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GORENSTEIN FANO GENERIC TORUS ORBIT CLOSURES IN

G/P

PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

Abstract. Given a reductive group G and a parabolic subgroup P ⊂ G, with

maximal torus T , we consider (following Dabrowski’s work) the closure X of
a generic T -orbit in G/P , and determine in combinatorial terms when the

toric variety X is Q-Gorenstein Fano, extending in this way the classification

of smooth Fano generic closures given by Voskresenskĭı and Klyachko. As
an application, we apply the well known correspondence between Gorenstein

Fano toric varieties and reflexive polytopes in order to exhibit which reflexive

polytopes correspond to generic closures — this list includes the reflexive root
polytopes.

1. Introduction

Toric varieties — that is, normal varieties X over an algebraically closed field
k, on which an algebraic torus T acts effectively and with an open orbit — have
been thoroughly studied since the beginning of the 1970’s. Since the geometric
properties of a toric variety can be described in combinatorial terms (by means of
its associated fan), this family of algebraic varieties provides a nice framework in
which to study either their geometric properties or the combinatorial properties of
their associated fans.

In the early beginning of the theory of toric varieties, D. Mumford considered the
toric variety associated to the fan obtained by considering the weight lattice and
the set of all closed Weyl chambers of a root system R (see [1]). Afterwards, the
geometry of this variety was intensively studied by several authors (see [2, 3, 4, 5]).
In [6], V.E. Voskresenskĭı and A.A. Klyachko considered a larger family of fans
constructed by fixing a set I of simple roots of R and “gluing together” selected
adjacent Weyl chambers that correspond to a choice of a proper subset L ⊊ I (see
Definition 4). The invariance properties of these fans (w.r.t. the action of the
Weyl group of R) allow the authors to characterize the pairs (R,L) such that the
associated toric variety XR,L is smooth Fano. A remarkable result of R. Dabrowski
proves that the toric varieties XR,L can be constructed as the closure of an orbit
of a maximal torus on a flag variety — a “generic torus orbit closure”, see [7] and
Theorem 3.

In this paper we generalize Voskresenskĭı and Klyachko results: we describe all
pairs (R,L) such that the associated toric variety XR,L is Q-Gorenstein Fano and
which varieties among them are Gorenstein Fano (see Definition 2). The smoothness
condition (as in [6]) imposes restrictions of the combinatorics, in such a way that
(in the case of irreducible root systems) smooth Fano varieties are obtained only
for root systems of type An (two infinite series), Cn (one additional infinite series)
and G2 (one exceptional case). By relaxing the smoothness constraint, we obtain
Q-Gorenstein Fano generic closures for all types of irreducible root systems except
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E7 and E8 (see Section 4). More precisely, we exhibit twelve infinite series plus five
exceptional cases of Q-Gorenstein Fano varieties.

From a combinatorial perspective, the exhibition of toric Gorenstein Fano va-
rieties is interesting because each of these varieties is naturally associated with a
couple of dual reflexive polytopes (see Definition 1) — this duality allowed Batyrev
to give a rigorous construction of mirror symmetry in the toric context, see [8].
Applying in our setting this well known correspondence, we produce the list of dual
reflexive polytopes associated to each Gorenstein Fano toric variety XR,L. As a
minor by-product, we describe the list of root polytopes which are reflexive.

We briefly describe now the content of this paper. In Section 2 we establish the
basic notations and we present some known results on Gorenstein Fano varieties and
closures of generic orbits. In Section 3 we study some combinatorial properties of
the cone σR,L and we characterize the Q-Gorenstein Fano generic closures in terms
of the combinatorics of σR,L (see Theorem 10). In Section 4 we present our main
result (Theorem 12), namely a classification of all Q-Gorenstein Fano, Gorenstein
Fano and smooth Fano generic closures in terms of their defining set of roots L ⊂ I
(see Definition 2). The proof of this classification result relies heavily in the criterion
established in Section 3. In Section 6 we exhibit the reflexive polytopes associated
to the Gorenstein Fano generic closures; as an application of our combinatorial
description, we classify the reflexive root polytopes.

In [9], the interested reader can find a SAGE (see [10]) package that allows to
perform explicit calculations for the cone σR,L — we use GAP3 (version maintained
by Jean Michel, [11]) in order to use the package Chevie (see [12] and [13]).

2. Preliminaries

2.1. Q-Gorenstein Fano toric varieties.
All along this work, by a toric variety we mean a normal toric variety over an

algebraically closed field k; our general reference for toric varieties is [14].
If T is an algebraic torus, we denote by Λ the characters group of T and by Λ∨

the Z-dual of Λ. We denote by ΛQ (resp. Λ∨
Q) the Q-vector space Q ⊗Z Λ (resp.

Q⊗Z Λ∨), and if (u, v) ∈ ΛQ × Λ∨
Q then ⟨u, v⟩ = v(u) ∈ Q is the natural pairing of

u and v.
If X is a subset of a finite dimensional Q-vector space V , we denote by Conv(X)

the convex hull of X, by ⟨X⟩ the vector space generated by X, and by ⟨X⟩aff the
affine space generated by X; dimaff(X) denotes the affine dimension of ⟨X⟩aff . We
denote by Q+X the positive cone generated by X (with the origin as vertex); the
“dual cone” of X is defined as

X∨ :=
{
φ ∈ V ∨ : ∀x ∈ X, ⟨x, φ⟩ ≥ 0

}
.

If Σ is a fan in Λ∨
Q (see [14, Definition 3.1.2]), then Σ(r) is the set of r-dimensional

cones in Σ. For each ρ ∈ Σ(1), uρ is the primitive element of the monoid ρ ∩ Λ∨.
The set of primitive elements of σ ∈ Σ is denoted by

Prim(σ) =
{
uρ : ρ ∈ Σ(1) and ρ ⊂ σ

}
.

We set Prim(Σ) =
⋃

σ∈Σ Prim(σ).
A fan Σ has associated a toric variety that we denote as XΣ.
Recall that if σ ⊂ Λ∨

Q is a polyhedral strictly convex cone, then the relative
interior of σ, denoted by σ̊, is the complement in σ of the union of the facets of σ.
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Definition 1. If Λ is a lattice, a lattice polytope is the convex hull in ΛQ of a finite
subset X ⊂ Λ.

Assume now that P ⊂ ΛQ is a lattice polytope of maximal rank containing the
origin in its strict interior. If Q is a proper facet of P, the interior normal of
Q, denoted by φQ, is the unique element of (ΛQ)

∨ such that φQ(Q) = −1 and
φQ(P \ Q) > −1; the exterior normal is defined as −φQ. The convex hull of the
set of the interior normals of P is called the dual polytope of P and is denoted by
P◦ = {u ∈ Λ∨

Q : ⟨v, u⟩ ≥ −1 ∀v ∈ P}.
It is clear that P◦ is a polytope and that (P◦)◦ = P; we say that P is a reflexive

polytope if P◦ is a lattice polytope.

Definition 2. Let X be a normal variety and denote by −KX the anti-canonical
divisor. We say that X is Q-Gorenstein Fano if −KX is an ample Q-Cartier divisor;
if moreover −KX is an ample Cartier divisor, we say that X is Gorenstein Fano.
If X is a smooth Gorenstein Fano variety, we say that X is smooth Fano.

If X is Q-Gorenstein Fano, the Gorenstein index of X, denoted by jX , is the
smallest positive integer j such that jKX is Cartier — thus, a Gorenstein Fano
variety is a Q-Gorenstein Fano variety of Gorenstein index 1.

A fan Σ ⊂ Λ∨
Q is Q-Gorenstein Fano, Gorenstein Fano or smooth Fano if the

associated toric variety XΣ has the corresponding property.

The following equivalences are well known (see for example [14, Theorem 4.2.8
and Lemma 6.1.13]):

Proposition 1. Let Σ be a complete fan in Λ∨
Q. The following assertions are

equivalent:

(1) XΣ is a Q-Gorenstein Fano toric variety;
(2)

{
Conv

(
Prim(σ)

)
: σ ∈ Σ(s) , s = 1, . . . , n

}
is the set of proper faces of the

lattice polytope Conv
(
Prim(Σ)

)
;

(3) for every cone σ ∈ Σ(n), the polytope Conv
(
Prim(σ)

)
is (n − 1)-dimensional;

let φσ ∈ ΛQ be such that ⟨φσ, v⟩ = −1 for v ∈ Prim(σ). Then ⟨φσ, w⟩ > −1
for every w ∈ Prim(Σ) \ Prim(σ).

Moreover, if XΣ is a Q-Gorenstein Fano toric variety, then

jX = min
{
j ∈ N∗ : ∀u ∈ Λ∨ , ∀σ ∈ Σ(n) , ⟨jφσ, u⟩ ∈ Z

}
.

In particular, if XΣ is Gorenstein Fano then Conv
(
Prim(Σ)

)
is a reflexive lattice

polytope. □

2.2. Fans defined by root systems and generic orbits.
In this section we establish our notations on fans defined by root systems, and

formulate Dabrowski’s results accordingly, associating to a generic orbit the cor-
responding combinatorial data. When dealing with root systems, we follow Bour-
baki’s notations (see [15, 16]).

Notation 1. In what follows, R designs a root system of rank n and ΛR its associ-
ated root lattice. We denote by R+ a chosen set of positive roots; S = {αi : i ∈ I}
is the set of the simple roots associated to R+. We denote by ΛP the lattice of
weights and by {ωi : i ∈ I} the set of fundamental weights associated to S.

If α ∈ R, we denote by sα : (ΛP )Q → (ΛP )Q the associated reflection, and by W
the Weyl group generated by the reflections associated to R. Recall that W acts
on (ΛP )Q with the Weyl chamber D = Q+{ωi : i ∈ I} as fundamental domain.
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The root system dual to R is denoted by R∨. Recall that the simple co-roots
{α∨

i : i ∈ I} ⊂ (ΛP )
∨
Q and the fundamental co-weights {ω∨

i : i ∈ I} ⊂ (ΛR)
∨
Q are

such that ⟨α∨
i , ωj⟩ = δij , ⟨αi, ω

∨
j ⟩ = δij for all (i, j) ∈ I2. Also, the reflections sα∨

i

induce an action of W on (Λ∨
P )Q, with the dominant Weyl Chamber of R∨ (denoted

by D∨) as fundamental domain.
If L ⊂ I, we will abuse notations and identify SL = {αi : i ∈ L} with L.

We denote by WL the subgroup of W generated by the corresponding reflections
{sα∨

i
: i ∈ L}.

We denote by R =
∏r

k=1 Rk the decomposition of the root system R in irre-
ducible root systems; the set of simple roots of Rk is denoted by S(k) ⊂ S and we
denote by I(k) ⊂ I the corresponding subset of indexes.

We choose W -invariant scalar products in (ΛP )Q and (Λ∨
P )Q; these scalar prod-

ucts will be denoted by (·, ·) in both cases.

Definition 3. With the previous notations, if λ =
∑n

i=1 aiωi ∈ ΛP is a weight
(resp. λ∨ =

∑n
i=1 aiω

∨
i ∈ Λ∨

R is a co-weight), we define the support of λ (resp. λ∨)
as the set Iλ = {αi : ai ̸= 0} ⊂ S.

From now on, G is a semi-simple group over k and T ⊂ G a maximal torus, such
that R is the root system associated to the couple (G,T ); we denote by B ⊂ G the
Borel subgroup associated to R+. To each subset L ⊂ I, we associate the parabolic
subgroup PL containing the opposite Borel subgroup B− and such that the Weyl
group of PL is equal to WL.

Recall that if λ ∈ ΛP is a dominant weight with support Iλ contained in Lc =
I \ L, then λ can be extended to PL. We denote by V (λ) the Weyl G–module
associated to λ.

Definition 4. Let L ⊊ I be a proper subset of roots. Following [6], we define the
cone associated to L as

σR,L =
⋃

w∈WL

wD∨ ⊂ (ΛR)
∨
Q.

If σR,L is strictly convex, we consider the complete fan having as maximal cones
the translates w · σR,L, where w ∈ W ; we denote this fan by ΣR,L ⊂ (ΛR)

∨
Q.

We define −ΣR,L :=
{
−σ : σ ∈ ΣR,L

}
; the corresponding toric variety is denoted

by XR,L := X−ΣR,L
.

Remark 1. (1) The geometric meaning of the use of the co-weight lattice and the
fan −ΣR,L in the definition of XR,L (e.g. instead of the weight lattice and ΣR,L),
will become evident in the next section (see Theorem 3 and Remark 2).

(2) Let R =
∏r

k=1 Rk be a decomposition of the root system R in irreducible
root systems. Then D∨ =

∏r
k=1 D∨

k , where D∨
k ⊂ (Λk)

∨
Q is the dominant Weyl

chamber of R∨
k — here Λk denotes the lattice generated by Rk. In particular,

σR,L =
∏r

k=1 σRk,L∩Ik , ΣR,L =
∏r

k=1 ΣRk,L∩Ik , and XR,L
∼=

∏r
k=1 XRk,L∩Ik .

Dabrowski proved in [7] that the toric varieties XR,L can be realized as closures
of “generic” T -orbits in G/PL. We briefly recall his construction, filling some minor
gaps in the proofs presented in op.cit. for the sake of completeness.

Definition 5 (see [7, §1]). Let L ⊂ I be a subset of roots, Πλ =
{
µ ∈ ΛP : V (λ)µ ̸=

0
}
the set of T -weights of V (λ), and Aλ be the list of the T -weights counted with



GORENSTEIN FANO GENERIC TORUS ORBIT CLOSURES IN G/P 5

multiplicity. A set of Plücker coordinates {fµ : µ ∈ Aλ} is a choice of a basis of
T -semi-invariants functions fµ ∈ V (−λ)µ.

If x = uP ∈ G/P , we consider Πλ(x) :=
{
µ ∈ Πλ : fµ(x) ̸= 0 for some fµ

}
. We

say that the T -orbit T ·x is generic in the sense of Dabrowski if W ·λ ⊂ Πλ(x) and
the set λ− wΠλ(x) generates S

L as a sub-monoid — notice that if all the Plücker
coordinates of x are non zero, then T · x is generic.

Proposition 2. Let (RL)+ be the set of positive roots which are not sum of simple
roots in L, and SL be the sub-monoid generated by (RL)+. Then σR,L is the dual
cone of the convex cone generated by SL. In particular, σR,L is a strictly convex
cone if and only if L ∩ I(k) ̸= I(k) for all k = 1, 2, . . . , r.

Proof. Since Q+(SL) = Q+
(
(RL)+

)
, it follows that(

Q+(SL)
)∨

=
(
Q+

(
(RL)+

))∨
=

⋂
β∈(RL)+

{
χ∨ ∈ (Λ∨

R)Q : ⟨β, χ∨⟩ ≥ 0
}
.

It is clear that (RL)+ isWL-stable; hence, Q+
(
(RL)+

)∨
is alsoWL-stable and, as

it contains the dominant chamber D∨, we have the inclusion σR,L ⊂ Q+
(
(RL)+

)∨
.

In order to prove the equality, it suffices to prove that sαi
·σR,L is not contained in

Q+
(
(RL)+

)∨
for all i /∈ L. But if ⟨αi, χ

∨⟩ > 0, then
〈
αi, sαi(χ

∨)
〉
= −⟨αi, χ

∨⟩ < 0.
In order to prove the converse, in view of Remark 1, we can assume that R

is irreducible. In this case, it is clear that σR,I = (ΛR)
∨
Q. If L ̸= I, then it is

well-known that (RL)+ generates a space of maximal dimension and the result
follows. □

We are in condition now to state Dabrowski’s main result concerning the generic
T -orbits in G/PL and their closures.

Theorem 3 ([7, Theorem 3.2]). If L ⊂ I is such that L∩ I(k) ̸= I(k) for all k (see
Proposition 2) and T · x ⊂ G/PL is a generic orbit, then T · x is a toric variety
isomorphic to the toric variety XR,L. □

Remark 2. (1) Since the torus T does not act effectively on G/P , in general the
generic orbit associate to L has strictly lower dimension than T — that is T ̸∼= T ·x.

However, it is easy to show that in the hypothesis of Proposition 2 we have that
Tx = Z(G). Since ΛR is the lattice of characters of T/Z(G), the description of T · x
as a T/Z(G)-toric variety is given by a complete fan in the space (Λ∨

R)Q.
(2) When the root system is simply laced, one has some leeway for the combinatorial
description of a closure of a generic orbit as a toric variety, since Λ∨

R = ΛP under the
identification of R and R∨. This discretionality appears in the literature, sometimes
by omission, e.g. in [7] the lattice is not explicitly mentioned; however, the reader
should be aware that if the root system is not simply laced, then ΛP and Λ∨

R are
distinct lattices. The distinction between ΛP and Λ∨

R must be taken into account in
order to give a correct combinatorial description of the fan associated to adherence
of a generic orbit, see for example [17].

3. A criteria for XR,L to be Q-Gorenstein Fano

In this section we characterize when the closure of a generic orbit is a Goren-
stein Fano toric variety in terms of the combinatorial properties of the core of the
associated cone σR,L. From now on we assume that L ⊂ I is such that σR,L is a
strictly convex cone.
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3.1. Various combinatorial properties of σR,L.

Definition 6. If λ ∈ (ΛR)Q, the Weyl polytope associated to λ is defined as
WP(λ) = Conv(W · λ) ⊂ (ΛP )Q. The set of facets of WP(λ) containing λ is
denoted by Cλ(n− 1).

In [7], Dabrowski showed that ΣR,L can be obtained as the fan dual of the Weyl
polytope of a dominant weight with support Lc = I \ L:

Proposition 4. Let λ be a dominant weight with support Lc, and assume that σR,L

is strictly convex. Then

ΛR ∩
(
λ−WP(λ)

)
= SL ∩

(
λ−WP(λ)

)
.

Moreover, the fan ΣR,L is dual to the polytope WP(λ). □

The cones σR,L being stable by the action of WL, we can use this action in order
to describe their combinatorics and geometry as follows.

Proposition 5. Let L ⊂ I and consider F ∈ σR,L(r). Then there exist unique
pairs (γi, wi) ∈ D∨(r)×WL, i = 1, . . . , s, such that F =

⋃s
i=1 wi · γi. Moreover,

(1) for all i, j = 1, . . . , s, i ̸= j, wi · γi ∩ wj · γj is a common proper face of wi · γi
and wj · γj;

(2) if wi = wj then γi = γj.

In particular, Prim(σR,L) = WL ·
(
Prim(σR,L) ∩ {ω∨

1 , . . . , ω
∨
n}

)
.

Proof. By construction, σR,L is stable under the (linear) action of WL; hence
σR,L(r) is stable under the action of WL. Since D∨ is a fundamental domain of
the action of W it follows that there exist w1, . . . ws ∈ WL and γ1, . . . , γs ∈ D∨(r)
such that F = ∪s

i=1wi · γi. In particular, it follows that D∨ is also a fundamental
domain for action of WL on σR,L.

Let w ∈ WL, γ ∈ D∨ be such that w · γ ⊂ F . Since the affine dimension of w · γ
and wi · γi, i = 1, . . . , s, is r, it follows that there exists i ∈ {1, . . . , s} such that
dim⟨wi · γi ∩w · γ⟩aff = r. Since D∨ is a fundamental domain for the action of WL

on σR,L, it follows that wi · γi = w · γ and therefore wi = w and γi = γ.
It is now easy to prove assertion (1). In order to prove (2), observe that if

γi ̸= γj , then dim⟨γi ∪ γj⟩aff > r and it follows that w · (γi ∪ γj) is not included in
σR,L(r) for any w ∈ WL.

Finally, recall that Prim(σR,L) consists of the primitive elements of the rays in
σR,L(1) and that the lattice of co-roots is stable under de action of W . □

Notation 2. We denote JL = Prim(σR,L) ∩ {ω∨
1 , . . . , ω

∨
n} — by Proposition 5

above, JL is a fundamental domain for the action of WL on Prim(σR,L). In order
to simplify the notations, we will often also denote the set of indexes

{
i : ω∨

i ∈ JL
}

by JL.

Once we have described Prim(σR,L) as a set of WL–orbits, we are in condition
to give a simple description of its affine support space.

Proposition 6. If L ⊂ I then〈
Prim(σR,L)

〉
aff

= ω∨
k +

〈(⋃
j∈JL

WL·(ω∨
j )−ω∨

j

)
∪{ω∨

i −ω∨
j : i,j∈JL}

〉
= ω∨

k +
〈
{α∨

i : i∈L}∪{ω∨
i −ω∨

k : i∈JL}
〉

for any ω∨
k ∈ JL.
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Proof. By Proposition 5, Prim(σR,L) = WL · JL. If ω∨
i , ω

∨
j ∈ JL and w,w′ ∈ WL,

then w · (−ω∨
i ) − w′ · (−ω∨

j ) = w · (−ω∨
i ) − ωi + ω∨

i − ω∨
j + ω∨

j − w′ · (−ω∨
j ), and

the first equality follows.
For the second equality, let w = sℓ · · · s1 ∈ WL, with sj ∈ {sα∨

i
: i ∈ L}. Then

w · (−ω∨
t )− ω∨

t ∈ ⟨α∨
i : i ∈ L⟩Q for all ω∨

t ∈ JL and the inclusion ⊂ follows.
In order to prove the remaining inclusion, let i ∈ L. If sα∨

i
· ν = ν for all

ν ∈ Prim(σR,L), then sα∨
i
acts trivially, since σR,L is of maximal dimension; this is

a contradiction. It follows that there exists ν ∈ Prim(σR,L) such that sα∨
i
· ν ̸= ν,

and therefore α∨
i ∈

〈
Prim(σR,L)

〉
aff

− ω∨
k . □

Since by Proposition 6 the set JL determines ΣR,L and therefore XR,L, we pro-
ceed to calculate JL, by translating results by Khare to our context (see [18, Defi-
nition 3.1 and Theorem C]).

Definition 7. Let D be the Dynkin diagram associated to the root system R, and
consider a subset L ⊂ I of simple roots. We say that a fundamental co-weight
ω∨
i is essential relatively to L if each irreducible component of the graph D \ {ω∨

i }
contains a root in L.

Theorem 7. If L ⊂ I then JL is the set of fundamental co-weights that are essential
relatively to L.

Proof. Under the duality between ΣR,L and WP(λ) (see Definition 6 and Proposi-
tion 4) the elements of Prim(σR,L) are the exterior normals of Cλ(n− 1).

On the other hand, by [18, Theorem C] an exterior normal of a facet in Cλ(n−1)
is in D if and only if the corresponding co-weight is essential (see [18, Definition
3.1]). Since JL corresponds to the facets in Cλ(n − 1) such that their exterior
normal belongs to D, the result follows. □

We finish this section by presenting the notion of core of the cone σR,L. This
construction, that exhibits a relationship between the faces of D∨ and the rela-
tive interior of σR,L, will be useful in our characterization of the Gorenstein Fano
closures of generic orbits.

Definition 8. If L ⊂ I, we define the core of σR,L, denoted by C (σR,L), as the
face of D∨ generated by the set {ω∨

i : i ∈ Lc}.

The core of a cone σR,L can easily be characterized by its invariance properties:

Lemma 8. If L ⊂ I, then C (σR,L) = (D∨)WL =
⋂

w∈WL
wD∨ = (σR,L)

WL . □

Proposition 9. If L ⊂ I is such that σR,L is strictly convex, then C̊ (σR,L) =
(̊σR,L)

WL .

Proof. By Proposition 2, u ∈ σ̊R,L if and only if ⟨β, u⟩ > 0 for all β ∈ (RL)+. If

v ∈ C̊ (σR,L) then v =
∑

i∈Lc aiω
∨
i , with with ai > 0 for all i ∈ Lc. Thus, ⟨β, v⟩ > 0

for all β ∈ (RL)+ and therefore C̊ (σR,L) ⊂ σ̊R,L. We deduce from Lemma 8 that

C̊ (σR,L) ⊂ (̊σR,L)
WL .

Assume now that v ∈ (̊σR,L)
WL . Then v belongs to (D∨)WL ∩ σ̊R,L but, by

Proposition 5, v does not belong to any of the facets of the cone (D∨)
WL . We

apply again Lemma 8 and the result follows. □
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3.2. A criteria for XR,L to be Gorenstein Fano.
In this section we characterize when the closure of a generic orbit is a Goren-

stein Fano toric variety in terms of the combinatorial properties of the core of the
associated cone σR,L.

Definition 9. We define FL as the convex hull of the set Prim(σR,L) and PR,L as
the convex hull of Prim(ΣR,L).

Clearly, dimaff PR,L = n and dimaff(FL) is n or n− 1 — in this last case FL is
a facet of PR,L. When FL is a facet, we identify the exterior normal of FL (see
Definition 1) with the unique element nL ∈ (Λ∨

R)Q such that −φL(v) = (nL, v). If
FL is n-dimensional, we set nL = 0.

Remark 3. (1) Notice that nL is WL-invariant, since Prim(σR,L) = WL · JL.
(2) In particular, if Lc = {ω∨

i }, then nL = aω∨
i — this easy remark will simplify

some calculations.
(3) Using the W -invariance of nL, we can characterize the affine dimension of
Conv

(
Prim(σR,L)

)
as follows:

(i) If there exists a WL-invariant element nL ∈ (Λ∨
R)Q such that (nL, ν) = 1 for all

ν ∈ JL, then Conv
(
Prim(σR,L)

)
is (n − 1)-dimensional with exterior normal

nL.
(ii) If such an element does not exist, then Conv

(
Prim(σR,L)

)
is n-dimensional.

Theorem 10. Let XR,L be the closure of a generic orbit. Then XR,L is Q-

Gorenstein Fano if and only if nL ∈ C̊ (σR,L). Moreover, if XR,L is Q-Gorenstein
Fano then

j
XR,L

= min{j ∈ N∗ : ∀v ∈ Λ∨
R, (jnL, v) ∈ Z}.

Proof. Since XR,L = X−ΣR,L
∼= XΣR,L

(see Definition 4 and remark 1), it suffices
to prove the assertion for XΣR,L

.

Assume that nL ∈ C̊ (σR,L); then dimaff(FL) = (n − 1) and, by Proposition 9,
nL ∈ (̊σR,L)

WL . If σ ∈ ΣR,L(n) then σ = w · σR,L for some w ∈ W , Therefore,
Prim(σ) = w · Prim(σR,L) = wWL · JL and it follows that

w · C̊ (σR,L) = w · (̊σR,L)
WL ⊂ w · σ̊R,L = σ̊.

In particular, Conv
(
Prim(σ)

)
is (n−1)-dimensional, with exterior normal w·nL ∈ σ̊.

By Proposition 1, it remains to prove that (w · nL, v) < 1 for all v ∈ Prim(ΣR,L)\
Prim(w · σR,L). By the W -invariance of ΣR,L(n) and Prim(Σ) it suffices to prove
that (nL, v) < 1 for all v ∈ Prim(w · σR,L) \Prim(σR,L), where w ∈ W is such that
(w · σR,L) ∩ σR,L is a common (n− 1)-dimensional face.

Moreover, by the WL-invariance of σR,L, we can assume that w = sα∨
i
, where

i ∈ L is such that (α∨
i )

⊥ is the support hyperplane of a (n− 1)-dimensional face of
σR,L. In this case v = sα∨

i
· ν for some ν ∈ Prim(σR,L) \ (α∨

i )
⊥ and we have that(

nL, sα∨
i
· ν

)
= (nL, ν)−

(
nL, 2

(α∨
i ,ν)

(α∨
i ,α∨

i )
α∨
i

)
= 1−

(
nL, 2

(α∨
i ,ν)

(α∨
i ,α∨

i )
α∨
i

)
.

Since ν ∈ σR,L \ (α∨
i )

⊥ and nL ∈ ˚σR,L, then (α∨
i , ν) > 0 and (nL, α

∨
i ) > 0, and

the assertion follows.
Conversely, assume now nL /∈ C̊ (σR,L); since nL is WL-invariant, it follows that

nL =
∑

i∈Lc aiω
∨
i . If nL = 0 then Conv

(
Prim(σ)

)
is n-dimensional and it follows

from Proposition 1 that XR,L is not Q-Gorenstein Fano. If nL ̸= 0, there exists
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i0 ∈ Lc such that ai0 ≤ 0. Since i0 ∈ Lc, it follows that sα∨
i0

/∈ WL and therefore

sα∨
i0
· σR,L ∈ ΣR,L(n) \ σR,L. Let ν ∈ Prim(σR,L) \ (α∨

i0
)⊥. Then (nL, ν) = 1 and(

ν, α∨
i0

)
> 0. It follows that(
nL,sα∨

i0

·ν
)
=

(
sα∨

i0

·nL,ν

)
=(nL,ν)−

(
2
(α∨

i0
,nL)

(α∨
i0

,α∨
i0
)
α∨
i0

,ν

)
=1−

(
2ai0

(α∨
i0

,ω∨
i0)

(α∨
i0

,α∨
i0
)
α∨
i0

,ν

)
≥1.

Since sα∨
i0
·ν ∈ Prim(sα∨

i0
·σR,L)\Prim(σR,L), it follows from Proposition 1 that

XΣR,L
and hence XR,L are not Q-Gorenstein Fano.

The last assertion follows straightforward from Proposition 1 — indeed, recall
that W · nL is set of exterior normals of the facets of Conv

(
Prim(Σ)

)
.

□

The following (very) easy remark will be used several times in our classification
of the Gorenstein Fano closures of generic orbits.

Lemma 11. Let bi,j,k =
(
ω∨
i , ω

∨
j − ω∨

k

)
, i, j, k ∈ I. Assume that L ⊂ I is such

that there exist j, k ∈ JL with bi,j,k ≥ 0 for all i ∈ Lc, and
∑

i∈Lc b2i,j,k ̸= 0. Then

nL /∈ C̊ (σR,L).

Proof. If nL ∈ C̊ (σR,L), then nL =
∑

i∈Lc aiω
∨
i , with ai > 0. Since ω∨

j −
ω∨
k ∈

〈
Prim(σR,L)

〉
aff

(see Proposition 6), it follows that 0 <
∑

i∈Lc aibi,j,k =(
nL, ω

∨
j − ω∨

k

)
= 0, and we obtain a contradiction. □

4. Q-Gorenstein Fano generic closures

Theorem 12. Let G be a simple affine algebraic group of root type R and L ⊊ I
a proper subset of the set of simple roots I; let T be a maximal torus and T ⊂ P
be the parabolic subgroup associated to L. Table 1 on page 10 gives a complete list
of all the closures XR,L ⊂ G/P of a generic T -orbit that are Q-Gorenstein Fano,
Gorenstein Fano and smooth Fano varieties — e.g. if the table indicates that XR,L

is Q-Gorenstein Fano, then XR,L is Q-Gorenstein Fano but not Gorenstein Fano.
In the third column, we draw the Dynkin diagram of R∨; the subscripts indicate

the number of the corresponding simple roots in I, the elements of L are the roots
drawn in black, the superscript JL over a root αi indicates that ω

∨
i ∈ JL, the set of

essential co-weights In the fourth column we indicate the corresponding geometry
— the Gorenstein index of the Q-Gorenstein Fano variety XR,L is denoted by j.
Finally, in the fifth column we exhibit the exterior normal −φL ∈ (ΛR)Q — recall
that ⟨−φL, v⟩ = (nL, v) for all v ∈ (Λ∨

R)Q.

Remark 4. (1) The description given in Table 1 is modulo automorphisms of the
root system; for example, the varieties XAn,I\{1} and XAn,I\{n} are isomorphic
(and both Fano) and the table only exhibits XAn,I\{1}. In the same spirit, the
conditions given on the rank are established in order to avoid repetition.
(2) In the proof of Theorem 12 we exhibit nL when XR,L is Q-Gorenstein Fano; in
order to compute φL we use the matrix

(
⟨ωi, ω

∨
j ⟩

)
i,j∈I

, which is the inverse of the

Cartan Matrix (see [19] for explicit calculations).
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Table 1

type rank Dynkin(R∨), L and JL Geometry −φL ∈ (ΛR)Q

An

n ≥ 1
1 2 n

JL
Smooth, Fano (n+ 1)ω1

n ≥ 2
1 2 n− 1 n

JL JL JL JL
Gorenstein Fano ω1 + ωn

n ≥ 3, odd
1 n−1

2
n− 1

JL JL
Gorenstein Fano 2ωn+1

2

n ≥ 4, even
1 n

2
n
2
+ 1 n

JL JL
Smooth, Fano (n+1)(ωn

2
+ωn

2
+1

)

Bn

n ≥ 2

1 2 n− 1 n

JL
Gorenstein Fano ω1

1 2 n− 1 n

JL
Smooth, Fano 2ωn

Cn n ≥ 3

1 2 n− 1 n

JL
Gorenstein Fano ω1

1 2 n− 1 n

JL JL
Gorenstein Fano ω2

1 2 n− 1 n

JL
n even: Gor. Fano ωn

n odd: Q-G.F., j=2

Dn n ≥ 4 1 2

n− 1

n

JL

JL
Gorenstein Fano 2ω1

1 2

n− 1

n

JL

JL

JL
Gorenstein Fano ω2

E6 6
1

2

3 4 5 6

JL JL
Gorenstein Fano ω2

F4 4 1 2 3 4

JL
Q-Gor. Fano, j = 2 ω1

2

1 2 3 4

JL
Gorenstein Fano ω4

G2 2 1 2

JL
Smooth, Fano ω2

1 2

JL
Q-Gor. Fano, j = 3 ω1

3
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5. Proof of theorem 12

5.1. Explicit calculations for ranks 1 and 2.
The classification for ranks 1 and 2 is done by direct examination.

Explicit calculations for G of type A1.
Clearly σA1,{1} = Q+ and therefore XA1,∅ = SL2(k)/B ∼= P1 is a smooth Fano

variety.

Explicit calculations for G of type A2.

α∨
1

α∨
2

ω∨
1

ω∨
2

(a) L = {2}

α∨
1

α∨
2

ω∨
1

ω∨
2

(b) L = ∅

Figure 1. G is of type A2; the cone σR,L is drawn in gray.

As follows from figures 1a and 1b, ΣA2,L is a smooth Fano complete fan for
all L ⊊ I = {1, 2} — recall that R ∼= R∨. The varieties XA2,{1} and XA2,{2}
are isomorphic to P2 with the canonical action of T = (k∗)2 ⊂ P2, and XA2,∅ is
isomorphic to the blowing up of three generic points in P2.

Explicit calculations for G of type B2 and C2.
Since C2 = (B2)

∨, it suffices to describe the case R = B2, which has Dynkin
diagram

1 2
.

If L = ∅, then n∅ = ω∨
1 and therefore XB2,∅ is not Q-Gorenstein Fano (see Figure

2a). If follows that XC2,∅ is not Q-Gorenstein Fano — in this case n∅ = ω∨
2 .

If L = {1} then n{1} = ω∨
2 and XB2,{1} is a smooth Fano variety — XB2,{1} is

isomorphic to P1 × P1, see figure 2a. It follows that XC2,{2}
∼= P1 × P1.

If L = {2}, then nB2,{2} = ω∨
1 and XB2,{2} and XC2,{1} are Gorenstein Fano

varieties (see figure 2b) — notice that these varieties are not smooth.

Explicit calculations for G of type G2.
Recall that G2 has Dynkin diagram

1 2
, with G2

∼= G∨
2 .

Since Conv
(
Prim(σG2,∅)

)
is not a proper face of Conv

(
Prim(ΣG2,∅)

)
(see figure

3a), it follows that XG2,∅ is not Q-Gorenstein Fano.
An inspection of figure 3a shows that XG2,{1} is a smooth Fano variety — in

fact, XG2,{1}
∼= XA2,∅, the blowing up of three points in P2. Also by inspection of

figure 3b, we have that XG2,{2} is Q-Gorenstein Fano of index 3.
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α∨
1

α∨
2

ω∨
1

ω∨
2

(a) L = {1}

α∨
1

α∨
2

ω∨
1

ω∨
2

(b) L = {2}

Figure 2. G is of type B2. The cone σR,L is drawn in gray.

α∨
1

α∨
2

ω∨
1

ω∨
2

(a) L = {1}

α∨
1

α∨
2

ω∨
1

ω∨
2

(b) L = {2}

Figure 3. G is of type G2

5.2. Proof of theorem 12 for rank n ≥ 3.
We follow a similar strategy for all cases: given R, (a multiple of) the transposed

inverse of symmetrized Cartan Matrix associated to R∨ determines a W -invariant
scalar product on R∨ (see for example [19, p. 295]). By Theorem 10, we need to

determine when nL belongs to C̊ (σR,L) (see Definition 9). Hence, for each L, we
use Proposition 5 in order to compute JL and then we deduce nL.

Notation 3. Notice that we reason on Lc rather than on L. If L ⊂ I = {1, 2, . . . , n},
we denote by m (resp. M) the minimum (resp. the maximum) of the set Lc.

5.3. Explicit calculations for G of type An, n ≥ 3.
We choose the W -invariant scalar product given by the matrix:

(1)



n n−1 n−2 2 1

n−1 2(n−1) 2(n−2) 2·2 2

n−i+1 2(n−i+1) i(n−i+1) i(n−i) i·2 i

2 2·2 (n−1)2 n−1

1 2 (n−1) n


5.3.1. Cases Lc = {1} and Lc = {n}.

If Lc = {1} then JL = {ω∨
n}, and it follows from Remark 3 that nL = ω∨

1 . Hence,
XAn,L is Gorenstein Fano (see Theorem 10). Moreover, a direct computation (see
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also [6, Remark 4]) shows that

Prim(σR,L) = WL · (ω∨
n ) = {ω∨

n , ω
∨
n−1 − ω∨

n , ω
∨
n−2 − ω∨

n−1, . . . , ω
∨
1 − ω∨

2 },
and therefore XAn,L is a smooth Fano variety.

By symmetry of the Dynkin diagram, we deduce that XAn,I\{n} is also a smooth
Fano variety.

5.3.2. Case Lc = {i}, i ̸= 1, n.
In this case JL = {ω∨

1 , ω
∨
n}, and nL = aω∨

i (see Remark 3). If n ̸= 2i − 1
then (ω∨

1 , ω
∨
i ) = (ω∨

n , ω
∨
i ), and therefore nL = 0. It follows that the polytope FL

(see Definition 9) is n-dimensional and hence XAn,L is not Q-Gorenstein Fano (see
Proposition 1).

If n = 2i− 1, then nL =
ω∨

i

i and
(
nL, ω

∨
j

)
∈ Z for all j ∈ I (see Matrix (1)). It

follows that XAn,I\{i} is Gorenstein Fano. Finally, since

Prim(σR,L) = WL · ω∨
1 ∪WL · ω∨

n =

{ω∨
1 , ω

∨
2 − ω∨

1 , . . . , ω
∨
i − ω∨

i−1} ∪ {ω∨
n , ω

∨
n−1 − ω∨

n , . . . , ω
∨
i − ω∨

i+1}

is not a simplicial set, it follows that XAn,L is not smooth.

5.3.3. Case M = m+ 1.
In this case JL = {1, n}. If XAn,L is Q-Gorenstein Fano, it follows from Theorem

10 that nL = aω∨
m + bω∨

m+1, with a, b ∈ Q>0. Hence,

0 = (nL, ω
∨
1 − ω∨

n ) = (a+ b)(n− 2m) + (a− b).

We deduce that n = 2m and nL = (ω∨
m + ω∨

m+1). Moreover,

Prim(σR,L) = WL · ω∨
1 ∪WL · ω∨

n =

{ω∨
1 , ω

∨
2 − ω∨

1 , . . . , ω
∨
m − ω∨

m−1} ∪ {ω∨
n , ω

∨
n−1 − ω∨

n , . . . , ω
∨
m+1 − ω∨

m+2},

and therefore Prim(σR,L) is a basis of the co-weight lattice. It follows that the
variety XA2m,{m,m+1}c is smooth Fano.

5.3.4. Case m = 1 and M = n.
In this case, JL = I. If XAn,L is Q-Gorenstein Fano, then nL =

∑
i∈Lc aiω

∨
i ,

ai > 0, is defined up to a scalar by the equations
(
nL, ω

∨
j − ω∨

j′

)
= 0. Since(

ω∨
1 + ω∨

n , ω
∨
j − ω∨

j′

)
= 0 we deduce that nL is proportional to ω∨

1 +ω∨
n , and there-

fore:
(i) If Lc ̸= {1, n}, then XAn,L is not Q-Gorenstein Fano.

(ii) If Lc = {1, n}, then nL =
ω∨

1 +ω∨
n

n+1 and therefore XAn,{2,...,n−1} is Gorenstein

Fano. Since Prim(σAn,{2,...,n−1}) = WL · {ω∨
j | j ∈ I} is clearly not simplicial, we

deduce that XAn,{1,n}c is not smooth Fano.

5.3.5. Remaining cases.
It remains to study the cases (i) #Lc ≥ 2, with m ̸= M − 1 and M < n, and (ii)

#Lc ≥ 2, with m ̸= M − 1 and 1 < m.
By symmetry, it suffices to study the case (i); in this case JL = {1,m+1, . . . ,M−

1, n}. Assume that nL =
∑

i∈Lc aiω
∨
i , ai > 0; since n and M − 1 belong to JL, we

deduce that ∑
i∈Lc

ai
(
ω∨
i , ω

∨
M−1 − ω∨

n

)
= 0.
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The coefficients of the i-th row of Matrix (1) being a strict unimodal sequence
with peak at the i-place, we deduce that

(
ω∨
i , ω

∨
M−1 − ω∨

n

)
> 0 for all i such that

i ≤ M − 1. Since M < n, we have that
(
ω∨
M , ω∨

M−1 − ω∨
n

)
> 0. Hence, since

L ⊂ {m, . . . ,M}, we obtain a contradiction (using Lemma 11); it follows that
XAn,L is not Q-Gorenstein Fano.

5.4. Explicit calculations for G of type Bn, n ≥ 3.
Recall that Bn has Dynkin diagram

1 2 n− 1 n
and (Bn)

∨ = Cn. We choose

the W -invariant scalar product on (Λ∨
Bn

)Q = (ΛCn
)Q given by the matrix

(2)


1 1 1 1 1 1

1 2 2 2 2 2

1 2 3 i i i

1 2 3 i n−1 n


5.4.1. Case #Lc = 1.
(i) If Lc = {i} with i ̸= 1, n, then JL = {1, n} and nL = aω∨

i . Since (ω
∨
i , ω

∨
1 − ω∨

n ) =
1− i, it follows that nL = 0 and XBn,{i}c is not Q-Gorenstein Fano.

(ii) If Lc = {1}, then JL = {n}. Since (ω∨
1 , ω

∨
n ) = 1, it follows that nL = ω∨

1 and
therefore XBn,{2,...,n} is Gorenstein Fano. Since #WL · ω∨

n > n, then σBn,{2,...,n} is
not simplicial and we deduce that XBn,{2,...,n} is not smooth.

(iii) If Lc = {n}, then JL = {1} and it follows that nL = ω∨
n . Hence, XBn,{1,...,n−1}

is Gorenstein Fano. Moreover, it is easy to see that WL ·JL = WL ·ω∨
1 = {ω∨

1 , ω
∨
2 −

ω∨
1 , . . . , ω

∨
n − ω∨

n−1} (see for example [6, Remark (4)]) and therefore the variety
XBn,{1,...,n−1} is smooth Fano.

5.4.2. Case #Lc > 1.
It is clear that {1, n} ⊂ JL. Since (ω∨

i , ω
∨
n − ω∨

1 ) = i− 1 for all i ∈ I, we deduce
from Lemma 11 that XBn,L is not Q-Gorenstein Fano.

5.5. Explicit calculations for G of type Cn.
Recall that Cn has Dynkin diagram

1 2 n− 1 n
. We choose the W -invariant

scalar product in (Λ∨
Cn

)Q = (ΛBn
)Q given by the matrix

(3)


2 2 2 2 2 1

2 4 4 4 4 2

2 4 6 2i 2i i

1 2 3 i n−1 n/2


5.5.1. Case #Lc = 1.
(i) If Lc = {1} then JL = {n}, and we deduce fromMatrix (3) that nL = ω∨

1 . Hence,
XCn,{2,...,n} is Gorenstein Fano. Since #WL · ω∨

n > n, it follows that XCn,{2,...,n}
is not smooth.

(ii) If Lc = {n}, then JL = {1} and nL = ω∨
n . Since (ω∨

n , ω
∨
i ) = i if i ̸= n and

(ω∨
n , ω

∨
n ) = n/2, we deduce that XCn,{1,...,n−1} is Gorenstein Fano if n is even, and

Q-Gorenstein Fano of index 2 if n is odd.
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It is easy to see that WL · JL = WL · ω∨
1 = {ω∨

1 , ω
∨
2 − ω∨

1 , . . . , 2ω
∨
n − ω∨

n−1} (see
[6, Remark 5]); it follows that the fan ΣCn,{1,...,n−1} is simplicial but XCn,{1,...,n−1}
is not smooth.

(iii) If Lc = {2} then JL = {1, n}. Since (ω∨
1 , ω

∨
2 ) = (ω∨

n , ω
∨
2 ) = 2, it follows that

nL = 1
2ω

∨
2 . By inspection on Matrix (3) we deduce that XCn,{2}c is Gorenstein

Fano. Since WL · JL > n, it follows that XCn,{2}c is not smooth.

(iv) If Lc = {i} with i ̸= 1, 2, n, then JL = {1, n}. Since (ω∨
i , ω

∨
1 − ω∨

n ) = 2− i, it
follows that nL = 0 and the variety XCn,{i}c is not Q-Gorenstein Fano.

5.5.2. Case M = m+ 1.
In this case JL = {1, n}. Assume that XCn{i−1,i}c , 2 ≤ i ≤ n is Q-Gorenstein

Fano.

(i) If Lc = {n−1, n}, then nL = aω∨
n−1+ bω∨

n , with a, b > 0. Since n ≥ 3, it follows

that (nL, ω
∨
1 − ω∨

n ) = 2a−a(n−1)+ b− n
2 b = a(−n+3)− n−2

2 b < 0 and we obtain
a contradiction.

(ii) If Lc = {i − 1, i}, i ̸= n, then nL = aω∨
i−1 + bω∨

i , with a, b > 0. Since
(nL, ω

∨
1 − ω∨

n ) = 2a− a(i− 1) + 2b− bi = a(3− i) + b(2− i) ̸= 0 for all 2 ≤ i < n,
we obtain a contradiction.

5.5.3. Case m < M − 1.
In this case JL = {1,m+ 1, . . . ,M − 1, n} and, since m+ 1 < n, it follows that(

ω∨
i , ω

∨
m+1 − ω∨

1

)
≥ 0 for all i ∈ I. We deduce from Lemma 11 that XCn,L is not

Q-Gorenstein Fano.

5.6. Explicit calculations for G of type Dn, n ≥ 4.

Recall that Dn
∼= (Dn)

∨, with Dynkin diagram
1 2

n− 2

n− 1

n

. We choose

the W -invariant scalar product given by the matrix

(4)


4 4 4 4 2 2

4 8 8 8 4 4

4 8 12 4i 2i 2i

2 4 6 2(n−2) n n−2

2 4 6 2(n−2) n−2 n


5.6.1. Case #Lc = 1.
(i) If Lc = {i}, with i ̸= 1, 2, n− 1, n, then JL = {1, n− 1, n} and nL = aω∨

i . Since
(ω∨

i , ω
∨
1 − ω∨

n ) ̸= 0, we deduce that nL = 0 and therefore the variety XDn,{i}c is
not Q-Gorenstein Fano.

(ii) If Lc = {1}, then JL = {n− 1, n}. Clearly nL = ω∨
1 /2, and (nL, ω

∨
i ) ∈ Z for all

i ∈ I; therefore, XDn,{1}c is Gorenstein Fano. Since #WL · JL > n, it follows that
XDn,{1}c is not smooth Fano.

(iii) If Lc = {n}, then JL = {1, n − 1}. If n = 4, we deduce by symmetry that
XD4,{1}c ∼= XD4,{4}c and therefore XD4,{4}c is Gorenstein Fano.
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If n > 4, then
(
ω∨
n , ω

∨
1 − ω∨

n−1

)
= 4−n > 0. It follows that nL = 0 and therefore

XDn,{n}c is not Q-Gorenstein Fano.

(iv) If Lc = {n−1} we deduce by symmetry that the variety XD4,{3}c is Gorenstein
Fano, and that XDn,{n−1}c is not Q-Gorenstein Fano if n > 4.

(v) If Lc = {2}, then JL = {1, n − 1, n}. By inspection of Matrix (4), we deduce
that nL = (ω∨

2 )/4 and it follows that XDn,{2}c is Gorenstein Fano. Again, since
#WL · JL > n, if follows that XDn,{1}c is not smooth.

5.6.2. Case Lc = {1, 2}.
Assume that XDn{1,2}c is Q-Gorenstein Fano. Then, nL = aω∨

1 + bω∨
2 , with

a, b > 0. Since JL = {1, n− 1, n} and that (nL, ω
∨
n − ω∨

1 ) = −2a < 0, we obtain a
contradiction.

5.6.3. Case #Lc > 1, m > 1.
It is easy to see that in this case {1, n− 1, n} ⊂ JL. Since

(
ω∨
i , ω

∨
n−1 − ω∨

1

)
≥ 0

for i ≥ 2, it follows from Lemma 11 that XDn,{L}c is not Q-Gorenstein Fano.

5.6.4. Remaining cases.
Since #Lc > 1, m = 1 and Lc ̸= {1, 2}, it follows that 2 < M ; hence, {1, 2} ⊂

JL = {1, . . . ,M −1, n−1, n}. Since (ω∨
i , ω

∨
2 − ω∨

1 ) ≥ 0, for all i ∈ I, it follows from
Lemma 11 that XDn,{L}c is not Q-Gorenstein Fano.

5.7. Explicit calculations for G of types E6, E7, E8 and F4.
These cases can be calculated using Lemma 11 and Theorem 10, by direct in-

spection of the matrices associated to the W -invariant scalar product. We will treat
in detail only the cases E6 and F4.

5.7.1. G is of type E6.

The associated Dynkin diagram of E6 is
1

2

3 4 5 6
. We choose the W -

invariant scalar product given by the matrix

4 3 5 6 4 2

3 6 6 9 6 3
5 6 10 12 8 4

6 9 12 18 12 6

4 6 8 12 10 5
2 3 4 6 5 4


(i) If Lc = {2}, then JL = {1, 6}, nL = 1

3ω
∨
2 , and the variety XE6,{2}c is Gorenstein

Fano and not smooth — because ΣE6,{2}c is not simplicial.

(ii) If Lc = {i}, i ̸= 2, then #JL ≥ 2, with 2 ∈ JL, and nL = aω∨
i . If j ∈ JL \ {2},

then
(
ω∨
i , ω

∨
j

)
̸= (ω∨

i , ω
∨
2 ); therefore nL = 0 and XE6,L is not Q-Gorenstein Fano.

(iii) If Lc > 1, then {1, 2, 6} ⊂ JL.

(iii-a) 1 /∈ Lc: since (ω∨
i , ω

∨
2 − ω∨

1 ) > 0 for all i ∈ Lc, it follows from Lemma 11
that XE6,L is not Q-Gorenstein Fano.

(iii-b) {1, 6} ⊂ Lc: since {1, 2, 3, 5, 6} ⊂ JL, it follows from Lemma 11 (applied to
j = 2 and k = 3) that XE6,L is not Q-Gorenstein Fano.

(iii-c) 1 ∈ Lc and 6 /∈ Lc: it follows from Lemma 11 (applied to j = 2 and k = 6)
that XE6,L is not Q-Gorenstein Fano.
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5.7.2. G is of type E7, E8.
The root systems E7 and E8 have associated associated Dynkin diagrams

1

2

3 4 5 6 7
and

1

2

3 4 5 6 7 8
respectively. Notice that in these

cases (contrary to the case E6) we have that (ω2, ω1) ̸= (ω2, ωn), where n = 7
or 8.

We first deal with the case E7; we set n = 7.
(i) If Lc = {2}, then {1, n} = JL and nL = 0; therefore En,{2}c is not Q-Gorenstein
Fano.

(ii) If Lc = {i}, with i ̸= 2 then #JL > 1 and 2 ∈ JL and it follows as in the case
of type E6 (iii-a) that XEn,{i}c is not Q-Gorenstein Fano.

(iii) If #Lc > 1, then either {1, 2} ⊂ JL or {2, n} ⊂ JL. In both cases we deduce
from Lemma 11 that that En,L is not Q-Gorenstein Fano.

In order to deal with the case E8, just substitute n = 8 in the previous discussion.

5.7.3. G is of type F4.
The Dynkin diagram of F4

∼= (F4)
∨ is

1 2 3 4
. We choose the W -invariant

scalar product in (Λ∨
F4
)Q given by the matrix


2 3 4 2

3 6 8 4
4 8 12 6

2 4 6 4

.

(i) If Lc = {i}, with i ̸= 1, 4, then JL = {1, 4} and it follows that nL = 0.

(ii) If Lc = {1}, then JL = {4}, so nL = (ω∨
1 )/2. If follows that XF4,{2,3,4} is

Q-Gorenstein Fano of Gorenstein index 2.

(iii) If Lc = {4}, then JL = {1}, and nL = 1
2ω

∨
4 . If follows that XF4,{1,2,3} is

Gorenstein Fano but not smooth, since #WL · ω∨
1 > 4.

(iv) If #Lc > 1, then {1, 4} ⊂ JL and we deduce from Lemma 11 that XF4,L is not
Q-Gorenstein Fano.

6. Some couple of dual reflexive polytopes

Once we have classified all Gorenstein Fano toric varieties XR,L, we can apply
[14, Theorem 8.3.4] (see Proposition 1) in order to produce a list of couples of
reflexive polytopes

(
P

R,L
,P◦

R,L

)
. Moreover, the W -invariance of P◦

R,L
allows us to

describe these polytopes as Weyl polytopes (see Definition 6).

Proposition 13. Let R be a root system and XR,L a Gorenstein Fano generic
closure. Then PR,L ⊂ (Λ∨

R)Q is a dual reflexive polytope, with P◦
R,L = WP(−φL) ⊂

(ΛR)Q, where φL ∈ ΛR is indicated in the last column of the corresponding row of
Table 1.

Proof. It remains to prove the last assertion. Since ΣR,L is stable by the W -action,
it follows that PR,L and therefore P◦

R,L are W -stable. Moreover, since W acts

transitively on ΣR,L(n), W acts transitively on the maximal proper faces of PR,L.
In particular, the set of proper faces of PR,L is {w · Conv

(
Prim(σR,L)

)
: w ∈ W}.

Recall that ⟨φL, u⟩ = (nL, u) for all u ∈ Λ∨
R; since Conv

(
Prim(σR,L)

)
has nL as

exterior normal, it follows that

P◦
R,L = Conv

(
W · (−φL)

)
= WP(−φL) ⊂ (ΛP )Q.
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□

Remark 5. The couple (L, JL) determines completely the polytope PR,L. Indeed,
PR,L = Conv

〈
W · {ω∨

i : i ∈ JL}
〉
. Notice that if JL contains a single fundamental

co-weight ω∨, then PR,L is simply the Weyl polytope WP(ω∨).

We finish this section with an application to the study of root polytopes —
recall that if R is an (irreducible) root system, then the root polytope associated to
R is the convex hull Conv(R) ⊂ (ΛR)Q, see for example [20, 21, 22], where these
polytopes are intensively studied.

Proposition 14. Let R be an irreducible root system. Then the associated root
polytope Conv(R) (considered in the root lattice) is reflexive if and only if R is of
type An, Cn, Dn, E6 or G2.

Proof. Let γ be the longest root of R; then since γ is a dominant weight and −γ is
also a root, if follows that Conv(R) = WP(γ) = WP(−γ).

Taking into account the description of γ as a dominant weight (see for example
[15]), we deduce by inspection of Table 1 that there exists L such that XR,L is
Gorenstein Fano, with φL = γ, if and only if R is of type An, Cn, Dn, E6 or G2. If
this is the case, then Conv(R) = WP(−γ) is a reflexive polytope.

Reciprocally, if Conv(R) is a reflexive polytope, then the toric variety X associ-
ated to the normal fan of Conv(R) is a Gorenstein Fano variety. Since ΣX = ΣR,L,
where γ =

∑
i∈L aiωi, ai > 0, the result follows. □

Example 1. We conclude with three explicit examples of reflexive polytopes (as-
sociated to generic closures) and their duals.
Type A2. The polytopes PA2,{1}

∼= PA2,{2} and PA2,∅ are reflexive. In the figure 4,
the polytopes PA2,L, with vertices in the weight lattice, are the interior polytopes
whereas their duals are the exterior ones (with vertex in the root lattice).

α∨
1

ω∨
1

α∨
2

ω∨
2

(a) A2, L = {1}

α∨
1

α∨
2

ω∨
2

ω∨
1

(b) A2, L = ∅

α∨
1

α∨
2

ω∨
1

ω∨
2

(c) B2, L = {2}

Figure 4. Three dual reflexive polygons associated to root sys-
tems of rank 2.

Type B2. The polytopes PB2,{2} and PB2,{1} are reflexive. In the figure 4, PB2,{2} is
the exterior polytope, with vertex in the weight lattice of C2 — it contains 9 lattice
points; P∨

B2,{2} is the same polytope but in the root lattice of B2, so it contains 5

lattice points.
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tevideo,Uruguay


	1. Introduction
	2. Preliminaries
	2.1. Q-Gorenstein Fano toric varieties
	2.2. Fans defined by root systems and generic orbits

	3. A criteria for XR,L to be Q-Gorenstein Fano
	3.1. Various combinatorial properties of R,L
	3.2. A criteria for XR,L to be Gorenstein Fano

	4. Q-Gorenstein Fano generic closures
	5. Proof of theorem 12 
	5.1. Explicit calculations for ranks 1 and 2
	5.2. Proof of theorem 12 for rank n3
	5.3. Explicit calculations for G of type An, n3
	5.4. Explicit calculations for G of type Bn, n3
	5.5. Explicit calculations for G of type Cn
	5.6. Explicit calculations for G of type Dn, n4
	5.7. Explicit calculations for G of types E6,E7,E8 and F4

	6. Some couple of dual reflexive polytopes
	Acknowledgments
	References

