On change-point estimation under Sobolev sparsity - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2020

On change-point estimation under Sobolev sparsity

Résumé

In this paper, we consider the estimation of a change-point for possibly high-dimensional data in a Gaussian model, using a k-means method. We prove that, up to a logarithmic term, this change-point estimator has a minimax rate of convergence. Then, considering the case of sparse data, with a Sobolev regularity, we propose a smoothing procedure based on Lepski's method and show that the resulting estimator attains the optimal rate of convergence. Our results are illustrated by some simulations. As the theoretical statement relying on Lepski's method depends on some unknown constant, practical strategies are suggested to perform an optimal smoothing.
Fichier principal
Vignette du fichier
Smooth-clustering.pdf (541.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01712690 , version 1 (20-02-2018)

Identifiants

Citer

Aurélie Fischer, Dominique Picard. On change-point estimation under Sobolev sparsity. Electronic Journal of Statistics , 2020, 14 (1), ⟨10.1214/20-EJS1692⟩. ⟨hal-01712690⟩
91 Consultations
68 Téléchargements

Altmetric

Partager

More