On Courant's nodal domain property for linear combinations of eigenfunctions, Part~{II}
Résumé
Generalizing Courant's nodal domain theorem, the ``Extended Courant property'' is the statement that a linear combination of the first $n$ eigenfunctions has at most $n$ nodal domains. In a previous paper (Documenta Mathematica, 2018, Vol. 23, pp. 1561--1585), we gave simple counterexamples to this property, including convex domains. In the present paper, using some input from numerical computations, we pursue the investigation of the Extended Courant property with two new examples, the equilateral rhombus and the regular hexagon.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...