separated after exactly ℓ blow-ups. �

In order to conclude the proof, pick a model π : Y → X and a sequence (ytj ) as in the
statement of the proposition. Extract so that (ytj ) converges. Let N be the number of blow-
ups required to obtain Y . We put xtj = π(ytj ) and do the analysis of the first part of the
proof. Then, Lemma 4.18 applied to l = N +1 provides a point α = α(γ) in the central fiber
Y0 such that if (ytj ) does not converge to α, then

lim inf
j→∞

1

log |tj|
−1σ(γtj , ytj ) ≥ ‖γ‖

na
− (N + 1).

The result follows. �

5. Degenerations: elementary representations

In this section we complete the proof of Theorem A by addressing the case of elementary
representations. Let as before G be a finitely generated group endowed with some probability
measure m satisfying

(A2+) there exists δ > 0 such that
∫
(length(g))1+δdm(g) <∞,

and let ρ : G→ SL(2,M) be any meromorphic family of representations.
With notation as in §4.4, Viewing M as a subring of L we denote by ρna the corresponding

non-Archimedean representation G→ SL(2,L) and µna = (ρna)∗m, which satisfies the moment
condition

(B2+) there exists δ > 0 such that
∫
log ‖γ‖1+δdµ(γna) <∞

in SL(2,L). In particular the non-Archimedean Lyapunov exponent χna = χ(µna) is well-
defined. Likewise for t ∈ D∗ we let µt = (ρt)∗µ and χ(t) = χ(ρt(G), µt).

Theorem 5.1. Let (G,m) be a finitely generated group endowed with a probability measure
satisfying (A2+), and let ρ : G → SL(2,M) be such that ρna(G) ⊂ SL(2,L) is elementary.
Then

(5.1) χ(t) =
(
log |t|−1)χna +O(1) as t→ 0.

If in addition µ is symmetric, then χna = 0.
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Under mild assumptions, the error term can be understood more precisely, see §5.4
Put Γna = ρna(G). According to the discussion in §2.4, if Γna ≤ SL(2,L) is elementary then

it is either non-proximal or non-strongly irreducible, so there are three possibilities:

(1) Γna has potential good reduction;
(2) Γna is conjugate to a subgroup of the affine group {z 7→ az + b, a ∈ L×, b ∈ L};
(3) Γna is conjugate to a subgroup of the group of transformations fixing {0,∞}, that is,{

z 7→ λz±1, λ ∈ L×}.
Note that if we are not in case (1), then the projection of Γna in PGL(2,L) is not purely

elliptic, and it follows from the analysis of §2.4 that the conjugacy in (2) and (3) lies in
SL(2,L) (i.e. no field extension is required).

In the remaining part of this section we split the proof of Theorem 5.1 according to these
three cases.

5.1. Potential good reduction. In case (1), Γna is conjugate in SL(2,C((t1/2))) to a repre-
sentation fixing the Gauß point. Lifting to a branched 2-cover (which amounts to making the
change of variables t = u2), we can assume that the conjugacy lies in SL(2,L), that is there
exists α ∈ SL(2,L) such that for every γ ∈ Γna,

∥∥α−1γα
∥∥ ≤ 1.

Observe first that M is dense in L so that there exists a sequence αn ∈ SL(2,M) such that
‖α− αn‖ → 0. From the continuity of the matrix product, and the ultrametric property,
for any sufficiently large integer n we get

∥∥α−1
n ρna(s)αn

∥∥ ≤ 1 for all s in a fixed finite set of

generators of G. In particular, we have
∥∥α−1

n ρna(g)αn

∥∥ ≤ 1 for all g ∈ G so that we may
suppose that our original conjugacy α belongs to SL(2,M).

Since the Lyapunov exponent is insensitive to conjugacy, by replacing ρ by α−1ρ(·)α we
can assume that ρ extends holomorphically at the origin. For every t 6= 0, by sub-additivity
we have the bound 0 ≤ χ(t) ≤

∫
log ‖ρt(g)‖ dm(g). Therefore applying Lemma 4.2 and the

moment condition we infer that χ(t) = O(1) as t→ 0. On the other hand, since Γna has good
reduction, χna vanishes, and we are done.

5.2. Affine representations. Let (k, |·|) be any complete valued field and consider any
subgroup Γ of SL(2, k) endowed with a measure µ, such that the projection of Γ in PGL(2, k)
lies in the affine group Aff(k). An element γ ∈ Γ can be written in matrix form as

(5.2) γ =

(
α β
0 α−1

)
,

corresponding to the Möbius transformation γ(z) = az + b, with a = α2 and b = βα. Thus
its norm is

(5.3) ‖γ‖ = max
(
|α| , |β| ,

∣∣α−1
∣∣) = max

(
|a|1/2 , |a|−1/2 ,

∣∣∣ba−1/2
∣∣∣
)
.

Proposition 5.2. Let (k, |·|) be a complete valued field and let µ be a measure with countable
support in SL(2, k), contained in the affine group, and satisfying (B2+). Then with notation
as above we have

(5.4) χ(µ) =

∣∣∣∣
∫

log |α(γ)| dµ(γ)

∣∣∣∣ =
1

2

∣∣∣∣
∫

log |a(γ)| dµ(γ)

∣∣∣∣

In particular if µ is symmetric, χ(µ) = 0.
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Proof. For any ω = (γn) ∈ Ω, we write γn(z) = an(ω)z + bn(ω) so that

ℓn(ω) = γn · · · γ1(z) = An(ω)z +Bn(ω) = an · · · a1z +
n−1∑

j=1

an · · · aj+1bj + bn .

By the law of large numbers (or equivalently the Birkhoff ergodic theorem) we have that

(5.5)
1

n
log |An| → λ :=

∫
log |a|dµ a.s.

Fix ε > 0. For a.e. ω, en(λ−ε) ≤ |An(ω)| ≤ en(λ+ε) for large n. The moment condition (B2+)
and Chebyshev’s inequality yield µ{|b| > eεj} ≤ Cj−1−δ, so that by the Borel-Cantelli lemma
we get that bn(ω) ≤ eεn a.s. for large n.

At this point we split the proof into two cases according to the sign of λ =
∫
log |a|dµ.

Write

γn ◦ · · · ◦ γ1(z) = a1 · · · an


z +

n∑

j=1

bj
a1 · · · aj


 = An


z +

n∑

j=1

bjA
−1
j


 .

If λ > 0 we infer from (5.5) that a.s. the partial sums of the series
∑

j≥1 bjA
−1
j are bounded,

from which it follows that |Bn| = O(|An|). Therefore

lim
n→∞

1

n
log |An| =

λ

2
and lim sup

n→∞

(
1

2n
log |Bn| −

1

2n
log |An|

)
≤
λ

2
.

By (5.3), we have

(5.6)
1

n
log ‖ℓn(ω)‖ = max

{
1

2n
log |An|,−

1

2n
log |An|,

1

n
log |Bn| −

1

2n
log |An|

}
,

so we conclude that χ(µ) = λ/2.
On the other hand, if λ ≤ 0, then since almost surely for large j, |bj| ≤ eεj and e(λ−ε)j ≤

|Aj | ≤ e(λ+ε)j we deduce that
∣∣∣∣∣∣

n∑

j=1

bjA
−1
j

∣∣∣∣∣∣
= O

(
e(−λ+2ε)n

)
hence |Bn| = O

(
e3εn

)
.

Thus from (5.6) we get that for large n,

−
λ

2
− ε ≤

1

n
log ‖ℓn(ω)‖ ≤ −

λ

2
+ 4ε ,

and χ(µ) = −λ/2, as required. �

Proof of Theorem 5.1 in the affine case. Under the assumptions of the theorem, assume that
the projection of Γna into PGL(2,L) lies in the affine group. For any g ∈ G, we use the same
notation as above, writing α(ρ(g)) ∈ M for the upper diagonal term of ρ(g), and β(ρ(g)) ∈ M

for its upper right term. We get corresponding coefficients α(ρt(g)) ∈ C∗ (for fixed t 6= 0)
and α(ρna(g)) ∈ L∗.

By Lemma 4.2 we have that α(ρt(g)) = t− log|α(ρna(g))|α̃(ρt(g)), where t 7→ α̃(ρt(g)) is

holomorphic in D, and
∣∣∣log ‖α̃‖L∞(D(0,1/2))

∣∣∣ ≤ C(ρ) length(g). Hence

(5.7)

∫
log |α(ρt(g))| dm(g) = (log |t|−1)

∫
log |α(ρna(g))| dm + E(t)
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where

(5.8) |E(t)| =

∣∣∣∣
∫

log |α̃(ρt(g))| dm

∣∣∣∣ ≤ C

∫
length(g)dm < +∞ .

Therefore applying the formula of Proposition 5.2 to k = C and k = L we infer the desired
estimate (5.1) in the affine case. �

5.3. Representations fixing {0,∞}. Back to the general setting, consider now a subgroup
Γ ≤ SL(2, k) whose projection in PGL(2, k) fixes {0,∞}. Then every matrix in Γ is of the
form

either γ =

(
α 0
0 α−1

)
or γ =

(
0 −α
α−1 0

)
,

and ‖γ‖ = max{|α|, |α|−1}. As Möbius transformations, we have γ(z) = az or −a/z with

a = α2, and ‖γ‖ = max{|a|1/2, |a|−1/2}.

Proposition 5.3. Let (k, |·|) be a complete valued field and let µ be a measure with countable
support in SL(2, k), satisfying the moment condition (B2). Suppose that any element in the
support of µ leaves the pair {0,∞} invariant and at least one element permutes 0 and ∞.

Then χ(µ) = 0.

The last case of Theorem 5.1 immediately follows, since in this case we have that χ(t) ≡
0 = χna.

Proof. It is more convenient here to use probabilistic language. We denote by E(·) the expec-
tation of a random variable.

In terms of Möbius transformations, we are considering a random composition of maps of
the form γj(z) = λjz

εj where λj ∈ k× and εj ∈ {±1} are iid random variables.

Write ℓn(ω) = (γn ◦ · · · ◦ γ1) = Λnz
En , and let Xn = log |Λn| and xn = log |λn|. A simple

computation shows that En =
∏n

i=1 εi and

(5.9) Xn = xn + εnxn−1 + εnεn−1xn−2 + . . .+ εn · · · ε1x1

Note that (xn) is a sequence of iid real random variables with E(|x1|) < ∞. Kingman’s
theorem implies that the sequence (Xn/n) converges a.s. We have to show that its limit is 0.

Let (nl)l≥0 be the increasing sequence of random times where εnl
= −1, that is, (nl) is

defined by n0 = 0 and nl+1 = min {j > nl, εj = −1}. Since the εn are iid and µ does not
give full mass to the affine group, (nl+1 − nl)l≥0 is a sequence of iid random variables with
a geometric distribution of non-zero parameter p > 0 (which is the probability that γ is not
affine).

For q ≥ 1 put Yq =
∑nq−1

j=nq−1
xj with the convention that x0 = 0. Observe that (Yq) forms

a sequence of iid random variables with finite first moment, and such that

E(Y1) = E(x1) +

∞∑

j=1

j(1 − p)jpE(x1) =
1

p
E(x1) .

It follows from (5.9) that for every l ≥ 0, Xnl−1 =
∑l

j=1(−1)l−jYj.

Finally, let (Zl)l≥1 = (Y2l−1 − Y2l)l≥1 which is a sequence of iid random variables with
E(|Z1|) <∞ and E(Z1) = 0. Up to sign we have that

Xn2l−1 = ±
l∑

j=1

Zj,
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thus from the strong law of large numbers we infer that 1
lXn2l−1 → 0 a.s. as l → ∞, hence

since l ≤ nl the same holds for 1
n2l−1Xn2l−1. The proof is complete. �

5.4. Continuity of the error term. If m is finitely supported, the proof of Theorem 5.1
actually yields a finer estimate in (5.1) of the form

χ(t) =
(
log |t|−1)χna +C + o(1) as t→ 0.

Indeed:

− if Γna has potential good reduction, the proof reduces the situation to that of a holo-
morphic family of representations, in which case the result follows from the Fursten-
berg theory when ρ0 is non elementary in SL(2,C) and from Bocker-Viana [BV] when
ρ0 is elementary (the finiteness assumption on m is used here);

− if Γna is affine we have to show that the error E(t) in (5.7) admits a limit when t→ 0,
which by virtue of (5.8) and Lemma 4.2 follows from the dominated convergence
theorem;

− finally in the case of representations fixing {0,∞} there is nothing to prove because
χ(t) ≡ 0.

6. Degenerations: the hybrid approach

We propose an alternative approach to the analysis of the blow-up of the Lyapunov expo-
nent, which is based on the hybrid space constructed by Berkovich and used by Boucksom
and Jonsson in [BJ] and by the first author in [Fav]. The introduction of this space allows us
to make sense of the convergence of measures νt → νna and leads to a proof of Theorem C.

6.1. The hybrid space. We start by briefly recalling the definition the hybrid space, refer-
ring to [BJ, Fav] for more details.

Let A be the subring of L consisting of those series f such that ‖f‖hyb < +∞, where

‖f‖hyb :=
+∞∑

n=−∞
|an|hyb e

−n , and

{
|a|hyb = max{|a|, 1} if a ∈ C∗

|0|hyb = 0
.

Observe that for any f ∈ A, the sum has only finitely many negative terms and the series
defining f converges in D

∗
1/e. Endowed with the hybrid norm ‖·‖hyb, A is a Banach ring, and

its Berkovich spectrum D := Mber(A) is defined as usual to be the space of multiplicative
semi-norms | · | on A such that | · | ≤ ‖ · ‖hyb, endowed with the topology of pointwise
convergence.

It turns out that D is naturally a closed disk. To see this, introduce the map τ from the
closed disk of radius 1/e to D by the formula:

(6.1)

{
|f(τ(0))| = e− ordt=0(f);

|f(τ(t))| = |f(t)|
−1

log|t| if 0 < |t| ≤ 1/e.

for any f ∈ A. One can show that this map is a homeomorphism, see e.g. [Fav, Prop.
1.1]. A note on terminology: an element x ∈ D is a non-negative real valued function on
A, nevertheless as already said it is customary to write f 7→ |f(x)| = |f |x ∈ R+ for the
evaluation map.

The hybrid affine line A1
hyb := Mber(A[Z]) is by definition the set of multiplicative semi-

norms |·| onA[Z] such that |·| ≤ ‖·‖hyb onA. We endow it with the topology of the pointwise
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convergence which makes it locally compact. The restriction to A of any semi-norm x is a
point phyb(x) ∈ D, and the projection phyb : A1

hyb → D is a continuous surjective map. Given

x ∈ A1
hyb, according to the value (zero or non-zero) of τ−1 ◦ phyb(x), the semi-norm x will

carry non-Archimedean or Archimedean information.
It follows from the Gelfand-Mazur theorem (see e.g. the proof of [Fav, Prop. 1.1]) that

Mber(C[Z]) ≃ C, so if t 6= 0, the fiber p−1
hyb(τ(t)) is homeomorphic to C. Furthermore, there

exists a unique homeomorphism ψ̃ : D
∗
1/e × C → p−1

hyb(τ(D
∗
1/e)) satisfying

(6.2) |g(ψ̃(t, z))| = |g(t, z)|
−1

log|t|

for any (t, z) ∈ D
∗
1/e ×C and any g ∈ A[Z]. By construction, we have phyb ◦ ψ̃ = τ ◦π, where

π : D
∗
1/e × C → D

∗
1/e is the first projection. On the other hand, any semi-norm on L[Z] can

be restricted to A[Z] which yields a canonical map ψ̃na : A1,an
L → p−1

hyb(τ(0)). This map is a
homeomorphism since the completion of A with respect to the t-adic norm is the field L.

The hybrid space (A1)∗hyb associated to the punctured affine line (A1)∗ is the Berkovich

spectrum of A[Z,Z−1] and can be identified with an open subset of A1
hyb whose complement

is the set g 7→ |g(0)| with | · | ∈ D. The latter set is the closure in A1
hyb of ψ

(
D
∗
1/e × {0}

)
.

The hybrid projective line is constructed as the union of two copies of A1
hyb patched in the

usual way. Specifically, the natural inclusions A[z1] → A[Z,Z−1] and A[z2] → A[Z,Z−1]
sending z1 to Z, and z2 to Z−1 yield two open embeddings ı1, ı2 : (A

1)∗hyb → A1
hyb, and P1

hyb

is defined to be the union of U1 := Mber(A[z1]) and U2 := Mber(A[z2]) glued together using
the identification ı1(x) = ı2(x) for any x ∈ (A1)∗hyb.

The inclusion U1 ⊂ P1
hyb yields an open and dense embedding of A1

hyb into P1
hyb, and the

following proposition holds.

Proposition 6.1 ([Fav]). The hybrid space P1
hyb is compact, and there exists a homeomor-

phism ψ : D
∗
1/e × P1

C → p−1
hyb(τ(D

∗
1/e)) whose restriction to D

∗
1/e × C is equal to ψ̃. Likewise,

there is a canonical homeomorphism ψna : P1,an
L → p−1

hyb(τ(0)) whose restriction to A
1,an
L is

equal to ψ̃na.

Remark 6.2. In other words, there exists a topology on the disjoint union
(
D
∗
1/e × P1

C

)⊔
P
1,an
L

such that the map defined by ψ on D
∗
1/e×P1 and ψna on P

1,an
L is a homeomorphism onto P1

hyb.

The group SL(2,M) is contained in SL(2,L) so it admits a natural action on P
1,an
L preserving

the analytic structure on this space. It also acts by biholomorphisms on D∗ × P1
C commuting

with the second projection. The next proposition shows that these two actions fit together
nicely in the hybrid space. To ease notation we write ψt(z) = ψ(z, t).

Proposition 6.3. The group SL(2,M) admits a unique action by homeomorphisms on the

hybrid space P1
hyb which is compatible with its natural action on P

1,an
L , and such that

(6.3) ψt(γt · z) = γt · ψt(z)

for any γ ∈ SL(2,M), and any (t, z) ∈ D
∗
1/e × P1

C. In particular, for all γ ∈ SL(2,M) and

x ∈ P1
hyb, we have phyb(γ · x) = phyb(x).
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Proof. We define an action of SL(2,M) on P1
hyb by setting γ · x = γna · x when x ∈ P

1,an
L , and

such that (6.3) holds true. It is only necessary to check that this action is continuous which
will follow from the very definition of the hybrid space.

Recall that P1
hyb is the union of two copies U1 and U2 of A1

hyb. We pick γ =
(
a b
c d

)
∈

SL(2,M) and look at the action of γ in the first chart in U1 = Mber(A[z]). Observe that

for any f ∈ A[z], f(az+b
cz+d) is the quotient of some f̃ ∈ A[z] by a polynomial of the form

(cz + d)N ∈ M[z] for some integer N . It follows that

|f(γ · x)| =

∣∣∣∣f
(
az + b

cz + d

)
(x)

∣∣∣∣

depends continuously on x on the open set U := {x ∈ U1, |(cz + d)|x 6= 0}, so that γ defines
a continuous map from U to U1.

If now f ∈ A[z−1], then f(az+b
cz+d) is the quotient of an element g ∈ A[z] by a polynomial of

the form (az+ b)N ∈ M[z] for some N , and we conclude similarly that γ defines a continuous
map from U ′ := {x ∈ U1, |(az + b)|x 6= 0} to U2.

Since ad− bc = 1, the two open sets U and U ′ cover U1, which completes the proof. �

Recall from (2.1) the definition of the cocycle σ.

Proposition 6.4. For any γ ∈ SL(2,M), the function defined by

σhyb(γ, x) :=

{
σ(γna, ψ

−1
na

(x)) if x ∈ P
1,an
L

σ(γt ,z)
log|t|−1 if phyb(x) 6= 0 and ψ−1(x) = (z, t)

is continuous on P1
hyb.

Proof. It is enough to check that the restriction of σhyb(γ, ·) to one of the two defining charts of
the hybrid projective line is continuous, say on U =Mber(A[Z]). Since σhyb(g, ·) is continuous

on P
1,an
L and on ψ(D

∗
1/e×P1

C) separately , we only need to check that σhyb(g, xi) → σhyb(g, x)

for any net of points xi = ψ(ti, zi), (ti, zi) ∈ D∗
1/e × C indexed by some inductive set I and

such that xi → x ∈ P
1,an
L along I. Note that this implies ti → 0, and |g(xi)| → |g(x)| for any

g ∈ A[Z], i.e.

|gti(zi)|
−1

log|ti| → |g(x)| .

By switching the chart we are working in and extracting a subfamily if necessary, we may also
suppose that |Z(x)| ≤ 1 and |zi| ≤ 1 for all I ∈ I. Let a, b, c and d ∈ M be the coefficients of
g. By definition, we have

σhyb(g, xi) =
logmax{|a(ti)zi + b(ti)|, |c(ti)zi + d(ti)|}

log|ti|−1
.

On the other hand for any h ∈ A[Z] we have limi |h(xi)| = |h(x)|. Since M ⊂ A, (6.2) yields

lim
i
|(aZ + b)(xi)| = lim

i
|a(ti)(zi) + b(ti)|

−1
log|ti| = |(aZ + b)(x)|

which implies σhyb(g, xi) → σhyb(g, x) as required. �
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6.2. Convergence of measures in the hybrid space: proof of Theorem C. Consider
a representation ρ : G → SL(2,M) such that ρna is non-elementary, and m a measure on G
satisfying (A1).

By Theorem 3.1, we may consider the unique stationary measure νna associated to ρna:
this is a probability measure supported in P

1,an
L = p−1

hyb(τ(0)) ⊂ P1
hyb. By Lemma 4.3, for any

small enough t 6= 0 the representation ρt is non-elementary, and we denote by νt the image
in {t} × P1

C of the unique stationary measure associated to ρt under the natural inclusion

P1
C ⊂ {t} ×P1

C. We shall see that any limit point of νt is a stationary measure on P
1,an
L hence

equal to νna so that νt → νna (here for simplicity we drop the mention to the embeddings ψ
and ψna). Since the hybrid space is not metrizable, some care needs to be taken when arguing
in this way, and we thus proceed as follows.

Consider the set of probability measures M = {ψ∗(νt), 0 < |t| ≤ 1/e} in P1
hyb. Let M be

the closure of M in the space of probability measures, for the weak-⋆ topology associated to
the hybrid topology. Since P1

hyb is compact, so does M .

Let us prove that M \M = {(ψna)∗νna}.
We claim that M \M 6= ∅. Inded for any δ ∈ (0, 1/e), define Mδ = {ψ∗(νt), 0 < |t| ≤ δ}.

This forms an increasing family of subsets of M . Observe that any measure in Mδ has its
support included in p−1

hyb(τ(D
∗
δ)). The intersection

⋂
δ>0Mδ is non-empty as an intersection

of compact sets, and it is included in M \M since any measure in this intersection has its
support included in p−1

hyb(τ(0)). This proves our claim. This also proves that any measure in

M \M is supported on p−1
hyb(τ(0)) = P

1,an
L .

Pick now any measure ν ∈M \M . Let ϕna : P
1,an
L → R be an arbitrary continuous function.

Since P1
hyb is compact, it is a normal topological space, so the Tietze-Urysohn extension lemma

applies. We can thus find a continuous function φ : P1
hyb → R whose restriction to P

1,an
L is

equal to ϕna ◦ψ
−1
na

. Let us introduce the convolution operator acting on continuous functions
of P1

hyb by setting

m ∗ φ(x) =

∫

G
φ(ρ(g)−1 · x)dm(g) .

Observe that for any 0 < |t| ≤ 1/e, we have
∫

P1(C)
(m ∗ φ)d(ψ∗(νt)) =

∫

P1

∫

G
φ(ρ(g)−1 · x)d(ψ∗(νt)) dm(g)

=

∫

P1

∫

G
φ(ρ(g)−1 · ψ(z, t))dνt dm(g)

(6.3)
=

∫

P1

∫

G
(φ ◦ ψt)(ρt(g)

−1 · z)dνt

=

∫

P1

(φ ◦ ψt)d((ρt)∗m) ∗ νt) =

∫

P1

φd(ψ∗(νt))

so by definition of the weak-⋆ topology we get that
∫
(m ∗ φ)dν =

∫
φdν. This implies that

(ρna∗(m)) ∗ (ψ∗
na
ν) = ψ∗

na
ν, hence ν = (ψna)∗νna since ρna admits a unique stationary measure.

Finally let us show that ψ∗(νt) → (ψna)∗νna. We argue by contradiction, and pick ε > 0, a
continuous function φ on P1

hyb, a sequence tn → 0 such that
∫
φd(ψ∗(νtn)) ≥

∫
φd((ψna)∗νna)+

ε. Since νna belongs to the accumulation set
⋂

m

⋃
n≥m{ψ∗(νtn)} of the sequence ψ∗(νtn), it
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follows that the open set {ν,
∫
φdν <

∫
φd((ψna)∗νna)+ε} contains infinitely many measures

of the form ψ∗(νtn), which is contradictory, thereby finishing the proof. �

6.3. The hybrid approach to Theorem A for non-elementary representations. Let
ε > 0 be any positive small real number. By condition (A2) there exists a finite subset G′ of
G such that

∫
G\G′ length(g)dm(g) ≤ ε. By Lemma 4.15 we have

∣∣∣∣∣

∫

G\G′

∫

P1
C

σ(ρt(g), v)

log |t|−1
dm(g)dνt(v)

∣∣∣∣∣
(4.6)

≤

∫

G\G′

(
log ‖ρ(g)‖na +

C

log|t|−1
length(g)

)
dm(g) ≤ 2Cε ,

for small enough t. Likewise from Lemma 2.8 we infer that
∣∣∣∣∣

∫

G\G′

∫

P1
L

σ(ρna(g), v)dm(g)

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

G\G′

log ‖ρ(g)‖na

∣∣∣∣∣ ≤ Cε .

So using the above and Furstenberg’s formula for the Lyapunov exponent we get
∣∣∣∣
χ(t)

log |t|−1 − χna

∣∣∣∣ =
∣∣∣∣∣

∫

G

∫

P1
C

σ(ρt(g), v)

log |t|−1
dm(g)dνt(v)−

∫

G

∫

P
1,an

L

σ(ρna(g), v)dm(g)dνna(v)

∣∣∣∣∣

≤ 2Cε+

∣∣∣∣∣

∫

G′

(∫

P1
C

σ(ρt(g), v)

log |t|−1
dνt(v) −

∫

P
1,an

L

σ(ρna(g), v)dνna(v)

)
dm(g)

∣∣∣∣∣ .

Viewed in the hybrid space, the difference of integrals in the last line rewrites as
∫

P1
hyb

σhyb(ρ(g), x)

log |t|−1
d ((ψt)∗νt) (x)−

∫

P1
hyb

σhyb(ρ(g), x)d ((ψna)∗νna) (x) ,

so using the finiteness of G′, Proposition 6.4 and Theorem C we deduce that

lim sup
t→0

∣∣∣log |t|−1 χ(t)− χna

∣∣∣ ≤ 2Cε,

and we conclude by letting ε→ 0. �
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