On Courant's nodal domain property for linear combinations of eigenfunctions, Part~{II} - Archive ouverte HAL
Chapitre D'ouvrage Année : 2021

On Courant's nodal domain property for linear combinations of eigenfunctions, Part~{II}

Pierre Bérard
Bernard Helffer
  • Fonction : Auteur
  • PersonId : 1021621

Résumé

Generalizing Courant's nodal domain theorem, the ``Extended Courant property'' is the statement that a linear combination of the first $n$ eigenfunctions has at most $n$ nodal domains. In a previous paper (Documenta Mathematica, 2018, Vol. 23, pp. 1561--1585), we gave simple counterexamples to this property, including convex domains. In the present paper, using some input from numerical computations, we pursue the investigation of the Extended Courant property with two new examples, the equilateral rhombus and the regular hexagon.
Fichier principal
Vignette du fichier
berard-helffer-ecp-II-balslev-190926-ha.pdf (1.48 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01718768 , version 1 (27-02-2018)
hal-01718768 , version 2 (13-06-2018)
hal-01718768 , version 3 (07-06-2019)
hal-01718768 , version 4 (04-10-2019)

Identifiants

Citer

Pierre Bérard, Bernard Helffer. On Courant's nodal domain property for linear combinations of eigenfunctions, Part~{II}. Albeverio S.; Balslev A.; Weder R. Schrödinger Operators, Spectral Analysis and Number Theory, 348, Springer International Publishing, pp 47-88, 2021, Springer Proceedings in Mathematics & Statistics, ⟨10.1007/978-3-030-68490-7_4⟩. ⟨hal-01718768v4⟩
292 Consultations
250 Téléchargements

Altmetric

Partager

More