Gorenstein Fano Generic Torus Orbit closures in $G/P$ - Archive ouverte HAL
Article Dans Une Revue Journal of Algebraic Combinatorics Année : 2023

Gorenstein Fano Generic Torus Orbit closures in $G/P$

Résumé

Given a reductive group $G$ and a parabolic subgroup $P\subset G$, with maximal torus $T$, we consider (following Dabrowski's work) the closure $X$ of a generic $T$-orbit in $G/P$, and determine in combinatorial terms when the toric variety $X$ is $\mathbb{Q}$-Gorenstein Fano, extending in this way the classification of smooth Fano generic closures given by Voskresenski\u{\i} and Klyachko. As an application, we apply the well known correspondence between Gorenstein Fano toric varieties and reflexive polytopes in order to exhibit which reflexive polytopes correspond to generic closures --- this list includes the reflexive root polytopes.
Fichier principal
Vignette du fichier
gftoc-arxiv.pdf (502.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01717935 , version 1 (26-02-2018)
hal-01717935 , version 2 (15-06-2021)
hal-01717935 , version 3 (11-12-2022)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Pierre-Louis Montagard, Alvaro Rittatore. Gorenstein Fano Generic Torus Orbit closures in $G/P$. Journal of Algebraic Combinatorics, 2023, 57, pp.439-460. ⟨10.1007/s10801-022-01198-z⟩. ⟨hal-01717935v3⟩
181 Consultations
447 Téléchargements

Altmetric

Partager

More