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Abstract

Let (Ai)i≥0 be a finite state irreducible aperiodic Markov chain and f a lattice

score function such that the average score is negative and positive scores are

possible. Define S0 := 0 and Sk :=
∑k
i=1 f(Ai) the successive partial sums, S+

the maximal non-negative partial sum, Q1 the maximal segmental score of the

first non-negative excursion and Mn := max0≤k≤`≤n(S` − Sk) the local score

first defined by Karlin and Altschul [8]. We establish recursive formulae for the

exact distribution of S+ and derive new approximations for the distributions

of Q1 and Mn. Computational methods are presented in a simple application

case and comparison is performed between these new approximations and the

ones proposed in [9] in order to evaluate improvements.
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1. Introduction

There is nowadays a huge amount of biological sequences available. The local score

for one sequence analysis, first defined by Karlin and Altchul in [8] (see Equation (3)

below for definition) quantifies the highest level of a certain quantity of interest, e.g.
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hydrophobicity, polarity, etc..., that can be found locally inside a given sequence. This

allows for example to detect atypical segments in biological sequences. In order to

distinguish significantly interesting segments from the ones that could have appeared

by chance alone, it is necessary to evaluate the p-value of a given local score. Different

results have already been established using different probabilistic models for sequences:

independent and identically distributed variables model (i.i.d.) [2, 8, 9, 12], Markovian

models [9, 7] or Hidden Markov Models [4]. In this article we will focus on the

Markovian model.

An exact method was proposed by Hassenforder and Mercier [7] to calculate the dis-

tribution of the local score for a Markovian sequence, but this result is computationally

time consuming for long sequences (> 103). Karlin and Dembo [9] established the limit

distribution of the local score for a Markovian sequence and a random scoring scheme

depending on the pairs of consecutive states in the sequence. They proved that the

distribution of the local score is asymptotically a Gumble distribution, as in the i.i.d.

case. In spite of its importance, their result in the Markovian case is unforfunately

very little cited or used in the literature. A possible explanation could be the fact that

the random scoring scheme defined in [9] is more general than the ones classically used

in practical approaches. In [6] and [5], the authors verify by simulations that the local

score in a certain dependence model follows a Gumble distribution, and use simulations

to estimate the two parameters of this distribution.

In this article we study the Markovian case for a more classical scoring scheme. We

propose a new approximation for the distribution of the local score of a Markovian

sequence. We compare it to the one derived from the result of Karlin and Dembo [9]

and illustrate the obtained improvement in a simple application case.

Mathematical framework Let (Ai)i≥0 be an irreducible and aperiodic Markov chain

taking its values in a finite set A containing r states denoted α, β, . . . for simplic-

ity. Let P = (pαβ)α,β be its transition probability matrix and (πα)α its stationary

frequency vector. In order to simplify the presentation, we suppose that P is positive

(∀α, β, pαβ > 0). We also suppose that the Markov chain is stationary, i.e. with

initial distribution of A0 given by π. Pα will stand for the conditional probability

given {A0 = α}. We consider a lattice score function f : A → dZ, with d ∈ N being
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the lattice step. Note that, since A is finite, we have a finite number of possible scores.

Since the Markov chain (Ai)i≥0 is supposed to be stationary, the distribution of Ai is

π for every i ≥ 0. We will simply denote E[f(A)] the average score.

In this article we make the hypothesis that the average score is negative, i.e.

E[f(A)] =
∑
α

f(α)πα < 0. (1)

We will also suppose that for every α ∈ A we have

Pα(f(A) > 0) > 0 and Pα(f(A) < 0) > 0. (2)

Let us introduce some definitions and notation. Let S0 := 0 and denote

Sk :=

k∑
i=1

f(Ai),

for k ≥ 1 the successive partial sums. Let S+ be the maximal non-negative partial sum

S+ := max{0, Sk : k ≥ 0}.

Further, let σ− := inf{k > 1 : Sk < 0} be the time of the first negative partial sum.

Note that σ− is an a.s.-finite stopping time due to (1).

Let K0 := 0. For i ≥ 1, we denote Ki := inf{k > Ki−1 : Sk − SKi−1
< 0} the

successive decreasing ladder times of (Sk)k≥0. Note that K1 = σ−.

Let us now consider the subsequence (Ai)0≤i≤n for a given length n ∈ N \ {0}.

Denote m(n) := max{i ≥ 0 : Ki ≤ n} the random variable corresponding to the

number of decreasing ladder times arrived before n. For every i = 1, . . . ,m(n), we call

the sequence (Aj)Ki−1<j≤Ki the i-th non-negative excursion.

Note that, due to the negative drift, we have E[K1] < ∞ (see Lemma 3.6) and

m(n) → ∞ a.s. when n → ∞. To every non-negative excursions i = 1, . . . ,m(n) we

associate a maximal segmental score (called also height) Qi defined by

Qi := max
Ki−1≤k<Ki

(Sk − SKi−1
).

First introduced by Karlin and Altschul in [8], the local score, denoted Mn, is defined

as the maximum segmental score for a sequence of length n:

Mn := max
06k6`6n

(S` − Sk). (3)
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Note that Mn = max(Q1, . . . , Qm(n), Q
∗), with Q∗ being the maximal segmental score

of the last incomplete non-negative excursion (Aj)Km(n)<j≤n. Mercier and Daudin [12]

give an alternative expression for Mn using the Lindley process (Wk)k≥0 describing the

excursions above zero between the successive stopping times (Ki)i≥0. With W0 := 0

and Wk+1 := max(Wk + f(Ak+1), 0), we have Mn = max06k6nWk.

Remark 1.1. Karlin and Dembo [9] consider a random score function defined on

pairs of consecutive states of the Markov chain: they associate to each transition

(Ai−1, Ai) = (α, β) a bounded random score Xαβ whose distribution depends on the

pair (α, β). Moreover, they suppose that, for (Ai−1, Ai) = (Aj−1, Aj) = (α, β), the

random scores XAi−1Ai and XAj−1Aj are independent and identically distributed as

Xαβ . The framework of this article corresponds to the case when the score function is

deterministic, with XAi−1Ai = f(Ai).

Note also that in our case the hypotheses (1) and (2) assure the so-called cycle

positivity, i.e. the existence of some state α ∈ A satisfying

P

(
m−1⋂
k=1

{Sk > 0} | A0 = Am = α

)
> 0.

In [9], in order to simplify the presentation, the authors strengthen the assumption of

cycle positivity by assuming that P(Xαβ > 0) > 0 and P(Xαβ < 0) > 0 for all α, β ∈ A

(see (1.19) of [9]), but precise that the cycle positivity is sufficient for their results to

hold. Note that hypotheses (1) and (2) are usually verified in biological applications.

In Section 2 we first introduce few more definitions and notation. Then we present

the main results: a recursive result for the exact distribution of the maximal non-

negative partial sum S+ for an infinite sequence in Theorem 2.1; based on the exact

distribution of S+, we further propose new approximations for the distribution of the

height of the first non-negative excursion Q1 in Theorem 2.3 and for the distribution

of the local score Mn for a sequence of length n in Theorem 2.4. Section 3 contains the

proofs of the results of Section 2 and of some useful lemmas which use techniques of

Markov renewal theory and large deviations. In Section 4 we propose a computational

method for deriving the quantities appearing in the main results. A simple scoring

scheme is developed in Subsection 4.4, for which we compare our approximations to

the ones proposed by Karlin and Dembo [9] in the Markovian case.
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2. Statement of the main results

2.1. Definitions and notation

For every α, β ∈ A, we denote qαβ := Pα(AK1 = β) and Q := (qαβ)α,β . Define

A− = {α ∈ A : f(α) < 0} and A+ = {α ∈ A : f(α) > 0}. Note that the matrix Q

is stochastic, with qαβ = 0 for β ∈ A \ A−. Its restriction Q̃ to A− is stochastic and

irreducible. The states (AKi)i≥1 of the Markov chain at the end of the successive non-

negative excursions define a Markov chain on A− with transition probability matrix

Q̃. For every i ≥ 2 we thus have P(AKi = β |AKi−1 = α) = qαβ if α, β ∈ A− and 0

otherwise. Denote z̃ > 0 the stationary frequency vector of the irreducible stochastic

matrix Q̃ and let z := (zα)α∈A with zα = z̃α > 0 for α ∈ A− and zα = 0 for α ∈ A\A−.

Note that z is invariant for the matrix Q i.e. zQ = z.

Remark 2.1. Note that in Karlin and Dembo’s Markovian model of [9] the matrix Q

is irreducible, thanks to their random scoring function and to their hypotheses recalled

in Remark 1.1.

Using the strong Markov property, conditionally on (AKi)i≥1 the r.v. (Qi)i≥1 are

independent, with the distribution of Qi depending only on AKi−1 and AKi .

For every α ∈ A, β ∈ A− and y ≥ 0, let

Fαβ(y) := Pα(Q1 ≤ y |Aσ− = β) and Fα(y) := Pα(Q1 ≤ y).

Note that for any α ∈ A− and i ≥ 1, Fαβ represents the cumulative distribution

function (cdf ) of the height Qi of the i-th non-negative excursion given that it starts

in state α and ends in state β, i.e. Fαβ(y) = P(Qi ≤ y |AKi = β,AKi−1 = α), whereas

Fα represents the cdf of Qi conditionally on the i-th non-negative excursion starting

in state α, i.e. Fα(y) = P(Qi ≤ y |AKi−1
= α).

We thus have

Fα(y) =
∑
β∈A

Fαβ(y)qαβ =
∑
β∈A−

Fαβ(y)qαβ .

We also introduce the stopping time σ+ := inf{k > 1 : Sk > 0} with values in

N ∪ {∞}. Due to hypothesis (1) we have Pα(σ+ <∞) < 1, for all α ∈ A.

For every α, β ∈ A and ξ > 0, let

Lαβ(ξ) := Pα(Sσ+ 6 ξ, σ+ <∞, Aσ+ = β).
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Note that Lαβ(ξ) = 0 for β ∈ A \ A+. We have Lαβ(∞) ≤ Pα(σ+ < ∞) < 1, and

hence ∫ ∞
0

dLαβ(ξ) = 1− Lαβ(∞) > 0. (4)

Let us also denote

Lα(ξ) :=
∑
β∈A+

Lαβ(ξ) = Pα(Sσ+ 6 ξ, σ+ <∞)

the conditional cdf of the first positive partial sum when it exists, given that the

Markov chain starts in state α, and

Lα(∞) := lim
ξ→∞

Lα(ξ) = Pα(σ+ <∞).

For any θ ∈ R we introduce the following matrix

Φ(θ) := (pαβ · exp(θf(β)))α,β∈A .

Since the transition matrix P was supposed to be positive, by the Perron-Frobenius

Theorem, the spectral radius ρ(θ) > 0 of the matrix Φ(θ) coincides with its domi-

nant eigenvalue, for which there exists a unique positive right eigen vector u(θ) =

(ui(θ))1≤i≤r (seen as a column vector) normalized so that
∑r
i=1 ui(θ) = 1. Moreover,

θ 7→ ρ(θ) is differentiable and strictly log convex (see [11, 3, 10]). In Lemma 3.4 we

prove that ρ′(0) = E[f(A)], hence ρ′(0) < 0 by Hypothesis (1). Together with the

strict log convexity of ρ and the fact that ρ(0) = 1, this implies that there exists a

unique θ∗ > 0 such that ρ(θ∗) = 1 (see [3] for more details).

2.2. Main results. Improvements on the distribution of the local score

Let α ∈ A. We start by giving a result which allows to compute recursively the

cdf of the maximal non-negative partial sum S+. We denote by FS+,α the cdf of S+

conditionally on starting in state α:

FS+,α(`d) := Pα(S+ ≤ `d), ∀` ∈ N

and for every k ∈ N \ {0} and β ∈ A:

L
(k)
αβ := Pα(Sσ+ = kd, σ+ <∞, Aσ+ = β).
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Note that L
(k)
αβ = 0 for β ∈ A \ A+ and Lα(∞) =

∑
β∈A+

∑∞
k=1 L

(k)
αβ .

The following result gives a recurrence relation for the double sequence (FS+,α(`d))α,`.

Theorem 2.1. (Exact result for the distribution of S+.) For all α ∈ A and ` ≥ 1:

FS+,α(0) = Pα(σ+ =∞) = 1− Lα(∞),

FS+,α(`d) = 1− Lα(∞) +
∑
β∈A+

∑̀
k=1

L
(k)
αβ FS+,β((`− k)d).

The proof will be given in Section 3.

In Theorem 2.2 we obtain the asymptotic behavior of S+ using Theorem 2.1 and

ideas inspired from [9] and adapted to our framework (see also the discussion in Remark

1.1). Before stating this result, we need to introduce few more notations.

For every α, β ∈ A and ` ∈ N we denote

G
(`)
αβ :=

uβ(θ∗)

uα(θ∗)
eθ
∗`dL

(`)
αβ , Gαβ(`) :=

∑̀
k=0

G
(k)
αβ , Gαβ(∞) :=

∞∑
k=0

G
(k)
αβ .

The matrix G(∞) := (Gαβ(∞))α,β is stochastic, using Lemma 3.3; the subset A+ is a

recurrent class, whereas the states in A \ A+ are transient. The restriction of G(∞)

to A+ is stochastic and irreducible; let us denote w̃ > 0 the corresponding stationary

frequency vector. Define w = (wα)α∈A, with wα = w̃α > 0 for α ∈ A+ and wα = 0 for

α ∈ A \ A+. The vector w is invariant for G(∞), i.e. wG(∞) = w.

Remark 2.2. Note that in Karlin and Dembo’s Markovian model of [9] the matrix

G(∞) is positive, hence irreducible, thanks to their random scoring function and to

their hypotheses recalled in Remark 1.1.

Remark 2.3. Note that the coefficients L
(k)
αβ can be computed recursively (see Sub-

section 4.2). In Subsection 4.3 we present in detail a recursive procedure for computing

the cdf FS+,α, based on Theorem 2.1. Note also that, for every α, β ∈ A, there are

a finite number of L
(k)
αβ different from zero. Therefore, there are a finite number of

non-null terms in the sum defining Gαβ(∞).

Theorem 2.2. (Asymptotic distribution of S+.) For every α ∈ A we have

lim
k→+∞

eθ
∗kdPα(S+ > kd)

uα(θ∗)
=
d

c
·
∑
γ∈A+

wγ
uγ(θ∗)

∑
`≥0

(Lγ(∞)− Lγ(`d))eθ
∗`d := c(∞), (5)
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where w = (wα)α∈A is the stationary frequency vector of the matrix G(∞) and

c :=
∑

γ,β∈A+

wγ
uγ(θ∗)

uβ(θ∗)
∑
`≥0

`d · eθ
∗`d L

(`)
γβ .

The proof is deferred to Section 3.

Remark 2.4. Note that there are a finite number of non-null terms in the above sums

over `. We also have the following alternative expression for c(∞):

c(∞) =
d

c(eθ∗d − 1)
·
∑
γ∈A+

wγ
uγ(θ∗)

{
Eγ
[
eθ
∗Sσ+ ;σ+ <∞

]
− Lγ(∞)

}
.

Indeed, by the summation by parts formula

k∑
`=m

f`(g`+1 − g`) = fk+1gk+1 − fmgm −
k∑

`=m

(f`+1 − f`)g`+1,

we obtain
∞∑
`=0

(Lγ(∞)− Lγ(`d))eθ
∗`d =

1

eθ∗d − 1

∞∑
`=0

(Lγ(∞)− Lγ(`d))
(
eθ
∗(`+1)d − eθ

∗`d
)

=
1

eθ∗d − 1

×

{
lim
k→∞

(Lγ(∞)− Lγ(kd))eθ
∗kd − Lγ(∞)−

∞∑
`=0

(Lγ(`d)− Lγ((`+ 1)d))eθ
∗(`+1)d

}

=
1

eθ∗d − 1

{
−Lγ(∞) +

∞∑
`=0

eθ
∗(`+1)d Pγ(Sσ+ = (`+ 1)d, σ+ <∞)

}

=
1

eθ∗d − 1

{
Eγ
[
eθ
∗Sσ+ ;σ+ <∞

]
− Lγ(∞)

}
.

Before stating the next results, let us denote for every integer ` < 0 and α, β ∈ A,

Q
(`)
αβ := Pα(Sσ− = `d,Aσ− = β).

Note that Q
(`)
αβ = 0 for β ∈ A \ A−. In Section 4 we give a recursive computational

method for obtaining these quantities.

Using Theorem 2.2 we obtain the following

Theorem 2.3. (Asymptotic distribution of Q1.) We have the following asymptotic

result on the distribution of the height of the first non-negative excursion: for every

α ∈ A we have

Pα(Q1 > kd) ∼
k→∞

Pα(S+ > kd)−
∑
`<0

∑
β∈A−

Pβ
(
S+ > (k − `)d

)
·Q(`)

αβ . (6)
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The proof will be given in Section 3.

Using now Theorems 2.2 and 2.3 we finally obtain the following result on the

asymptotic distribution of the local score Mn for a sequence of length n.

Theorem 2.4. (Asymptotic distribution of the local score Mn.) For every α ∈ A:

Pα
(
Mn ≤

log(n)

θ∗
+ x

)
∼

n→∞
exp

− n

A∗

∑
β∈A−

zβPβ
(
S+ >

⌊
log(n)

θ∗
+ x

⌋)
× exp

 n

A∗

∑
k<0

∑
γ∈A−

Pγ
(
S+ >

⌊
log(n)

θ∗
+ x

⌋
− kd

)
·
∑
β∈A−

zβQ
(k)
βγ

 , (7)

where z = (zα)α∈A is the invariant probability measure of the matrix Q defined in

Subsection 2.1 and

A∗ := lim
m→+∞

Km

m
=

1

E(f(A))

∑
β∈A−

zβEβ(Sσ−) a.s.

Remark 2.5. • Note that the asymptotic equivalent in Equation (7) does not

depend on the initial state α.

• We recall, for comparison, the asymptotic result of [9] (Equation (1.27)) for the

distribution of Mn:

lim
n→+∞

Pα
(
Mn ≤

log(n)

θ∗
+ x

)
= exp (−K∗ exp(−θ∗)) , (8)

with K∗ = v(∞) · c(∞), where c(∞) given in Theorem 2.2 is related to the

defective distribution of the first positive partial sum Sσ+ (see also Remark 2.4)

and v(∞) is related to the distribution of the first negative partial sum Sσ− (see

Equations (5.1) and (5.2) of [9] for more details). A more explicit formula for K∗

is given in Subsection 4.4 for an application in a simple case.

• Note that our asymptotic equivalent in Equation (7) keeps the dependence on

n, whereas the approximation derived from Equation (8) does not.
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3. Proofs of the main results

3.1. Proof of Theorem 2.1

We have

FS+,α(`d) = Pα(σ+ =∞) + Pα(S+ ≤ `d, σ+ <∞)

= 1− Lα(∞) +
∑
β∈A+

∑̀
k=1

Pα(S+ ≤ `d, σ+ <∞, Sσ+ = kd,Aσ+ = β)

= 1− Lα(∞) +
∑
β∈A+

∑̀
k=1

L
(k)
αβ Pα(S+ ≤ `d |σ+ <∞, Sσ+ = kd,Aσ+ = β).

The last probability can further be written

Pα(S+ − Sσ+ ≤ (`− k)d |σ+ <∞, Sσ+ = kd,Aσ+ = β) = Pβ(S+ ≤ (`− k)d),

by the strong Markov property applied to the stopping time σ+. The stated result

easily follows. �

3.2. Proof of Theorem 2.2

We first prove some preliminary lemmas.

Lemma 3.1. We have limk→∞ Pα(S+ > kd) = 0 for every α ∈ A.

Proof. With FS+,α defined in Theorem 2.1, we introduce for every α and ` ≥ 0:

bα(`d) :=
1− FS+,α(`d)

uα(θ∗)
eθ
∗`d, aα(`d) :=

Lα(∞)− Lα(`d)

uα(θ∗)
eθ
∗`d.

Theorem 2.1 allows to obtain the following renewal system for the family (bα)α∈A:

∀` > 0,∀α ∈ A, bα(`d) = aα(`d) +
∑
β

∑̀
k=0

bβ((`− k)d)G
(k)
αβ .

Since the restriction of G̃(∞) of G(∞) to A+ is stochastic, its spectral radius equals

1 and a corresponding right eigenvector is the vector having all components equal to

1; a left eigenvector is the stationary frequency vector w̃ > 0.

Step 1 : For every α ∈ A+, a direct application of Theorem 2.2 of Athreya and Murthy

[1] gives the formula in Equation 5 for the limit c(∞) of bα(`d) when ` → ∞, which

implies the stated result.
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Step 2 : Consider now α /∈ A+. By Theorem 2.1 we have

Pα(S+ > `d) = Lα(∞)−
∑
β∈A+

∑̀
k=1

L
(k)
αβ

{
1− Pβ(S+ > (`− k)d)

}
.

Since Pβ(S+ > (`− k)d) = 1 for k > ` and Lα(∞) =
∑
β∈A+

∑∞
k=1 L

(k)
αβ , we deduce

Pα(S+ > `d) =
∑
β∈A+

∞∑
k=1

L
(k)
αβ Pβ(S+ > (`− k)d). (9)

Note that for fixed α and β, there are a finite number of non-null terms in the above sum

over k. Using the fact that for fixed β ∈ A+ and k ≥ 1 we have Pβ(S+ > (`−k)d) −→ 0

when `→∞, as shown previously in Step 1, the stated result follows. �

Lemma 3.2. Let θ > 0. With u(θ) defined in Subsection 2.1, the sequence of random

variables (Um(θ))m≥0 defined by U0(θ) := 1 and

Um(θ) :=

m−1∏
i=0

[
exp(θf(Ai+1))

uAi(θ)
·
uAi+1(θ)

ρ(θ)

]
=

exp(θSm)uAm(θ)

ρ(θ)muA0(θ)
, for m ≥ 1

is a martingale with respect to the canonical filtration Fm = σ(A0, . . . , Am).

Proof. We have

Um+1(θ) = Um(θ)
exp(θf(Am+1))uAm+1(θ)

uAm(θ)ρ(θ)
.

Since Um(θ) and uAm(θ) are measurable with respect to Fm, we have

E[Um+1(θ)|Fm] = Um(θ)
E[exp(θf(Am+1))uAm+1

(θ)|Fm]

uAm(θ)ρ(θ)
.

By the Markov property we further have

E[exp(θf(Am+1))uAm+1
(θ)|Fm] = E[exp(θf(Am+1))uAm+1

(θ)|Am]

and by definition of u(θ),

E[exp(θf(Am+1))uAm+1
(θ)|Am = α] =

∑
β

exp(θf(β))uβ(θ)pαβ

= (Φ(θ)u(θ))α = uα(θ)ρ(θ).

We deduce

E[exp(θf(Am+1))uAm+1
(θ)|Am] = uAm(θ)ρ(θ),

hence E[Um+1(θ)|Fm] = Um(θ), which finishes the proof. �
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Lemma 3.3. With θ∗ defined at the end of Subsection 2.1 we have

∀α ∈ A :
1

uα(θ∗)

∑
β∈A+

∞∑
`=1

L
(`)
αβ e

θ∗`d uβ(θ∗) = 1. (10)

Proof. The proof uses Lemma 3.1 and ideas inspired from [9] (Lemma 4.2). First

note that the above equation is equivalent to

Eα[Uσ+(θ∗);σ+ <∞] = 1,

with Um(θ) defined in Lemma 3.2. By applying the optional sampling theorem to the

bounded stopping time τn := min(σ+, n) and to the martingale (Um(θ∗))m, we obtain

1 = Eα[U0(θ∗)] = Eα[Uτn(θ∗)] = Eα[Uσ+(θ∗);σ+ ≤ n] + Eα[Un(θ∗);σ+ > n].

We will show that Eα[Un(θ∗);σ+ > n] −→ 0 when n→∞. Passing to the limit in the

previous relation will then give the desired result. Since ρ(θ∗) = 1, we have

Un(θ∗) =
exp(θ∗Sn)uAn(θ∗)

uA0
(θ∗)

and it suffices to show that limn→∞ Eα[exp(θ∗Sn);σ+ > n] = 0.

For a fixed a > 0 we can write

Eα[exp(θ∗Sn);σ+ > n] = Eα[exp(θ∗Sn);σ+ > n, ∃k ≤ n : Sk ≤ −2a]

+ Eα[exp(θ∗Sn);σ+ > n,−2a ≤ Sk ≤ 0, ∀0 ≤ k ≤ n]. (11)

The first expectation in the right-hand side of Equation (11) can further be bounded

as follows:

Eα[exp(θ∗Sn);σ+ > n, ∃k ≤ n : Sk ≤ −2a] ≤ Eα[exp(θ∗Sn);σ+ > n, Sn ≤ −a]

+ Eα[exp(θ∗Sn);σ+ > n, Sn > −a, ∃k < n : Sk ≤ −2a]. (12)

We obviously have

Eα[exp(θ∗Sn);σ+ > n, Sn ≤ −a] ≤ exp(−θ∗a). (13)

Let us further define the stopping time T := inf{k ≥ 1 : Sk ≤ −2a}. Note that

T < ∞ a.s. since Sn −→ −∞ a.s. when n → ∞. Indeed, by the ergodic theorem we



Distribution for the maximal segmental score of a Markov chain 13

have Sn/n −→ E[f(A)] < 0 when n→∞. Therefore we have

Eα[exp(θ∗Sn);σ+ > n, Sn > −a, ∃k < n : Sk ≤ −2a] ≤ Pα(T ≤ n, Sn > −a)

=
∑
β∈A−

Pα(T ≤ n, Sn > −a |AT = β)Pα(AT = β)

≤
∑
β∈A−

Pα(Sn − ST > a |AT = β)Pα(AT = β)

≤
∑
β∈A−

Pβ(S+ > a)Pα(AT = β),

by the strong Markov property. For every a > 0 we thus have

lim sup
n→∞

Eα[exp(θ∗Sn);σ+ > n, Sn > −a, ∃k < n : Sk ≤ −2a] ≤
∑
β∈A−

Pβ(S+ > a).

(14)

Considering the second expectation in the right-hand side of Equation (11), we have

lim
n→∞

Pα(−2a ≤ Sk ≤ 0, ∀0 ≤ k ≤ n) = Pα(−2a ≤ Sk ≤ 0, ∀k ≥ 0) = 0, (15)

again since Sn −→ −∞ a.s. when n→∞.

Equations (11),(12),(13),(14) and (15) imply that for every a > 0 we have

lim sup
n→∞

Eα[exp(θ∗Sn);σ+ > n] ≤ exp(−θ∗a) +
∑
β∈A−

Pβ(S+ > a).

Using Lemma 3.1 and taking a→∞ we obtain limn→∞ Eα[exp(θ∗Sn);σ+ > n] = 0. �

We are now ready to prove the Theorem 2.2.

Proof of Theorem 2.2:

For α ∈ A+ the formula has been already shown in Step 1 of the proof of Lemma 3.1.

For α /∈ A+ we will prove the stated formula using Theorem 2.1. From Equation (9),

we have

Pα(S+ > `d) =
∑
β∈A+

∞∑
k=1

L
(k)
αβ Pβ(S+ > (`− k)d),

hence

eθ
∗`dPα(S+ > `d)

uα(θ∗)
=
∑
β∈A+

∞∑
k=1

eθ
∗(`−k)dPβ(S+ > (`− k)d)

uβ(θ∗)
L

(k)
αβ e

θ∗kd uβ(θ∗)

uα(θ∗)
.

Note that for every α and β there are a finite number of non-null terms in the above

sum over k. Moreover, as shown in Lemma 3.1

∀β ∈ A+, ∀k ≥ 0 :
eθ
∗(`−k)dPβ(S+ > (`− k)d)

uβ(θ∗)
−→
`→∞

c(∞).
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We finally obtain that

lim
`→+∞

eθ
∗`dPα(S+ > `d)

uα(θ∗)
=

c(∞)

uα(θ∗)

∑
β∈A+

∞∑
k=1

L
(k)
αβ e

θ∗kd uβ(θ∗),

which equals c(∞) as desired, by Lemma 3.3.

3.3. Proof of Theorem 2.3

Since S+ ≥ Q1, for every α ∈ A we have

Pα(S+ > kd) = Pα(Q1 > kd) + Pα(S+ > kd,Q1 ≤ kd).

We will further decompose the last probability with respect to the values taken by Sσ−

and Aσ− , as follows:

Pα(S+ > kd,Q1 ≤ kd) =
∑
`<0

∑
β∈A−

Pα(S+ > kd,Q1 ≤ kd, Sσ− = `d,Aσ− = β)

=
∑
`<0

∑
β∈A−

Pα(S+ − Sσ− > (k − `)d |Aσ− = β,Q1 ≤ kd, Sσ− = `d)

× Pα(Q1 ≤ kd, Sσ− = `d,Aσ− = β)

=
∑
`<0

∑
β∈A−

Pβ(S+ > (k − `)d) ·
{
Q

(`)
αβ − Pα(Q1 > kd, Sσ− = `d,Aσ− = β)

}
,

by applying the strong Markov property to the stopping time σ−. We thus obtain

Pα(S+ > kd)−
∑
`<0

∑
β∈A−

Pβ(S+ > (k − `)d) ·Q(`)
αβ − Pα(Q1 > kd)

= −
∑
`<0

∑
β∈A−

Pβ(S+ > (k − `)d) Pα(Q1 > kd, Sσ− = `d,Aσ− = β).

By Theorem 2.2 we have Pβ(S+ > kd) = O(e−θ
∗kd) as k →∞, for every β ∈ A−, from

which we deduce that the left-hand side of the previous equation is o(Pα(Q1 > kd))

when k →∞. The stated result then easily follows. �

3.4. Proof of Theorem 2.4

We will first prove some useful lemmas.

Lemma 3.4. We have ρ′(0) = E[f(A)] < 0.
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Proof. By the fact that ρ(θ) is an eigenvalue of the matrix Φ(θ) with corresponding

eigenvector u(θ), we have

ρ(θ)uα(θ) = (Φ(θ)u(θ))α =
∑
β

pαβe
θf(β)uβ(θ).

When derivating the previous relation with respect to θ we obtain

d

dθ
(ρ(θ)uα(θ)) =

∑
β

pαβ

(
f(β)eθf(β)uβ(θ) + eθf(β)u′β(θ)

)
.

We have ρ(0) = 1 et u(0) =t (1/r, . . . , 1/r). For θ = 0, we then get

∑
α

πα
d

dθ
(ρ(θ)uα(θ))

∣∣∣∣∣
θ=0

=
1

r
E[f(A)] +

∑
α,β

παpαβu
′
β(0) =

1

r
E[f(A)] +

∑
β

πβu
′
β(0).

(16)

On the other hand,

∑
α

πα
d

dθ
(ρ(θ)uα(θ)) =

d

dθ

(∑
α

παρ(θ)uα(θ)

)
= ρ′(θ)

∑
α

παuα(θ) +ρ(θ)
∑
α

παu
′
α(θ).

For θ = 0 we get

∑
α

πα
d

dθ
(ρ(θ)uα(θ))

∣∣∣∣∣
θ=0

=
ρ′(0)

r
+ ρ(0) ·

∑
α

παu
′
α(0). (17)

From Equations (16) and (17) we deduce

ρ′(0)

r
+
∑
α

παu
′
α(0) =

1

r
E[f(A)] +

∑
β

πβu
′
β(0),

from which the stated result easily follows. �

Lemma 3.5. There exist I > 0 and n0 ≥ 0 such that ∀n ≥ n0, Pα(Sn ≥ 0) ≤

exp(−nI) for every α ∈ A.

Proof. By a large deviation principle for additive functionals of Markov chains (see

Theorem 3.1.2. in [3]) we have

lim sup
n→+∞

1

n
log

(
Pα
(
Sn
n
∈ Γ

))
≤ −I,

with Γ = [0,+∞) and I = infx∈Γ̄ supθ∈R(θx − log ρ(θ)). Since A is finite, it remains

to prove that I > 0.
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For every x ≥ 0, let us denote gx(θ) := θx− log ρ(θ) and I(x) := supθ∈R gx(θ). We

will first show that I(x) = supθ∈R+ gx(θ). Indeed, we have g′x(θ) = x− ρ′(θ)/ρ(θ). By

the strict convexity property of ρ (see [3, 10]) and the fact that ρ′(0) = E[f ] < 0 (by

Lemma 3.4), we deduce that ρ′(θ) < 0 for every θ ≤ 0, implying that g′x(θ) > x ≥ 0 for

θ ≤ 0. The function g′x is therefore increasing on R−, and hence I(x) = supθ∈R+ gx(θ).

As a consequence, we deduce that x 7→ I(x) is non-decreasing on R+. We thus

obtain I = infx∈R+ I(x) = I(0).

Further, we have I(0) = supθ∈R (− log ρ(θ)) = − infθ∈R+ log(ρ(θ)). Using again

the fact that ρ′(0) < 0 (Lemma 3.4), the strict convexity of ρ and the fact that

ρ(0) = ρ(θ∗) = 1, we finally obtain I = − log (infθ∈R+ ρ(θ)) > − log ρ(0) = 0. The

statement then follows. �

Lemma 3.6. We have Eα(K1) <∞ for every α ∈ A.

Proof. Note that Pα(K1 > n) ≤ Pα(Sn ≥ 0). With n0 ∈ N and I > 0 defined in

Lemma 3.5, using a well-known formula for the expectation, we get

Eα[K1] =
∑
n≥0

Pα(K1 > n) ≤
∑
n≥0

P(Sn ≥ 0) ≤ C +
∑
n≥n0

exp(−nI),

where C > 0 is a constant. The statement easily follows. �

Lemma 3.7. We have

lim
m→+∞

Km

m
=
∑
β

zβEβ(K1) a.s.

Proof. Recall that K1 = σ−. We can write

Km

m
=
K1

m
+

1

m

m∑
i=2

(Ki −Ki−1) =
K1

m
+
∑
β

1

m

m∑
i=2

(Ki −Ki−1)1{AKi−1
=β}. (18)

First note that
K1

m
→ 0 a.s. when m → ∞, since K1 < +∞ a.s. By the strong

Markov property we have that, conditionally on (AKi−1)i≥2, the random variables

(Ki − Ki−1)i≥2 are all independent and the distribution of Ki − Ki−1 depends only

on AKi−1
and we have P(Ki − Ki−1 = ` |AKi−1

= α) = Pα(K1 = `). Therefore,

the couples Yi := (AKi−1
,Ki − Ki−1), i ≥ 2 form a Markov chain on A− × N, with

transition probabilities P(Yi = (β, `) |Yi−1 = (α, k)) = qαβPβ(K1 = `). Recall that

the restriction Q̃ of the matrix Q to the subspace A− is irreducible. Therefore, the
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Markov chain (Yi)i is also irreducible and we can show that π(α, k) := zαPα(K1 = k)

is its invariant distribution. Indeed, since z is invariant for Q, we easily deduce that∑
α,k

π(α, k) · qαβPβ(K1 = `) = π(β, `).

For fixed β, when applying the ergodic theorem to the Markov chain (Yi)i and the

function ϕβ(α, k) := k1{α=β}, we deduce

1

m

m∑
i=2

(Ki −Ki−1)1{AKi−1
=β} −→

∑
α,k

ϕβ(α, k)π(α, k) = zβEβ(K1) a.s.

when m → ∞. Taking the sum over β and using the relation (18) gives the desired

result. �

Proof of Theorem 2.4:

The proof is inspired from [9].

Given (AKi)i≥0, the random variables (Qi)i≥1 are independent and the cdf of Qi is

FAKi−1
AKi

. Therefore

Pα (MKm ≤ y) = Eα

[
m∏
i=1

FAKi−1
AKi

(y)

]

= Eα

exp

 ∑
β,γ∈A

mψβγ(m) log(Fβγ(y))


 ,

with ψβγ(m) := #{i : 1 ≤ i 6 m,AKi−1
= β,AKi = γ}/m. Given that A0 = α ∈ A−,

the states (AKi)i≥0 form an irreducible Markov chain on A− of transition matrix

Q̃ = (qβγ)β,γ∈A− and stationary frequency vector z̃ = (zβ)β∈A− > 0.

Consequently, for β, γ ∈ A− the ergodic theorem implies that ψβγ(m) −→ zβqβγ a.s.

when m→∞. On the other hand, for any α ∈ A, if β ∈ A \A−, then ψβγ(m) 6 1/m

and thus ψβγ(m) −→ 0 a.s. when m→∞, for any γ ∈ A. With zβ = 0 for β ∈ A\A−,

we thus have ψβγ(m) −→ zβqβγ a.s. when m→∞, for every β, γ ∈ A.

Denoting dβγ(m) := m
[
1− Fβγ

(
logm
θ∗ + x

)]
and using the fact that dβγ(m) are

uniformly bounded in β and γ, we have

lim
m→∞

Pα
(
MKm ≤

logm

θ∗
+ x

)
= lim

m→∞
Eα

exp

− ∑
β,γ∈A

ψβγ(m)dβγ(m)


= lim

m→∞
exp

− ∑
β,γ∈A

zβqβγdβγ(m)

 .
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Since ∑
γ∈A

qβγdβγ(m) = m

[
1− Fβ

(
logm

θ∗
+ x

)]
,

lim
m→∞

Pα
(
MKm ≤

logm

θ∗
+ x

)
= lim
m→∞

exp

−m ∑
β∈A−

zβ

[
1− Fβ

(
logm

θ∗
+ x

)] .

But

1− Fβ
(

logm

θ∗
+ x

)
= Pβ

(
Q1 >

log(m)

θ∗
+ x

)
= Pβ

(
Q1 >

⌊
log(m)

θ∗
+ x

⌋)
,

and hence, with y = y(m) :=
log(m)

θ∗
+ x we get, using Theorem 2.3:

1− Fβ
(

logm

θ∗
+ x

)
∼

m→∞
Pβ
(
S+ >

⌊
log(m)

θ∗
+ x

⌋)
−
∑
k<0

∑
γ∈A−

Pγ(S+ > byc − kd)× Pβ(Sσ− = kd,Aσ− = γ) .

This further leads to

lim
m→∞

Pα
(
MKm ≤

logm

θ∗
+ x

)
= lim
m→∞

exp

− ∑
β∈A−

mzβPβ
(
S+ >

⌊
log(m)

θ∗
+ x

⌋)
× exp

∑
k<0

∑
γ∈A−

Pγ(S+ > byc − kd) ·
∑
β∈A−

zβPβ (Sσ− = kd,Aσ− = γ)

 .

Since Km(n) ≤ n ≤ Km(n)+1 and m(n) −→ ∞ a.s., Lemma 3.7 implies that
n

m(n)
−→ A∗ a.s. Moreover, since MKm(n)

≤Mn ≤MKm(n)+1
, we finally obtain

lim
n→∞

Pα
(
Mn ≤

log n

θ∗
+ x

)
= lim
n→∞

Pα
(
MKbn/A∗c ≤

log n

θ∗
+ x

)

= lim
n→∞

exp

− n

A∗

∑
β∈A−

zβPβ
(
S+ >

⌊
log(n)

θ∗
+ x

⌋)
× exp

∑
k<0

∑
γ∈A−

Pγ
(
S+ >

⌊
log(n)

θ∗
+ x

⌋
− kd

)
·
∑
β∈A−

zβPβ(Sσ− = kd,Aσ− = γ)

 .

It remains to prove the stated expression for A∗ := limm→+∞
Km
m a.s. in order to

finish the proof. Recall that σ− = K1. In Lemma 3.7 we proved that

A∗ =
∑
α

zαEα(σ−).
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Since (Um(θ))m is a martingale (see Lemma 3.2) and σ− a stopping time, using the

optional sampling theorem we get Eα [Uσ−(θ)] = Eα [U0(θ)] = 1. Consequently,

1 = Eα
[
exp(θ · Sσ−)

uAσ− (θ)

uA0(θ)

1

ρ(θ)σ−

]
= Eα

[
exp(θ · Sσ−)

uAσ− (θ)

uα(θ)

1

ρ(θ)σ−

]
=

∑
β

Eα
[
exp(θ · Sσ−)

uβ(θ)

uα(θ)

1

ρ(θ)σ−
∣∣Aσ− = β

]
· Pα(Aσ− = β)

=
∑
β

uβ(θ)

uα(θ)
Eα
[

exp(θ · Sσ−)

ρ(θ)σ−
∣∣Aσ− = β

]
· qαβ .

We deduce

uα(θ) =
∑
β

Eα
[

exp(θ · Sσ−)

ρ(θ)σ−
∣∣Aσ− = β

]
· uβ(θ)qαβ .

Derivating the above relation leads to

u′α(θ) =∑
β

qαβuβ(θ)Eα

[
Sσ− exp(θ · Sσ−)ρ(θ)σ

− − exp(θ · Sσ−)σ−ρ(θ)σ
−−1ρ′(θ)

ρ(θ)2σ−

∣∣Aσ− = β

]

+
∑
β

qαβu
′
β(θ)Eα

[
exp(θ · Sσ−)

ρ(θ)σ−
∣∣Aσ− = β

]
.

Since ρ(0) = 1, we obtain for θ = 0:

u′α(0) =
∑
β

qαβuβ(0)
(
Eα
[
Sσ−

∣∣Aσ− = β
]
− ρ′(0)Eα

[
σ−
∣∣Aσ− = β

])
+
∑
β

qαβu
′
β(0).

By the fact that u(0) =t (1/r, . . . , 1/r), we further get

u′α(0) =
1

r
Eα[Sσ− ]− ρ′(0)

r
Eα(σ−) +

∑
β

qαβu
′
β(0).

From the last relation we deduce∑
α

zαu
′
α(0) =

1

r

∑
α

zαEα [Sσ− ]− ρ′(0)

r

∑
α

zαEα(σ−) +
∑
α

∑
β

zαqαβu
′
β(0). (19)

On the other hand, since z is the stationnary frequency vector of the matrix Q, we

have z = z ·Q and thus∑
α

zαu
′
α(0) =t z ·u′(0) =t (zQ)·u′(0) =

∑
β

t(zQ)β ·u′β(0) =
∑
β

∑
α

zαqαβu
′
β(0). (20)
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Equations (19) and (20) imply that
∑
α zαEα [Sσ− ] = ρ′(0) ·

∑
α zαEα(σ−) and thus

A∗ =
∑
α zαEα(σ−) = 1

ρ′(0)

∑
α zαEα [Sσ− ]. Using now the fact that ρ′(0) = E[f(A)]

(see Lemma 3.4) gives the stated expression for A∗. �

4. Applications and computational methods

In order to simplify the presentation, we suppose in this section that d = 1. Let

−u, . . . , 0, . . . , v be the possible scores, with u, v ∈ N.

For −u ≤ j ≤ v, we introduce the matrix P(j) with entries

P
(j)
αβ := Pα(A1 = β, f(A1) = j)

for α, β ∈ A. Note that P
(f(β))
αβ = pαβ , P

(j)
αβ = 0 if j 6= f(β) and P =

∑v
j=−u P(j),

where P = (pαβ)α,β is the transition probability matrix of the Markov chain (Ai)i.

In order to obtain the approximate distribution of Q1 given in Theorem 2.3, we need

to compute the quantities Q
(`)
αβ for −u ≤ ` ≤ v, α, β ∈ A . This is the topic of the next

subsection. We denote Q(`) the matrix (Q
(`)
αβ)α,β∈A.

4.1. Computation of Q(`) for −u ≤ ` ≤ v, and of Q

Recall that Q
(`)
αβ = Pα(Sσ− = `, Aσ− = β), and hence Q

(`)
αβ = 0 for ` ≥ 0 or

β ∈ A \ A−. Note also that σ− = 1 if f(A1) < 0. Let −u ≤ ` ≤ −1. When

decomposing with respect to the possible values j of f(A1), we obtain:

Q
(`)
αβ = Pα(A1 = β, f(A1) = `) + Pα(Sσ− = `, Aσ− = β, f(A1) = 0)

+

v∑
j=1

Pα(Sσ− = `, Aσ− = β, f(A1) = j).

Note that the first term on the right hand side is exactly P
(`)
αβ defined at the beginning of

this section. We further have, by the law of total probability and the Markov property:

Pα(Sσ− = `, Aσ− = β, f(A1) = 0) =
∑
γ

P (0)
αγ Pα(Sσ− = `, Aσ− = β |A1 = γ, f(A1) = 0)

=
∑
γ

P (0)
αγ Pγ(Sσ− = `, Aσ− = β) = (P(0)Q(`))αβ .

Let j ∈ {1, . . . , v} be fixed. We have

Pα(Sσ− = `, Aσ− = β, f(A1) = j) =
∑
γ

P (j)
αγ Pα(Sσ− = `, Aσ− = β |A1 = γ, f(A1) = j).
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For every possible s ≥ 1, we denote Ts the set of all possible s-tuples t = (t1, . . . , ts)

verifying −u ≤ ti ≤ −1 for i = 1, . . . , s, t1 + · · · + ts−1 ≥ −j > 0 and t1 + · · · + ts =

`− j > 0. Decomposing the possible paths from −k to ` gives

Q
(`)
αβ = P

(`)
αβ + (P(0)Q(`))αβ +

v∑
j=1

(
P(j)

∑
s

∑
t∈Ts

s∏
i=1

Q(ti)

)
αβ

,

hence

Q(`) = P(`) + P(0)Q(`) +

v∑
j=1

P(j)
∑
s

∑
t∈Ts

s∏
i=1

Q(ti). (21)

Recalling that Q = (qαβ)α,β with qαβ = Pα(Aσ− = β) =
∑
`<0Q

(`)
αβ , we have

Q =
∑
`<0

Q(`). (22)

Example: In the case where u = v = 1, we only have the possible values ` = −1,

j = 1, s = 2 and t1 = t2 = −1, thus

Q(−1) = P(−1) + P(0) ·Q(−1) + P(1)(Q(−1))2 and Q = Q(−1). (23)

4.2. Computation of L
(`)
αβ for 0 ≤ ` ≤ v, and of Lα(∞)

Recall that L
(`)
αβ = Pα(Sσ+ = `, σ+ <∞, Aσ+ = β). Denote L(`) := (L

(`)
αβ)α,β . First

note that L
(`)
αβ = 0 for ` ≤ 0 or β ∈ A\A+. Using a similar method as the one used to

obtain Q
(`)
αβ in the previous subsection, we denote for every possible s ≥ 1, T ′s the set

of all s-tuples t = (t1, . . . , ts) verifying 1 ≤ ti ≤ v for i = 1, . . . , s, t1 + · · ·+ ts−1 ≤ k

and t1 + · · ·+ ts = `+ k > 0.

For every 0 < ` ≤ v we then have

L(`) = P(`) + P(0)L(`) +

u∑
k=1

P(−k)
∑
s

∑
t∈T ′s

s∏
i=1

L(ti) (24)

Since Lα(∞) = Pα(σ+ < ∞) =
∑
β

∑v
`=1 L

(`)
αβ , and denoting by L(∞) the column

vector containing all Lα(∞) for α ∈ A, and by 1 r the column vector of size r with all

components equal to 1, we can write

L(∞) =

v∑
`=1

L(`) · 1 r. (25)

Example: In the case where u = v = 1, equation (24) gives

L(1) = P(1) + P(0) · L(1) + P(−1) · (L(1))2, (26)

L(`) = 0 for ` > 1, thus L(∞) = L(1) · 1 r. (27)
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4.3. Computation of FS+,α(`) for ` ≥ 0

For ` ≥ 0 let us denote FS+,·(`) := (FS+,α(`))α∈A, seen as a column vector of size

r. From Theorem 2.1 we deduce that for ` = 0 and every α ∈ A we have

FS+,α(0) = 1− Lα(∞).

For ` = 1 and every α ∈ A we get

FS+,α(1) = 1− Lα(∞) +
∑
β∈A

L
(1)
αβ FS+,β(0).

With L(∞) = (Lα(∞))α∈A, seen as a column vector, we can write

FS+,·(1) = 1− L(∞) + L(1)FS+,·(0),

FS+,·(`) = 1− L(∞) +
∑̀
k=1

L(k)FS+,·(`− k), ∀` ≥ 1.

See Subsection 4.2 for how to compute L(k) for k ≥ 1 and L(∞).

4.4. Application in a simple case

Let us consider the simple case where the possible score values are −1, 0, 1, corres-

ponding to the case u = v = 1. We will use the results in the previous subsections (see

Equations (23, 26, 27)) to derive the distribution of the maximal non-negative partial

sum S+. This distribution can be determined using the following matrix equalities:

L(∞) =

∑
β

L
(1)
αβ


α

= L(1) · 1 r, (28)

with L(1) given in Equation (24) and

FS+,·(0) = 1− L(∞), (29)

FS+,·(`) = 1− L(∞) + L(1)FS+,·(`− 1). (30)

This allows to further derive the approximate distributions of Q1 and Mn given in

Theorems 2.3 and 2.4.

We present hereafter a numerical application for the local score of a DNA sequence.

We suppose that we have a Markovian sequence whose possible letters are {A,C,G, T}
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and whose transition probability matrix is given by

P =


1/2 1/6 1/6 1/6

1/4 1/4 1/4 1/4

1/6 1/6 1/6 1/2

1/6 1/6 1/2 1/6

 .

We choose the respective scores −1,−1, 0, 1 for the letters A,C,G, T for which Hypoth-

esis (1) and (2) are verified. We use the successive iteration methodology described in

Equation (5.12) of [9] in order to compute L(1) and Q(−1), solutions of Equations (23)

and (26), from which we derive the formulas proposed in our Theorems 2.1, 2.3 and 2.4

for the approximate distributions of S+, Q1 and Mn respectively. We also compute the

different approximations proposed in Karlin and Dembo [9]. We then compare these

results with the corresponding empirical distributions computed using a Monte Carlo

approach based on 105 simulations. We can see in Figure 1, left panel, that for n = 300

the empirical cdf of S+ and the one obtained using Theorem 2.1 match perfectly. We

can also visualize the fact that Theorem 2.1 improves the approximation of Karlin and

Dembo in Lemma 4.3 of [9] for the distribution of S+. The right panel of Figure 1

allows to compare, for different values of the sequence length n, the empirical cdf of

S+ and the exact cdf given in Theorem 2.1: we can see that our formula performs very

satisfactory even for sequence length n = 100.

In this simple example the approximation of the distribution of Q1 given in Theorem

2.3 and the one given in Lemma 4.4 of [9] give quite similar numerical values.

In Figure 2 we compare three approximations for the cdf of Mn: the Karlin and

Dembo’s approximation given in Equation (1.27) of [9] (see also Equation (8)), our

approximation proposed in Theorem 2.4, and a Monte Carlo approximation. For the

simple scoring scheme of this application, the parameter K∗ of the Karlin and Dembo’s

approximation for Mn is given by Equation (5.6) of [9]

K∗ = (e−θ
∗
− e−2θ∗) · E[−f(A)] ·

∑
γ

zγuγ(θ∗) ·
∑
γ

wγ/uγ(θ∗).

More precisely, in the left panel we plot the probability p(n, x) := P
(
Mn ≤ log(n)

θ∗ + x
)

as a function of n, for a fixed value x = −8. This illustrates the asymptotic behavior

of this probability with growing n. We can also observe the fact that Karlin and
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Figure 1: Cumulative distribution function of S+ for the simple scoring scheme (−1, 0,+1)

and A0 =“A”. Left panel: Comparison between the approximation of Karlin and Dembo

proposed in [9], a Monte Carlo estimation with sequences of length n = 300, and our exact

formula proposed in Theorem 2.1. Right panel: Comparison, for different values of n, of the

Monte Carlo empirical cumulative distribution function and the exact one given in Theorem

2.1.

Dembo’s approximation does not depend on n. In Figure 2, right panel, we compare

the approximation of Karlin and Dembo [9] for the same probability p(n, x) with our

approximation, for varying x and fixed n = 100. We observe that the improvement

brought by our approximation is more significant for negative values of x. For fixed n

and extreme deviations (large x) the two approximations are quite similar and accurate.
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