Improvements on the distribution of maximal segmental scores in a Markovian sequence - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Improvements on the distribution of maximal segmental scores in a Markovian sequence

Résumé

Let A_i, i≥0 be a finite state irreducible aperiodic Markov chain and f a lattice score function such that the average score is negative and positive scores are possible. Define S_0 := 0 and S_k := f(A_1) +...+ f(A_k) the successive partial sums, S^+ the maximal non-negative partial sum, Q_1 the maximal segmental score of the first non-negative excursion and M_n := max (S_k − S_j: 0≤j≤k≤n) the local score first defined by Karlin and Altschul (1990). We establish recursive formulae for the exact distribution of S^+ and derive new approximations for the distributions of Q_1 and M_n. Computational methods are presented in a simple application case and comparison is performed between these new approximations and the ones proposed by Karlin and Dembo (1992) in order to evaluate improvements.
Fichier principal
Vignette du fichier
GruseaMercier_preprint.pdf (452.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01726031 , version 1 (07-03-2018)
hal-01726031 , version 2 (24-09-2019)

Identifiants

  • HAL Id : hal-01726031 , version 1

Citer

Simona Grusea, Sabine Mercier. Improvements on the distribution of maximal segmental scores in a Markovian sequence. 2018. ⟨hal-01726031v1⟩
172 Consultations
137 Téléchargements

Partager

More