N

N

Gorenstein Fano Generic Torus Orbit closures in G/P

Pierre-Louis Montagard, Alvaro Rittatore

» To cite this version:

Pierre-Louis Montagard, Alvaro Rittatore. Gorenstein Fano Generic Torus Orbit closures in G/ P.
Journal of Algebraic Combinatorics, 2023, 57, pp.439-460. 10.1007/s10801-022-01198-z .  hal-
01717935v3

HAL Id: hal-01717935
https://hal.science/hal-01717935v3

Submitted on 11 Dec 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Copyright


https://hal.science/hal-01717935v3
https://hal.archives-ouvertes.fr

GORENSTEIN FANO GENERIC TORUS ORBIT CLOSURES IN
G/P

PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

ABSTRACT. Given a reductive group G and a parabolic subgroup P C G, with
maximal torus T, we consider (following Dabrowski’s work) the closure X of
a generic T-orbit in G/P, and determine in combinatorial terms when the
toric variety X is Q-Gorenstein Fano, extending in this way the classification
of smooth Fano generic closures given by Voskresenskii and Klyachko. As
an application, we apply the well known correspondence between Gorenstein
Fano toric varieties and reflexive polytopes in order to exhibit which reflexive
polytopes correspond to generic closures — this list includes the reflexive root
polytopes.

1. INTRODUCTION

Toric varieties — that is, normal varieties X over an algebraically closed field
k, on which an algebraic torus T acts effectively and with an open orbit — have
been thoroughly studied since the beginning of the 1970’s. Since the geometric
properties of a toric variety can be described in combinatorial terms (by means of
its associated fan), this family of algebraic varieties provides a nice framework in
which to study either their geometric properties or the combinatorial properties of
their associated fans.

In the early beginning of the theory of toric varieties, D. Mumford considered the
toric variety associated to the fan obtained by considering the weight lattice and
the set of all closed Weyl chambers of a root system R (see [1]). Afterwards, the
geometry of this variety was intensively studied by several authors (see [2] [3, 4l [5]).
In [6], V.E. Voskresenskii and A.A. Klyachko considered a larger family of fans
constructed by fixing a set I of simple roots of R and “gluing together” selected
adjacent Weyl chambers that correspond to a choice of a proper subset L C I (see
Definition . The invariance properties of these fans (w.r.t. the action of the
Weyl group of R) allow the authors to characterize the pairs (R, L) such that the
associated toric variety Xp 1, is smooth Fano. A remarkable result of R. Dabrowski
proves that the toric varieties Xg s can be constructed as the closure of an orbit
of a maximal torus on a flag variety — a “generic torus orbit closure”, see [7] and
Theorem [

In this paper we generalize Voskresenskii and Klyachko results: we describe all
pairs (R, L) such that the associated toric variety Xg 1, is Q-Gorenstein Fano and
which varieties among them are Gorenstein Fano (see Deﬁnition. The smoothness
condition (as in [6]) imposes restrictions of the combinatorics, in such a way that
(in the case of irreducible root systems) smooth Fano varieties are obtained only
for root systems of type A, (two infinite series), C), (one additional infinite series)
and G2 (one exceptional case). By relaxing the smoothness constraint, we obtain
Q-Gorenstein Fano generic closures for all types of irreducible root systems except
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2 PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

E7 and Eg (see Section. More precisely, we exhibit twelve infinite series plus five
exceptional cases of Q-Gorenstein Fano varieties.

From a combinatorial perspective, the exhibition of toric Gorenstein Fano va-
rieties is interesting because each of these varieties is naturally associated with a
couple of dual reflexive polytopes (see Definition [1)) — this duality allowed Batyrev
to give a rigorous construction of mirror symmetry in the toric context, see [g].
Applying in our setting this well known correspondence, we produce the list of dual
reflexive polytopes associated to each Gorenstein Fano toric variety Xp . As a
minor by-product, we describe the list of root polytopes which are reflexive.

We briefly describe now the content of this paper. In Section [2| we establish the
basic notations and we present some known results on Gorenstein Fano varieties and
closures of generic orbits. In Section [3] we study some combinatorial properties of
the cone o, 1, and we characterize the Q-Gorenstein Fano generic closures in terms
of the combinatorics of og, 1 (see Theorem . In Section [4| we present our main
result (Theorem , namely a classification of all Q-Gorenstein Fano, Gorenstein
Fano and smooth Fano generic closures in terms of their defining set of roots L C I
(see Deﬁnition. The proof of this classification result relies heavily in the criterion
established in Section 3] In Section [6] we exhibit the reflexive polytopes associated
to the Gorenstein Fano generic closures; as an application of our combinatorial
description, we classify the reflexive root polytopes.

In [9], the interested reader can find a SAGE (see [10]) package that allows to
perform explicit calculations for the cone o, ;, — we use GAP3 (version maintained
by Jean Michel, [11]) in order to use the package Chevie (see [12] and [13]).

2. PRELIMINARIES

2.1. Q-Gorenstein Fano toric varieties.

All along this work, by a toric variety we mean a normal toric variety over an
algebraically closed field k; our general reference for toric varieties is [14].

If T is an algebraic torus, we denote by A the characters group of T and by AY
the Z-dual of A. We denote by Ag (resp. A(\é) the Q-vector space Q ®z A (resp.
Q®z AY), and if (u,v) € Ag x Ag then (u,v) = v(u) € Q is the natural pairing of
u and v.

If X is a subset of a finite dimensional Q-vector space V', we denote by Conv(X)
the convex hull of X, by (X) the vector space generated by X, and by (X).g the
affine space generated by X; dim,g(X) denotes the affine dimension of (X),g. We
denote by QT X the positive cone generated by X (with the origin as vertex); the
“dual cone” of X is defined as

XV :={peVV:VzeX, (z,9) >0}

If ¥ is a fan in Ag (see [14, Definition 3.1.2]), then ¥(r) is the set of r-dimensional
cones in ¥. For each p € (1), u, is the primitive element of the monoid p N AY.
The set of primitive elements of o € ¥ is denoted by

Prim(c) = {u, : p € (1) and p C o}.
We set Prim(X) = (J, ¢y, Prim(o).
A fan ¥ has associated a toric variety that we denote as Xy.

Recall that if o C A(Vl) is a polyhedral strictly convex cone, then the relative
interior of o, denoted by &, is the complement in ¢ of the union of the facets of o.
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Definition 1. If A is a lattice, a lattice polytope is the convex hull in Ag of a finite
subset X C A.

Assume now that P C Ag is a lattice polytope of maximal rank containing the
origin in its strict interior. If Q is a proper facet of P, the interior normal of
Q, denoted by g, is the unique element of (Ag)Y such that po(Q) = —1 and
po(P\ Q) > —1; the exterior normal is defined as —pg. The convex hull of the
set of the interior normals of P is called the dual polytope of P and is denoted by
P°={u€Ay: (v,u) > —1VveP}

It is clear that P° is a polytope and that (P°)° = P; we say that P is a reflexive
polytope if P° is a lattice polytope.

Definition 2. Let X be a normal variety and denote by —K x the anti-canonical
divisor. We say that X is Q-Gorenstein Fano if — Ky is an ample Q-Cartier divisor;
if moreover —K x is an ample Cartier divisor, we say that X is Gorenstein Fano.
If X is a smooth Gorenstein Fano variety, we say that X is smooth Fano.

If X is Q-Gorenstein Fano, the Gorenstein indexr of X, denoted by jx, is the
smallest positive integer j such that jKx is Cartier — thus, a Gorenstein Fano
variety is a Q-Gorenstein Fano variety of Gorenstein index 1.

A fan ¥ C A(\é is Q-Gorenstein Fano, Gorenstein Fano or smooth Fano if the
associated toric variety Xx has the corresponding property.

The following equivalences are well known (see for example [I4] Theorem 4.2.8
and Lemma 6.1.13]):

Proposition 1. Let ¥ be a complete fan in A(\é. The following assertions are
equivalent:

(1) Xx is a Q-Gorenstein Fano toric variety;

(2) {ConV(Prim(a)) o0 € X(s), s = 1,...,n} is the set of proper faces of the
lattice polytope ConV(Prim(E));

(3) for every cone o € $(n), the polytope Conv(Prim(c)) is (n — 1)-dimensional;
let oo € Ag be such that (@s,v) = —1 for v € Prim(o). Then {py, w) > —1
for every w € Prim(X) \ Prim(o).

Moreover, if X5 is a Q-Gorenstein Fano toric variety, then

jx =min{j e N*:Vu e AV, Vo € B(n), (joo,u) € Z}.

In particular, if Xx, is Gorenstein Fano then Conv(Prim(Z)) is a reflexive lattice
polytope. O

2.2. Fans defined by root systems and generic orbits.

In this section we establish our notations on fans defined by root systems, and
formulate Dabrowski’s results accordingly, associating to a generic orbit the cor-
responding combinatorial data. When dealing with root systems, we follow Bour-
baki’s notations (see [15] [16]).

Notation 1. In what follows, R designs a root system of rank n and Ap its associ-
ated root lattice. We denote by RT a chosen set of positive roots; S = {a; : i € I'}
is the set of the simple Toots associated to RT. We denote by Ap the lattice of
weights and by {w; : ¢ € I'} the set of fundamental weights associated to S.

If @ € R, we denote by sq : (Ap)g — (Ap)g the associated reflection, and by W
the Weyl group generated by the reflections associated to R. Recall that W acts
on (Ap)g with the Weyl chamber D = Qt{w; : i € I'} as fundamental domain.
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The root system dual to R is denoted by RY. Recall that the simple co-roots
{of vi € I} C (Ap)g and the fundamental co-weights {wy :i € I} C (AR)g are
such that (o ,w;) = dij, (e, w)) = ;5 for all (i,5) € I*. Also, the reflections s,y
induce an action of W on (AY,)g, with the dominant Weyl Chamber of RY (denoted
by DV) as fundamental domain.

If L C I, we will abuse notations and identify S;, = {«a; : ¢ € L} with L.
We denote by Wy, the subgroup of W generated by the corresponding reflections
{saiv :ie L},

We denote by R = H};Zl Ry, the decomposition of the root system R in irre-
ducible root systems; the set of simple roots of Ry is denoted by S(k) C S and we
denote by I(k) C I the corresponding subset of indexes.

We choose W-invariant scalar products in (Ap)g and (A})g; these scalar prod-
ucts will be denoted by (-, ) in both cases.

Definition 3. With the previous notations, if A = 2?21 a;w; € Ap is a weight
(resp. AV =>"" | a;w; € AY, is a co-weight), we define the support of X (resp. AY)
as the set I = {a; 1 a; #0} C S.

From now on, G is a semi-simple group over k and T' C G' a maximal torus, such
that R is the root system associated to the couple (G, T); we denote by B C G the
Borel subgroup associated to R*. To each subset L C I, we associate the parabolic
subgroup Py, containing the opposite Borel subgroup B~ and such that the Weyl
group of Py, is equal to W.

Recall that if A € Ap is a dominant weight with support I contained in L¢ =
I'\ L, then X can be extended to Pr,. We denote by V(\) the Weyl G-module
associated to A.

Definition 4. Let L C I be a proper subset of roots. Following [6], we define the
cone associated to L as
OR,L = U ’va C (AR)QS
weWr,

If og, 1, is strictly convex, we consider the complete fan having as maximal cones
the translates w - og, 1, where w € W; we denote this fan by Xg 1, C (AR)XQ.

We define —Xp 1, := {—0 10 € ZR’L}; the corresponding toric variety is denoted
by XR,L = X*ER,L'

Remark 1. (1) The geometric meaning of the use of the co-weight lattice and the
fan —Xp 1, in the definition of Xg 1, (e.g. instead of the weight lattice and X 1),
will become evident in the next section (see Theorem [3| and Remark .

(2) Let R = [],_, Rx be a decomposition of the root system R in irreducible
root systems. Then DY = [[;_, Dy, where Dy C (Ay)g is the dominant Weyl
chamber of R — here Aj denotes the lattice generated by Rj. In particular,
or.L = o1 ORe. L0 2oL = [[my Zryonr, and Xg 1 = [Ty Xr, 201, -

Dabrowski proved in [7] that the toric varieties X g, 1, can be realized as closures
of “generic” T-orbits in G/Pj,. We briefly recall his construction, filling some minor
gaps in the proofs presented in op.cit. for the sake of completeness.

Definition 5 (see [7, §1]). Let L C I be a subset of roots, ITy = {p € Ap : V(N),, #
0} the set of T-weights of V' ()\), and A, be the list of the T-weights counted with
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multiplicity. A set of Pliicker coordinates {f, : p € Ax} is a choice of a basis of
T-semi-invariants functions f,, € V(=X),.

If z = uP € G/P, we consider II)(z) := {p € I) : f,(z) # 0 for some f,}. We
say that the T-orbit T -z is generic in the sense of Dabrowski if W -\ C IT(x) and
the set A — wlly(x) generates S as a sub-monoid — notice that if all the Pliicker
coordinates of x are non zero, then T - x is generic.

Proposition 2. Let (RY)T be the set of positive roots which are not sum of simple
roots in L, and ST be the sub-monoid generated by (RX)*. Then or 1 is the dual
cone of the conver cone generated by ST. In particular, or 1 is a strictly convex
cone if and only if LNI(k) # I(k) for allk=1,2,... 7.

Proof. Since Q*(S*) = Q*((R¥)™), it follows that
(@ (s") = (@ (@) = [ {x’eBho:(B.x") 20}
Be(RE)*
It is clear that (RY)T is Wi -stable; hence, @ ((RL)T) " is also Wi -stable and, as

it contains the dominant chamber DV, we have the inclusion og , C QT ((RL)+)V.
In order to prove the equality, it suffices to prove that s, - o, is not contained in
Q+((RL)+)V for all i ¢ L. But if (a;, x¥) > 0, then {a;, sa,(x¥)) = — (o, x") <0.

In order to prove the converse, in view of Remark [, we can assume that R
is irreducible. In this case, it is clear that op; = (AR)(\@. If L # I, then it is
well-known that (RL)* generates a space of maximal dimension and the result
follows. (]

We are in condition now to state Dabrowski’s main result concerning the generic

T-orbits in G/ Py, and their closures.

Theorem 3 ([7, Theorem 3.2]). If L C I is such that LNI(k) # I(k) for all k (see
Proposition @ and T -z C G/Py, is a generic orbit, then T - x is a toric variety
isomorphic to the toric variety Xpg. 1 . U

Remark 2. (1) Since the torus T does not act effectively on G/P, in general the
generic orbit associate to L has strictly lower dimension than 7' — that is T 2 T - x.
However, it is easy to show that in the hypothesis of Proposition [2[ we have that
T, = Z(G). Since A is the lattice of characters of T'//Z(G), the description of T' -
as a T'/Z(G)-toric variety is given by a complete fan in the space (A})q.
(2) When the root system is simply laced, one has some leeway for the combinatorial
description of a closure of a generic orbit as a toric variety, since A}, = Ap under the
identification of R and RV. This discretionality appears in the literature, sometimes
by omission, e.g. in [7] the lattice is not explicitly mentioned; however, the reader
should be aware that if the root system is not simply laced, then Ap and AY, are
distinct lattices. The distinction between Ap and AY;, must be taken into account in
order to give a correct combinatorial description of the fan associated to adherence
of a generic orbit, see for example [I7].

3. A CRITERIA FOR Xp 1 TO BE Q-GORENSTEIN FANO

In this section we characterize when the closure of a generic orbit is a Goren-
stein Fano toric variety in terms of the combinatorial properties of the core of the
associated cone og ;. From now on we assume that L C I is such that og 1 is a
strictly convex cone.
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3.1. Various combinatorial properties of op 1.

Definition 6. If A € (Agr)g, the Weyl polytope associated to X\ is defined as
WP(A) = Conv(W - A) C (Ap)g. The set of facets of WP(A) containing A is
denoted by Cx(n — 1).

In [7], Dabrowski showed that X g ;, can be obtained as the fan dual of the Weyl
polytope of a dominant weight with support L€ =TI\ L:

Proposition 4. Let A be a dominant weight with support L¢, and assume that og, 1,
is strictly convex. Then
AR (A=WP)) =5 N (A=WP()).
Moreover, the fan g 1, is dual to the polytope WP(X). O

The cones o, 1, being stable by the action of W, we can use this action in order
to describe their combinatorics and geometry as follows.

Proposition 5. Let L C I and consider F € og (r). Then there exist unique
pairs (v;,w;) € DV(r) x Wi, i=1,...,s, such that F = J;_, w; - v;. Moreover,
(1) foralli,j=1,...,8, 9% j, w; -y Nwj -7, is a common proper face of w; - v;

and wj - v;;
(2) if w; = w; then v; = ;.
In particular, Prim(og,) = Wy, - (Prim(og,.) N {wy,...,wy}).

Proof. By construction, op  is stable under the (linear) action of Wip; hence
or,(r) is stable under the action of Wy. Since DY is a fundamental domain of
the action of W it follows that there exist wy,...ws € Wy, and ~v1,...,vs € DV(r)
such that F = US_,w; - ;. In particular, it follows that DV is also a fundamental
domain for action of Wi, on og, .

Let w € Wy, v € DY be such that w -~ C F. Since the affine dimension of w -y
and w; - 7;, i = 1,...,s, is r, it follows that there exists ¢ € {1,...,s} such that
dim{w; - y; Nw - y)agg = 7. Since DV is a fundamental domain for the action of Wy,
on og,p, it follows that w; - v; = w - v and therefore w; = w and y; = 7.

It is now easy to prove assertion (1). In order to prove (2), observe that if
vi # ¥4, then dim(y; U~;)ag > 7 and it follows that w - (y; U ;) is not included in
or,(r) for any w € Wy.

Finally, recall that Prim(og, 1) consists of the primitive elements of the rays in
or,(1) and that the lattice of co-roots is stable under de action of W. (]

Notation 2. We denote J;, = Prim(og, ) N {wy,...,wy} — by Proposition
above, Jy, is a fundamental domain for the action of Wi, on Prim(og,z). In order

to simplify the notations, we will often also denote the set of indexes {z cwy € J L}
by JL.

Once we have described Prim(og 1) as a set of Wr—orbits, we are in condition
to give a simple description of its affine support space.

Proposition 6. If L C I then
<P1"im(UR,L)>aH = WIZ+<(UJ'EJL WL~(w;/)—wjv) U {w;/—wjv:i,jEJL}>
= w,j+<{aiv:ieL}U{w;/—w,¥:iEJL}>

for any w) € Jyp.
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Proof. By Proposition Prim(og,) = Wi - Jp. f w/,w) € Jp and w,w" € Wi,

then w - (—wy) —w' - (~w)) = w- (~w) —wi + W/ —w +w/ —w' - (~w), and
the first equality follows.

For the second equality, let w = s;---s1 € Wg, with s; € {say : 7 € L}. Then
w- (—w)) —w) € (a) :i€ L)g for all wy € Jy, and the inclusion C follows.

In order to prove the remaining inclusion, let ¢ € L. If Say "V =V for all
v € Prim(og, 1), then Sy acts trivially, since o 1, is of maximal dimension; this is
a contradiction. It follows that there exists v € Prim(og, 1) such that Say "V F U,

and therefore af € (Prim(op,L)), o — w). O

Since by Proposition |§| the set Ji determines X 1, and therefore Xg r, we pro-
ceed to calculate Jp,, by translating results by Khare to our context (see [I8], Defi-
nition 3.1 and Theorem CJ).

Definition 7. Let 2 be the Dynkin diagram associated to the root system R, and
consider a subset L C I of simple roots. We say that a fundamental co-weight
Y is essential relatively to L if each irreducible component of the graph 2\ {w; }

W
contains a root in L.

Theorem 7. If L C I then Jy, is the set of fundamental co-weights that are essential
relatively to L.

Proof. Under the duality between g, and WP(A) (see Definition [6] and Proposi-
tion {4) the elements of Prim(og 1) are the exterior normals of C(n — 1).

On the other hand, by [I8, Theorem C] an exterior normal of a facet in Cx(n—1)
is in D if and only if the corresponding co-weight is essential (see [18, Definition
3.1]). Since Jr, corresponds to the facets in Cy(n — 1) such that their exterior
normal belongs to D, the result follows. (I

We finish this section by presenting the notion of core of the cone o . This
construction, that exhibits a relationship between the faces of DY and the rela-
tive interior of o, 1, will be useful in our characterization of the Gorenstein Fano
closures of generic orbits.

Definition 8. If L C I, we define the core of og 1, denoted by € (or,1), as the
face of DV generated by the set {w) : i € L¢}.

The core of a cone op 1, can easily be characterized by its invariance properties:

Lemma 8. If L C I, then € (og,) = (DV)"* = N,ew, wDY = (or,)"*. O

Proposition 9. If L C I is such that ogj 1is strictly convex, then ‘é(URL) =
(6RrL)"E.
Proof. By Proposition 2} u € 6 1, if and only if (8,u) > 0 for all 8 € (RE)*. If
vE ?(O’R’L) then v = 37, ;. aw;’, with with a; > 0 for all ¢ € L°. Thus, (8,v) >0
for all B € (RY)* and therefore %E(O'Rl,) C 0r,.. We deduce from Lemma [§| that
@ (onrr) C (6r0)"".

Assume now that v € (6g,z)"*. Then v belongs to (D)W= N6k 1 but, by
Proposition [5, v does not belong to any of the facets of the cone (DV)WL. We
apply again Lemma [§] and the result follows. (]
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3.2. A criteria for Xr ; to be Gorenstein Fano.

In this section we characterize when the closure of a generic orbit is a Goren-
stein Fano toric variety in terms of the combinatorial properties of the core of the
associated cone op .

Definition 9. We define Fj, as the convex hull of the set Prim(og,1,) and Pg 1, as
the convex hull of Prim(Xg 1).

Clearly, dimag Pr,r, = n and dimug(Fr) is n or n — 1 — in this last case Fy, is
a facet of Pr . When Fy is a facet, we identify the exterior normal of Fr, (see
Definition [1) with the unique element ny, € (A})q such that —pr(v) = (ng,v). If
F1, is n-dimensional, we set ny, = 0.

Remark 3. (1) Notice that ny, is Wy-invariant, since Prim(og ) = Wy - Jr.
(2) In particular, if L¢ = {w,’}, then n;, = aw,’ — this easy remark will simplify
some calculations.
(3) Using the W-invariance of ny, we can characterize the affine dimension of
Conv (Prim(og,z)) as follows:
(i) If there exists a Wy -invariant element ny, € (A);)g such that (nz,v) =1 for all
v € Jp, then Conv(Prim(og,z)) is (n — 1)-dimensional with exterior normal
ng.
(i) If such an element does not exist, then Conv(Prim(cg,)) is n-dimensional.

Theorem 10. Let Xg 1 be the closure of a generic orbit. Then Xg is Q-
Gorenstein Fano if and only if ny, € f(apb,L). Moreover, if Xg 1 is Q-Gorenstein
Fano then

Jxp, = min{j € N* : Vv € A}, (jnr,v) € Z}.

Proof. Since Xp1 = X 5, , = X5, (see Definition [4] and remark , it suffices
to prove the assertion for Xx, .

Assume that nj, € CJE(O'RyL); then dim,g(Fr) = (n — 1) and, by Proposition @
ng € (6r1)"E. If 0 € X (n) then 0 = w - o for some w € W, Therefore,
Prim(o) = w - Prim(op 1) = wWp, - Jp, and it follows that

’LU'?((TRJ‘) :w,(&RL)WL Cw-&R,L =0.

In particular, Conv(Prim(c)) is (n—1)-dimensional, with exterior normal w-ny, € &.
By Proposition/[l] it remains to prove that (w - ng,v) < 1 for allv € Prim(3g,z)\
Prim(w - o ). By the W-invariance of g 1 (n) and Prim(X) it suffices to prove
that (ng,v) <1 for all v € Prim(w - og, 1) \ Prim(og, 1), where w € W is such that
(w-or,) Nog, is a common (n — 1)-dimensional face.
Moreover, by the Wp-invariance of og,r, we can assume that w = s,v, where
i € L is such that (o)* is the support hyperplane of a (n — 1)-dimensional face of

o,z In this case v = s,v - v for some v € Prim(op 1) \ (aY)* and we have that

(nL,say -v) = (nr,v) — (nL,Q(E:‘VQVY))aZV> =1- <nL,2((aaLv:;) a;/) .
Since v € o 1, \ (o))t and ny, € og 1, then (o, v) > 0 and (ng, o)) > 0, and
the assertion follows. X
Conversely, assume now ny, ¢ 6 (og,1); since ny, is Wi-invariant, it follows that
np =Y ere aiwy . If ny, =0 then Conv(Prim(c)) is n-dimensional and it follows
from Proposition [I| that X g 1 is not Q-Gorenstein Fano. If ny # 0, there exists
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10 € L¢ such that a;, < 0. Since 79 € L¢, it follows that Say, ¢ Wy, and therefore
Say " ORL € Yrr(n)\orr. Let v e Prim(og,)\ (aivo)l. Then (nr,v) =1 and
(v,ey)) > 0. Tt follows that

aY n aY wY
<nL’SaiVO"’>:<Sal\/0'nL’U>:(nL’")_<2%0‘%’">=1_<2ai0% io )ZL

Since Say "V € Prim(s, oy "OR )\ Prim(og, 1), it follows from Proposmonlthat
Xsp, and hence Xpg, 1, are not Q-Gorenstein Fano.
The last assertion follows straightforward from Proposition [I| — indeed, recall
that W - ny, is set of exterior normals of the facets of Conv(Prim(X)).
O

The following (very) easy remark will be used several times in our classification
of the Gorenstein Fano closures of generic orbits.

Lemma 11. Let b; j; = (w;/,wjv —w)), 4,4,k € I. Assume that L C I is such
that there exist j,k € Jp with b; j, > 0 for alli € L°, and ), ;. biz,jz’,€ # 0. Then

ny, ¢ (é(UR,L)-

Proof. If np € ‘é(oRL), then np, = >, /e a;w;, with a; > 0. Since w}’ —
wy € <Prim(aR7L)>aﬂr (see Proposition @, it follows that 0 < ), ;caib;jr =
(nL,w;-/ —wy) =0, and we obtain a contradiction. O

4. Q-GORENSTEIN FANO GENERIC CLOSURES

Theorem 12. Let G be a simple affine algebraic group of root type R and L C T
a proper subset of the set of simple roots I; let T be a maximal torus and T C P
be the parabolic subgroup associated to L. Table [1| on page|1(] gives a complete list
of all the closures X 1, C G/P of a generic T-orbit that are Q-Gorenstein Fano,
Gorenstein Fano and smooth Fano varieties — e.g. if the table indicates that Xg 1,
is Q-Gorenstein Fano, then Xg 1 is Q-Gorenstein Fano but not Gorenstein Fano.

In the third column, we draw the Dynkin diagram of R ; the subscripts indicate
the number of the corresponding simple roots in I, the elements of L are the roots
drawn in black, the superscript Jp, over a root «; indicates that wy € Jr, the set of
essential co-weights In the fourth column we indicate the corresponding geometry
— the Gorenstein index of the Q-Gorenstein Fano variety Xg 1, is denoted by j.
Finally, in the fifth column we exhibit the exterior normal —py, € (Ar)g — recall
that (—pr,v) = (ng,v) for all v € (A})qg-

Remark 4. (1) The description given in Table [1|is modulo automorphisms of the
root system; for example, the varieties X4, g1} and X4, \ (s} are isomorphic
(and both Fano) and the table only exhibits X4, 13- In the same spirit, the
conditions given on the rank are established in order to avoid repetition.

(2) In the proof of Theorem [12| we exhibit n;, when Xp 1, is Q-Gorenstein Fano; in
order to compute ¢, we use the matrix ((wi,wﬂ)i,jel, which is the inverse of the

Cartan Matrix (see [19] for explicit calculations).
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TABLE 1
type | rank Dynkin(RV), L and Jr, Geometry —¢r € (AR)g
Jr
n>1 o—e— —o Smooth, Fano (n+ 1wt
1 2 n
JoJL a0 )
n>2 o—e—  —8—0 Gorenstein Fano w1 + wn
An 1 2 n—1 n
Jr JL .
n > 3, odd o —e—o—e——8 Gorenstein Fano 2Wn41
1 ) n—1 2
Jr, JL
n > 4, even ~  —e 00 —e——o Smooth, Fano (n+1)(wp +wn )
1 2241 n 2 27
Jr, .
o—e—  —e==9 Gorenstein Fano w1
B 1 2 n—1 n
n
>9 L
nz oo —e=0 Smooth, Fano 2wnp,
1 2 n—1 n
JL .
o—eo——e=e Gorenstein Fano w1
1 2 n—1 n
> I Jr )
Cn nz3 — o0 o —e=—e Gorenstein Fano wo
1 2 n—1 n
Jr
o —e=0 n even: Gor. Fano Wn
1 2 n—1 n
n odd: Q-G.F., j=2
Jr
n—1
o—e— Gorenstein Fano 2w1
12 J
Dy, n >4 e
JL
n—1
Jr .
—o— Gorenstein Fano w2
12 J
n
2
Jr, Jr .
FEg 6 Gorenstein Fano wo
1 3 4 5 6
Jr ) w
o—e=<——o Q-Gor. Fano, j =2 =L
£y 4 1 2 3 4 2
Ji .
<20 Gorenstein Fano wa
1 2 3 4
J
[ == Smooth, Fano w2
G | 2 12
J ) w
== Q-Gor. Fano, j =3 71
12
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5. PROOF OF THEOREM

5.1. Explicit calculations for ranks 1 and 2.
The classification for ranks 1 and 2 is done by direct examination.

Explicit calculations for G of type A;.
Clearly 04, {13 = QT and therefore X, g = SLy(k)/B = P! is a smooth Fano
variety.

Explicit calculations for G of type As.

(a) L ={2} (b)L=10
FIGURE 1. G is of type Aj; the cone op 1, is drawn in gray.

As follows from figures and Y A,,1 is a smooth Fano complete fan for
all L € I = {1,2} — recall that R = RY. The varieties X4, (1} and Xy, (2}
are isomorphic to P? with the canonical action of 7' = (k*)? C P?, and X4, ¢ is
isomorphic to the blowing up of three generic points in P2.

Explicit calculations for G of type B, and Cs.
Since Cy = (Bs)VY, it suffices to describe the case R = B, which has Dynkin

diagram e—=—s.
1 2

If L = 0, then ny = wy and therefore Xp, ¢ is not Q-Gorenstein Fano (see Figure
. If follows that X¢, ¢ is not Q-Gorenstein Fano — in this case ng = wy .

If L = {1} then ng;y = wy and Xp, (1) is a smooth Fano variety — Xp, (13 is
isomorphic to P! x P!, see figure It follows that Xc, o) = P x PL.

If L = {2}, then np, 15y = wy’ and Xp, (2} and X¢, (1} are Gorenstein Fano
varieties (see figure — notice that these varieties are not smooth.

Explicit calculations for G of type Gs.
Recall that G5 has Dynkin diagram E)E; , with Go = GY.
1

Since Conv (Prim(cg, ¢)) is not a proper face of Conv(Prim(2¢, 9)) (see figure
, it follows that X, ¢ is not Q-Gorenstein Fano.

An inspection of figure @ shows that Xg, (1} is a smooth Fano variety — in
fact, Xq, {1y = Xa,,9, the blowing up of three points in P2. Also by inspection of
figure we have that X¢, 2} is Q-Gorenstein Fano of index 3.
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vV Y% v v
Qg Wy Qg Wy

(a) L ={1} (b) L = {2}

FIGURE 2. G is of type By. The cone op 1, is drawn in gray.

(a) L ={1} (b) L ={2}

FIGURE 3. G is of type G2

5.2. Proof of theorem [12] for rank n > 3.

We follow a similar strategy for all cases: given R, (a multiple of) the transposed
inverse of symmetrized Cartan Matrix associated to RV determines a W-invariant
scalar product on RY (see for example [19, p. 295]). By Theorem we need to
determine when nj, belongs to (é(aR’ 1) (see Definition [9). Hence, for each L, we

use Proposition |5 in order to compute Jy, and then we deduce ny,.

Notation 3. Notice that we reason on L¢ rather thanon L. If L C T = {1,2,...
we denote by m (resp. M) the minimum (resp. the maximum) of the set L°.

5.3. Explicit calculations for G of type A,, n > 3.
We choose the W-invariant scalar product given by the matrix:

n n—1 n—2 2 1

n—1 2(n—1) 2(n—2) 22 2

(1) n—i+1l 2(n—i+1) i(n—i+1) i(n—i) -2 i
2 22 (n—1)2 n—1

1 2 (n—1) n

5.3.1. Cases L¢ = {1} and L® = {n}.

If L¢ = {1} then J;, = {w,/}, and it follows from Remark [3|that n;, = wy'. Hence,
Xa, 1 is Gorenstein Fano (see Theorem . Moreover, a direct computation (see
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also [6, Remark 4]) shows that

\Y%

Prim(URJz) =W - (w;{) = {w;{,wn,1 - UJ,\Z/,OJ;{72 - Wr\;fla s vwi/ - w%/}v

and therefore X4, 1 is a smooth Fano variety.

By symmetry of the Dynkin diagram, we deduce that X 4, 1\ {n} is also a smooth
Fano variety.

5.3.2. Case L® = {i}, i # 1,n.

In this case J; = {wy,wy}, and n;, = aw, (see Remark [3). If n # 2i — 1
then (wy,w;) = (w,y,w,), and therefore ny, = 0. It follows that the polytope F,
(see Definition E[) is n-dimensional and hence X4, 1, is not Q-Gorenstein Fano (see
Proposition .

If n = 2i — 1, then n, = = and (ng,w)) € Z for all j € I (see Matrix (T)). It
follows that X 4, 1\ s} is Gorenstein Fano. Finally, since

Prim(aRyL) =Wr - wY UWwy - wx =
Vv Vv v Vv Vv \4 \% \% Vv 4
{wiwg —wi,w —wi P U{wn, W1 —why Wi — Wit}
is not a simplicial set, it follows that X4, r is not smooth.

5.3.3. Case M =m + 1.
In this case J, = {1,n}. If X4, ; is Q-Gorenstein Fano, it follows from Theorem
[10] that ny = awy), + bwy, 1, with a,b € Qsg. Hence,

0= (np,wy —w)) = (a+0b)(n—2m)+ (a—0>).
We deduce that n = 2m and ng, = (w,}, +w,,, ). Moreover,
Prim(or,r) = WL cwy UWL - w, =
{w) w3 —wy e Wi — W YUy w1 — Wy e W1 — Wenga )y

and therefore Prim(og ;) is a basis of the co-weight lattice. It follows that the
variety X4, (m,m+1}e 18 smooth Fano.

5.34. Casem =1 and M =n.
In this case, J;, = I. If X, 1 is Q-Gorenstein Fano, then np = >, .. a;wy,

a; > 0, is defined up to a scalar by the equations (nL,w}/ —wj\-/,) = 0. Since
(W) 4+ wy,w) —w}) =0 we deduce that nz, is proportional to wy +w,/, and there-
fore:

(i) If L # {1,n}, then X4, 1 is not Q-Gorenstein Fano.

\%

(i) If L¢ = {1,n}, then ny = w{:_‘f" and therefore X4, r2,.. n—1} is Gorenstein

Fano. Since Prim(c, (2,...n-1}) = Wi - {w} | j € I} is clearly not simplicial, we
deduce that X4, (1,n}c is not smooth Fano.

5.3.5. Remaining cases.

It remains to study the cases (i) #L° > 2, with m # M — 1 and M < n, and (ii)
#L¢>2 withm# M —1and 1 <m.

By symmetry, it suffices to study the case (i); in this case Jp, = {1,m+1,..., M —
1,n}. Assume that np =, ;. a;wy, a; > 0; since n and M — 1 belong to Jr, we

deduce that
Z a; (wiv,w}Qfl —w,{) =0.
ieLe
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The coefficients of the i-th row of Matrix being a strict unimodal sequence
with peak at the i-place, we deduce that (w),wy;_; —w, ) > 0 for all i such that
i < M —1. Since M < n, we have that (wy,,wy,_; —wy) > 0. Hence, since
L c {m,...,M}, we obtain a contradiction (using Lemma ; it follows that

X 4,1 is not Q-Gorenstein Fano.

5.4. Explicit calculations for G of type B,,, n > 3.
Recall that B,, has Dynkin diagram oo e and (B,)Y = C,,. We choose

2 n—1n

the W-invariant scalar product on (A} ), = (A¢, ), given by the matrix

111 1 1 1
1 2 2 2 2 2
(2) 1 2 3 ) i %
1 2 3 [ n—1 n

5.4.1. Case #L° = 1.
(i) If L¢ = {i} with i # 1,n, then Jp = {1,n} and ny = aw)’. Since (w),wy —w)) =
1 —, it follows that ny = 0 and Xp ;e is not Q-Gorenstein Fano.

(i) If L¢ = {1}, then J. = {n}. Since (wy,w,’) = 1, it follows that n;, = w) and
therefore Xp_ (o2 .. ) is Gorenstein Fano. Since #Wp, -w,l > n, then OB, {2,...,n} 1S
not simplicial and we deduce that Xp_ (2 . ) is not smooth.

(iii) If L¢ = {n}, then Jp = {1} and it follows that n; = w,. Hence, Xp_ (1. n-1}
is Gorenstein Fano. Moreover, it is easy to see that Wp, - Jp, = W -w) = {w},wy —
WY, ,wy —wy_ 1} (see for example [6, Remark (4)]) and therefore the variety
XB, {1,....n—1} is smooth Fano.

5.4.2. Case #L° > 1.
It is clear that {1,n} C Jr. Since (w),w, —wy)=1i—1 for all i € I, we deduce
from Lemma [11|that Xp, r is not Q-Gorenstein Fano.

5.5. Explicit calculations for G of type C,.

Recall that C),, has Dynkin diagram e—e— —e==s. We choose the W-invariant
1 2 n—1n

scalar product in (A, ), = (Ap, ), given by the matrix

2 2 2 2 2 1
244 4 4 2
(3) 246 2 2 g
123 ivn—1 nj/2

5.5.1. Case #L° = 1.

i) If L¢ = {1} then J;, = {n}, and we deduce from Matrix (3)) that n;, = w). Hence
( ) 9 1 )
Xec, .{2,...n}y 18 Gorenstein Fano. Since # W, ~wy > n, it follows that Xe, (2,...n}
is not smooth.

(ii) If L¢ = {n}, then J, = {1} and n;, = w,/. Since (w,/,w;) =i if i # n and

wY, wY) =mn/2, we deduce that X 1. ,_11 is Gorenstein Fano if n is even, and

n n TM{ ’ il }
Q-Gorenstein Fano of index 2 if n is odd.
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It is easy to see that W - Jp = W - wy = {w),wi —wy,..., 2w, —w,_;} (see
[6, Remark 5]); it follows that the fan ¥¢, (1, ,—1y is simplicial but X¢, 1 n-13
is not smooth.

(iii) If L = {2} then J, = {1,n}. Since (wy,wy) = (w,/,wy) = 2, it follows that
ny = %wg By inspection on Matrix (3) we deduce that X¢, r23c is Gorenstein
Fano. Since W, - Jr, > n, it follows that X¢ (2}c is not smooth.

(iv) If L¢ = {i} with ¢ # 1,2, n, then J, = {1,n}. Since (w/,wy —w)) =2 —14, it
follows that ny, = 0 and the variety X¢, (- is not Q-Gorenstein Fano.

5.5.2. Case M =m + 1.

In this case Jp = {1,n}. Assume that X¢ (1}, 2 < i < n is Q-Gorenstein
Fano.
(i) If L¢ = {n—1,n}, then n, = aw,/_; +bw,,, with a,b > 0. Since n > 3, it follows
that (np,wy —wy) =2a—a(n—1)+b— 2b=a(—n+3)— %52b < 0 and we obtain
a contradiction.

(ii) If L¢ = {i — 1,i}, @ # n, then ny = aw, | + bw), with a,b > 0. Since
(np,w)y —wY)=2a—a(i —1)+2b—bi=a(3 —14) +b(2—14) #0 for all 2 < i < n,
we obtain a contradiction.

5.5.3. Case m < M — 1.

In this case J, = {1,m+1,..., M — 1,n} and, since m + 1 < n, it follows that
(wY,wyyy —wy) >0 for all i € I. We deduce from Lemma that X¢, 1 is not
Q-Gorenstein Fano.

5.6. Explicit calculations for G of type D,, n > 4.
n—1
Recall that D,, = (D,,), with Dynkin diagram —s n-2 . We choose
n
the W-invariant scalar product given by the matrix

4 4 4 4 2 2

4 8 8 8 4 4
(4) 4 8 12 41 21 21

2 4 6 2(n—2) n n-2

N}
~
o

2(n—2) n—2 n

5.6.1. Case #L° = 1.

(i) If L¢ = {i}, with ¢ #£ 1,2,n — 1, n, then J, = {1,n—1,n} and n; = aw,’. Since
(w,w —w,)) # 0, we deduce that n;, = 0 and therefore the variety Xp  giye is
not Q-Gorenstein Fano.

(ii) If L¢ = {1}, then J, = {n—1,n}. Clearly np = wy’/2, and (np,w,’) € Z for all
i € I; therefore, Xp, (1y- is Gorenstein Fano. Since #Wp, - J > n, it follows that
XDp, {1}c 18 not smooth Fano.

(iii) If L® = {n}, then J;, = {1,n — 1}. If n = 4, we deduce by symmetry that
Xp, {13c = Xp, {4)c and therefore Xp, 14y is Gorenstein Fano.
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If n > 4, then (w),wy —w)_;) =4—n > 0. It follows that n;, = 0 and therefore
XDp, {n}e 1s not Q-Gorenstein Fano.

(iv) If L¢ = {n—1} we deduce by symmetry that the variety Xp, (3} is Gorenstein
Fano, and that Xp _ (,_1}c is not Q-Gorenstein Fano if n > 4.

(v) If L¢ = {2}, then Jp = {1,n — 1,n}. By inspection of Matrix (4], we deduce
that ny = (wy')/4 and it follows that Xp, (o1 is Gorenstein Fano. Again, since
#Wp - Jp > n, if follows that Xp (1} is not smooth.

5.6.2. Case L¢ = {1,2}.

Assume that Xp rq10yc is Q-Gorenstein Fano. Then, ny = awy + bwy, with
a,b > 0. Since J, = {1,n — 1,n} and that (np,w, —wy) = —2a < 0, we obtain a
contradiction.

5.6.3. Case #L¢>1, m > 1.
It is easy to see that in this case {1,n — 1,n} C Jr. Since (w),wy_; —wy) >0

for i > 2, it follows from Lemma [L1] that Xp_(ryc is not Q-Gorenstein Fano.

5.6.4. Remaining cases.

Since #L¢ > 1, m = 1 and L¢ # {1,2}, it follows that 2 < M; hence, {1,2} C
Jp=A{1,...,M—1,n—1,n}. Since (w;,wy —wy) >0, for all i € I, it follows from
Lemma that Xp  rrye is not Q-Gorenstein Fano.

5.7. Explicit calculations for G of types FEg, F7, Es and Fj.

These cases can be calculated using Lemma [T1] and Theorem [I0] by direct in-
spection of the matrices associated to the W-invariant scalar product. We will treat
in detail only the cases Fg and Fj.

5.7.1. G is of type Eg.

2
The associated Dynkin diagram of Ejg is ;—g—g—g—g. We choose the W-

invariant scalar product given by the matrix

4 3 5 6 4 2
3 6 6 9 6 3
5 6 10 12 8 4
6 9 12 18 12 6
4 6 8 12 10 5
2 3 4 6 5 4

(i) If L = {2}, then J;, = {1,6}, np, = %wg/, and the variety X g, (21 is Gorenstein

Fano and not smooth — because X g (2} is not simplicial.
(ii) If L¢ = {i}, i # 2, then #Jr > 2, with 2 € J, and np, = aw’. If j € Jp \ {2},

then (w,w)) # (wy,wy); therefore ny, = 0 and X g, 1, is not Q-Gorenstein Fano.

(iii) If L¢ > 1, then {1,2,6} C J;.

(iii-a) 1 ¢ L°: since (w),wy —wy) > 0 for all ¢ € L€, it follows from Lemma
that X g, 1 is not Q-Gorenstein Fano.

(iti-b) {1,6} C L°: since {1,2,3,5,6} C Jp, it follows from Lemma [T1] (applied to
j =2 and k = 3) that Xg, 1, is not Q-Gorenstein Fano.

(iti-c) 1 € L® and 6 ¢ L¢: it follows from Lemma [11] (applied to j = 2 and k = 6)
that X g, 1 is not Q-Gorenstein Fano.
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5.7.2. G is of type E7, Es.
The root systems E7 and Fg have associated associated Dynkin diagrams

2 2
-—o—I—o—o—c and o—o—I—o—o—;—c respectively. Notice that in these
8

1 3 4 5 6 17 1 3 4 5 6
cases (contrary to the case Eg) we have that (wa,w1) # (w2,wy), where n = 7
or 8.

We first deal with the case E7; we set n = 7.
(i) If L = {2}, then {1,n} = Jr and ny = 0; therefore E,, (21 is not Q-Gorenstein
Fano.
(ii) If L¢ = {i}, with i # 2 then #J;, > 1 and 2 € Jy, and it follows as in the case
of type E¢ (iii-a) that Xp, (i1 is not Q-Gorenstein Fano.
(iii) If #L¢ > 1, then either {1,2} C Jp or {2,n} C Jr. In both cases we deduce
from Lemma |I1]| that that £, ; is not Q-Gorenstein Fano.

In order to deal with the case Ej, just substitute n = 8 in the previous discussion.

5.7.3. G is of type Fy.
The Dynkin diagram of Fy = (Fy)Y is e—es—=e—s . We choose the W-invariant
1 2 3 4

2 3 4 2

Y . |3 6 8 4

scalar product in (Ay, )q given by the matrix | | s 12 6
2 4 6 4

(i) If L = {i}, with ¢ #£ 1,4, then Jp = {1,4} and it follows that ny = 0.
(ii) If L¢ = {1}, then Jp = {4}, so np = (wy)/2. If follows that Xp, 234} is
Q-Gorenstein Fano of Gorenstein index 2.

(iii) If L = {4}, then Jp = {1}, and ny = iwy. If follows that Xp, (1,23} is

Gorenstein Fano but not smooth, since #W7, - wy > 4.

(iv) If #L° > 1, then {1,4} C J;, and we deduce from Lemma [T that X, 1, is not
Q-Gorenstein Fano.

6. SOME COUPLE OF DUAL REFLEXIVE POLYTOPES

Once we have classified all Gorenstein Fano toric varieties Xg r, we can apply
[14, Theorem 8.3.4] (see Proposition [If) in order to produce a list of couples of
reflexive polytopes (P, ,, Py, ). Moreover, the W-invariance of P, allows us to
describe these polytopes as Weyl polytopes (see Definition @

Proposition 13. Let R be a root system and Xg 1 a Gorenstein Fano generic
closure. Then Pr 1 C (A})q is a dual reflexive polytope, with Py ; = WP(—pr) C
(AR)q, where @1, € A is indicated in the last column of the corresponding row of
Table [

Proof. It remains to prove the last assertion. Since X ;, is stable by the W-action,
it follows that Pg, and therefore P} ; are W-stable. Moreover, since W acts
transitively on g 1(n), W acts transitively on the maximal proper faces of Pg 1.
In particular, the set of proper faces of Pg,y, is {w - Conv(Prim(cg,.)) : w € W}
Recall that (¢r,u) = (ng,u) for all u € AY,; since Conv(Prim(cg 1)) has np as
exterior normal, it follows that

Prr = Conv(W . (fch)) =WP(—pr) C (Ap)g.
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d

Remark 5. The couple (L, Jr.) determines completely the polytope Pg 1. Indeed,
Prir = Conv(W Aw) 11 € JL}>. Notice that if J; contains a single fundamental
co-weight w", then Pg r, is simply the Weyl polytope WP (w").

We finish this section with an application to the study of root polytopes —
recall that if R is an (irreducible) root system, then the root polytope associated to
R is the convex hull Conv(R) C (Agr)g, see for example [20, 2I] 22], where these
polytopes are intensively studied.

Proposition 14. Let R be an irreducible root system. Then the associated root
polytope Conv(R) (considered in the root lattice) is reflexive if and only if R is of
type A’ﬂ7 C’I’L7 D’I’L; EG or G2'

Proof. Let ~y be the longest root of R; then since v is a dominant weight and —~ is
also a root, if follows that Conv(R) = WP(y) = WP(—v).

Taking into account the description of v as a dominant weight (see for example
[15]), we deduce by inspection of Table [I| that there exists L such that Xg j is
Gorenstein Fano, with ¢ = ~, if and only if R is of type A,, Cy, D, Eg or G5. If
this is the case, then Conv(R) = WP(—7) is a reflexive polytope.

Reciprocally, if Conv(R) is a reflexive polytope, then the toric variety X associ-
ated to the normal fan of Conv(R) is a Gorenstein Fano variety. Since ¥x = ¥p 1,
where v = ZieL a;w;, a; > 0, the result follows. O

Example 1. We conclude with three explicit examples of reflexive polytopes (as-
sociated to generic closures) and their duals.

Type Az. The polytopes Pa, (1} = Pa, (23 and Py, g are reflexive. In the ﬁgure@,
the polytopes Pa, 1, with vertices in the weight lattice, are the interior polytopes
whereas their duals are the exterior ones (with vertex in the root lattice).

wi

(a) Ag, L = {1} (b) Ag, L =0 (¢) By, L = {2}

FIGURE 4. Three dual reflexive polygons associated to root sys-
tems of rank 2.

Type Ba. The polytopes Pp, (2) and Pp, (1} are reflexive. In the ﬁgure PB,, (2} is
the exterior polytope, with vertex in the weight lattice of Cy — it contains 9 lattice
points; Pég,{z} is the same polytope but in the root lattice of B, so it contains 5
lattice points.
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