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Abstract

In this paper, we consider the estimation of a change-point for possibly
high-dimensional data in a Gaussian model, using a k-means method. We
prove that, up to a logarithmic term, this change-point estimator has a
minimax rate of convergence.

Then, considering the case of sparse data, with a Sobolev regularity,
we propose a smoothing procedure based on Lepski’s method and show
that the resulting estimator attains the optimal rate of convergence.

Our results are illustrated by some simulations. As the theoretical
statement relying on Lepski’s method depends on some unknown constant,
practical strategies are suggested to perform an optimal smoothing.

Keywords: Clustering, k-means, change-point detection, minimax rates, high
dimension, smoothing, Lepski’s method.

AMS 2000 Mathematics Subject Classification: 62H30; 62G05.

1 Introduction

1.1 Clustering and change-point detection
An important problem in the vast domain of statistical learning is the question
of unsupervised classification of high dimensional data. Many examples fall into
this category such as the classification of curves, of images, the segmentation of
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domains (geographical, economical, medical, astrophysical...) into homogeneous
regions given observed quantities.

The problem can be summarized into finding r clusters (“coherent ensem-
bles”) for n individuals, given that each one is observed through a d-dimensional
vector. We will be mostly interested here (although it is not a necessary condi-
tion) in the case where d is large, possibly very large compared to n. A lot of
examples fall into this setting, for instance the case where you need to partition
a geographic zone into smaller areas which are highly homogeneous with respect
to climatic quantities such as temperature, wind measures. In such a case the
data generally consists, for n meteorological stations —regularly spaced on the
zone— of years of hourly measures, leading to a huge vector of dimension d for
each station.

In such a case, the clustering problem can generally be summarized in two
steps: in a first step, a preprocessing finds a representation of the data, which
can be the raw data or a more subtle transformation. Then, a segmentation
algorithm is performed on the transformed data. We will focus here on the
case where this algorithm is the famous k-means algorithm, corresponding to
estimation via the empirical risk minimizer.

Between or around these two steps and especially when d is very large, there
is a need for “smoothing”, or in other terms, to reduce the dimension d. This
is especially important from a computational point of view. Without this step,
the k-means algorithm might be unstable or even not work at all.

In this paper, we will consider the problem from a theoretical point of view
(as opposed to algorithmic point of view).

More precisely, we will concentrate on the following questions:

(1) Without referring to the feasibility, what is more efficient to obtain a
clustering result: keeping the raw data or smoothing the data?

(2) If the data are high-dimensional but “sparse”, is there a way to use this
sparsity to get better clustering results?

(3) If smoothing proves to be efficient, how could it be performed? Do usual
nonparametric smoothing methods work as well in a clustering problem?

(4) Does on-line (signal by signal smoothing —station by station in the me-
teorological example) performs as well as off-line smoothing (using a pre-
processing involving all the signals)?

We will attack this problem in a much simpler setting, and see that even in
this simplified framework, there are still open questions. The first simplification
will be that the number of classes will be fixed: we will assume that there are
exactly two classes. Moreover, we make the more restrictive assumption that
the change between one class and the other occurs on a time scale. In other
words, there exists a change-point τ : before nτ , the observations have a certain
regime, after nτ , they have another regime.
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In a wide range of areas, change-point problems may occur in a high-dimensional
context. This is the case for instance in the analysis of network traffic data Levy-
Leduc and Roueff [2009], Lung-Yut-Fong et al. [2012], in bioinformatics, when
studying copy-number variation Bleakley and Vert [2011], Zhang et al. [2010],
in astrostatistics Bourguignon et al. [2011], Suleiman et al. [2014], Meillier et al.
[2016] or in multimedia indexation Harchaoui et al. [2009]. In these practical
applications, the number of observations is relatively small compared with their
dimension, with the change-point possibly occurring only for a few components.

The change-point problem has its own interest and has also a long history.
For an introduction to the domain, the reader may refer for instance to the
monographs and articles by Shiryaev [1978], Ritov [1990], Müller [1992], Bas-
seville and Nikiforov [1993], Brodsky and Darkhovsky [1993], Carlstein et al.
[1994], Csörgő and Horváth [1997]. Change-point detection based on resam-
pling has been investigated in Fiosina and Fiosins [2011] and Arlot and Celisse
[2011].

Minimax estimation is considered for example in Korostelev [1987], in the
Gaussian white noise model. In this framework, high-dimensional change-point
problems are studied by Korostelev and Lepski [2008], who propose an asymp-
totically minimax estimator of the change-point location, when the Euclidean
norm of the gap tends to ∞ as d→∞.

1.2 Main results and organization of the paper
We begin Section 2 by introducing the two class model, and the change-point
model. As well, we present the empirical minimizer estimator of the change-
point, depending on the smoothing.

We prove that up to a logarithmic term the empirical minimizer (k-means)
has a minimax rate of convergence. It is important to notice that we do not
know whether this logarithmic term is necessary or not. Indeed, in Korostelev
and Lepski [2008], “the edges are known”, meaning that the minimax rate is
established in the case where the change-point cannot occur before a known
proportion of the observation and as well after a known proportion of observa-
tion. Our method of estimation is agnostic to this knowledge, creating obvious
additional difficulties.

Secondly, in Section 3, we show that if the data is sparse —here, in a
“Sobolev” sense, there exists an optimal smoothing. To attain this optimal
smoothing, we provide a method relying on the Lepski smoother. This method,
which basically consists in performing a Lepski smoothing on a surrogate data
vector built on the whole observation, has the advantage on being performed
beforehand and will not create additional computational difficulties in the k-
means algorithm. It could be interestingly compared with the lasso-k-means
(see Levrard [2013, 2015]), which is known to be difficult to implement in large
data sets.

We provide in Section 4 a numerical experimentation of our methods, which
shows promising results.

Section 5 is devoted to the proofs.
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2 Two class model – Change-point model
Let n ≥ 3. For a set A, we will denote its cardinal by #A. We observe n
independent signals Y1, . . . , Yn. We assume that each signal Yi, i = 1, . . . , n, is
observed discretely, through d components: for every i, Yi = (Yi,1, . . . , Yi,d) is a
random vector with values in Rd.

We consider the following Gaussian clustering framework. We suppose that
there exist a set A ⊂ {1, . . . , n} (unknown) and two vectors θ− and θ+ of Rd
such that

Yi = θi + ηi, 1 ≤ i ≤ n, ηi i.i.d. N (0, σ2Id),

θi = θ−, ∀i ∈ A,
θi = θ+, ∀i ∈ Ac.

Recently, Enikeeva and Harchaoui [2017] have considered a similar Gaussian
model from the point of view of testing. The aim is to test whether there is a
change-point or not. The Gaussian vectors may be high-dimensional, with the
change possibly occurring in an unknown subset of the components. In a double
asymptotic setting, where the number of observations and the dimension grow
to infinity, the authors build an optimal test.

Remark 1. 1. The covariance matrix of the noise ηi is chosen to be propor-
tional to identity. Choosing instead a covariance of the form σ2J , where
J is a known matrix, would lead to a somewhat identical discussion by
a simple change of variable, provided that we make also the appropriate
regularity assumptions on the parameters θ+ and θ−.

2. For a first step, we suppose here σ2 to be known. Note that σ2 may
depend on d. For instance, if we think of a Gaussian white noise, then
σ2 would frequently be of the form σ2

0/d, where σ2
0 is an absolute known

constant. We will not investigate the case where σ2 is unknown.

3. The fact that the noise is Gaussian is a simplification which is useful but
not essential: basically, concentration inequalities are needed and similar
results are likely under sub-Gaussian hypotheses on the errors.

We will mainly be interested in the behavior of the maximum likelihood
(MLE) estimators (also known as two-class k-means estimators in this context):

B̂ = arg min
B⊂{1,...,n}

{∑
i∈B

d∑
`=1

(
Yi,` −

1

#B

∑
i∈B

Yi,`

)2

+
∑
i∈Bc

d∑
`=1

(
Yi,` −

1

#Bc

∑
i∈Bc

Yi,`

)2
}
.
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2.1 Simplified two-class model: change-point clustering
Change-point clustering essentially means that the set A has the following form:

A = {1, . . . , [nτ ]}.

In other terms, there exist a change-point 0 < τ < 1 and two vectors θ− and
θ+ of Rd, such that the model is given by

Yi = θi + ηi, 1 ≤ i ≤ n, ηi i.i.d. N (0, σ2Id), (1)

∀i ≤ nτ, θi = θ−,

∀i > nτ, θi = θ+.

To prove our results, we will additionally assume the following conditions in
different places.

2.1.1 Condition [Edge-out]

We assume that there exists 0 < ε < 1/2, such that ε < τ < 1 − ε. This
condition is introduced basically to avoid problems at the border of the interval
[0, 1]. It is important to notice that our results will depend on ε. However, the
procedure is agnostic to ε, which is not supposed to be known.

2.1.2 Condition on the means [Θ(s, L)]

For s > 0, we define

Θ(s, L) :=

θ ∈ Rd, sup
K∈N∗

K2s
∑
k≥K

(θk)2 ≤ L2

 .

We will suppose that θ− and θ+ are in Θ(s, L).

Remark 2. This assumption expresses a form of sparsity of the coefficients,
which reflects an ordering in their importance: the first ones are supposedly
more important than the last ones. This is quite a reasonable assumption when,
as it is generally the case, the clustering is operated in two steps: during the
first one, the data is projected to a feature space (in a linear or nonlinear way)
supposedly reflecting the salient parts of the data.

Note that there are possible extensions to other kinds of sparsity, considering
for instance coefficients belonging to the set

Θq(L) :=

{
θ ∈ Rd,

∑
k

|θk|q ≤ L

}
,

where q < 1, but this choice requires more sophisticated smoothing algorithms.
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2.2 Smooth estimation of τ
Our problem is, considering the regularity assumptions, to determine, for the
problem of estimating the change-point τ , whether or not it is efficient to smooth
the data. More specifically, we will investigate the effect of replacing the vectors
Yi = (Yi,1, . . . , Yi,d), i ≤ n (called in the sequel “raw data”), by, for T < d,
Yi(T ) := (Yi,1, . . . , Yi,T ), i ≤ n, the vectors of RT of the T first coordinates of
Yi.

We consider the associated empirical minimizer:

k̂(T ) = arg min
k∈{2,...,n−2}


k∑
i=1

T∑
j=1

(
Yi,j −

1

k

k∑
i=1

Yi,j

)2

+

n∑
i=k+1

T∑
j=1

(
Yi,j −

1

n− k

n∑
i=k+1

Yi,j

)2

 ,

and we set

τ̂(T ) =
k̂(T )

n
.

To investigate the behavior of the procedure, we begin by proving a result
describing the behavior of this estimated change-point τ̂(T ).

In the sequel, we will use the notation

∆2 :=

d∑
j=1

(θ−j − θ
+
j )2 = ‖θ+ − θ−‖2.

We also define, for T ≤ d,

∆2
T :=

T∑
j=1

(θ−j − θ
+
j )2, Ψn(T,∆T ) =

σ2

n∆2
T

(
1 ∨ σ2T

n∆2
T

)
.

Proposition 1. Let us assume condition [edge-out].
For any γ > 0, there exist constants κ(γ, ε) and c(γ, ε) such that, if

∆2
T ≥ c(γ, ε)

σ2 ln(n)

n
,

then
P
(
|τ̂(T )− τ | ≥ κ(γ, ε) ln(n)Ψn(T,∆T )

)
≤ n−γ .

Remark 3. 1. Note that no condition on the sparsity of θ+ and θ− is needed
for this result.

2. Thanks to Korostelev and Lepski [2008], one can observe that Ψn(T,∆T )
is the minimax rate in this framework. Compared to their result, we
are apparently loosing a logarithmic factor. But it is important to stress
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that in their paper, the bound ε was supposed to be known, whereas our
estimator τ̂(T ) is adaptive in ε. So it is not absurd to suggest that the
logarithmic term might be necessary.

3. For T = d, Ψn(d,∆d) = Ψn(d,∆). The rate is composed of two different
regimes: a “good one” σ2 ln(n)

n∆2 , not depending on the dimension d and a
“slow one” σ4 ln(n)d

(n∆2)2 which is rapidly deteriorating with the dimension.

From the results above, we deduce that if c(γ, ε)σ
2 ln(n)
n ≤ ∆2 < σ2d

n , the
rate of convergence is σ4 ln(n)d

(n∆2)2 , whereas if ∆2 ≥ σ2d
n ∨ c(γ, ε)

σ2 ln(n)
n , it

is σ2 ln(n)
n∆2 . This last rate is obviously much better, and with this latter

condition on ∆, taking T = d (so raw data) allows to obtain the best rate
σ2 ln(n)
n∆2 . Taking a smaller T could lead to a reduction of ∆T damaging the

rate.
However this latter condition is quite restrictive on ∆ when d is large. In
the next paragraph, we will try to refine this condition, gaining on the size
T of the smoothed vector.

4. Without assumptions on the behavior of the parameters θ+ and θ−, there
is nothing much to hope about the way ∆T is increasing in T . However,
the regularity assumption [Θ(s, L)] allows us to assume that for T such
that ∆2 ≥ 8L2T−2s, then ∆T and ∆ are comparable, in the sense that
∆2
T ≥ ∆2/2. Indeed, ∆2 −∆2

T =
∑d
j=T+1(θ−j − θ

+
j )2 ≤ 4T−2sL2, so that

∆2
T

∆2
≥ 1− 4T−2sL2

∆2
≥ 1/2.

This is precisely what is exploited in the first part of Theorem 1 below.

5. Let us observe that if ∆T and ∆ are comparable, then Ψn(T,∆T ) ∼
Ψn(T,∆) is much easier to analyse. In particular we see that again it is
composed of two regimes —a slow one and a good one— and the depen-
dence in T is more clear: σ2 ln(n)

n∆2 for T ≤ n∆2

σ2 , and σ4 ln(n)T
(n∆2)2 for larger T ’s.

This is also corresponding to what is frequently observed in practical appli-
cations: when the dimension is increasing, one first observes indications of
convergence being decreasing, then stable for a while and then increasing
substantially.

2.3 Consequences of Proposition 1
An immediate consequence of Proposition 1 is the following theorem.

Theorem 1. We consider the model (1), and we assume conditions [edge-out],
and [Θ(s, L)].

For any γ > 0, there exist constants κ(γ, ε) and c(γ, ε) such that, if

∆2 ≥
[
2c(γ, ε)

σ2 ln(n)

n
∨ 8L2T−2s

]
,
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then
P
(
|τ̂(T )− τ | ≥ κ(γ, ε) ln(n)Ψn(T,∆)

)
≤ n−γ .

If, now,

∆2 ≥
[
2c(γ, ε)

σ2 ln(n)

n
∨ 8L2T−2s ∨ σ

2T

n

]
, λ ≥ κ(γ, ε) ln(n), (2)

P
(
|τ̂(T )− τ | ≥ κ(γ, ε)

σ2 ln(n)

n∆2

)
≤ n−γ .

Optimizing Condition (2) in T leads to Topt ∼ Ts :=

(
8L2n

σ2

) 1
1+2s

.

Corollary 1. Under the conditions above, for any γ > 0, there exist constants
κ(γ, ε) and c(γ, ε) such that, if

∆2 ≥

[
2c(γ, ε)

σ2 ln(n)

n
∨
(
σ2

n

) 2s
1+2s (

8L2
) 1

1+2s

]
,

P
(
|τ̂(Ts)− τ | ≥ κ(γ, ε)

σ2 ln(n)

n∆2

)
≤ n−γ .

Remark 4. 1. We see here that there is an advantage in smoothing since it
allows to obtain the best rate with less restricting conditions on the gap
∆.

2. We see that the greater the parameter ∆2, the faster the rate of con-
vergence of τ̂ , which is natural, since ∆2 corresponds to the Euclidean
distance between the two means θ+ and θ− and the segmentation task is
obviously easier when groups are well-separated.

3. At first sight, the rate of convergence and the conditions could seem quite
unsatisfactory, but observe that very often σ2 is of the form σ2

0

d . In this
case, the rate of convergence is of the order(

nd

σ2
0

) −2s
1+2s

∆−2.

4. If we now look for a procedure searching for an optimal T in an adaptive
way (without knowing the regularity s), some remarks can be made before
giving a solution. In particular, one may ask whether it is possible to
optimize individually (on each signal Yj of Rd), or if it is necessary to
perform an off-line preprocessing (requiring the use of all the signals).

The form of the optimal smoothing Ts ∼
(
nd
σ2

0

) 1
1+2s

allows to answer this
question, proving that any adaptive smoothing performed individually on
each signal Yj (thresholding, lasso... ) would lead instead to an optimal

smoother of the form: Topt =
(
d
σ2

0

) 1
1+2s

, inevitably creating in the rates
a loss of a polynomial factor in n. This means that it is certainly more
efficient to find a procedure performing the smoothing globally (off-line).

8



3 Adaptive choice of T

3.1 Lepski’s procedure
To begin with, let us recall the classical Lepski procedure (see Lepski [1991,
1992, 1993]). In the standard Gaussian white noise model,

Zj = βj + εj , j = 1, . . . , d, (3)

where the εj ’s are i.i.d. N (0, ν2), a standard choice for the smoothing parameter
T consists in defining T̂ as follows:

T̂ := min

{
k ≥ 1 : ∀d ≥ j ≥ m ≥ k,

j∑
`=m

(Z`)2 ≤ CLjν2 ln(d ∨ n)

}
,

where CL is a tuning constant of the procedure.

3.2 Preprocessing
Here, we will use Lepski’s procedure in a special case.

First, using the complete data set (so off-line), we will create a surrogate
data vector, estimating a parameter β of regularity s. These data will be used
to find an optimal T̂ .

Of course, it is known that estimating the regularity of a signal is impossi-
ble without important extraneous assumptions, but what adaptive procedures
are producing —and especially in this case Lepski’s procedure— is a smoothing
parameter T̂ which, with overwhelming probability will be smaller than the op-
timal one Ts (defined above). This is not enough when one wants to estimate
the regularity s (unless extraneous assumptions are imposed). However, fortu-
nately, Lepski’s procedure also controls the bias of the procedure, assuring that
∆2 −∆T̂ is still reasonable, which is precisely the need here.

3.2.1 Surrogate data

For the sake of simplicity, we consider that n is even; otherwise, the modifica-
tions are elementary.

Let us consider the following vector:

Zj =
1

n

n∑
i=1

Yi,j −
2

n

n/2∑
i=1

Yi,j , j = 1, . . . , d.
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It is easy to see that this model is a special case of (3) with

βj = (1− τ)(θ+
j − θ

−
j )1{τ≥1/2} + τ(θ+

j − θ
−
j )1{τ<1/2},

εj =

n/2∑
i=1

−1

n
ηi,j +

n∑
i=n/2+1

1

n
ηi,j ,

ν2 =
σ2

n
.

We consider the Lepski procedure applied to the vector Z, producing a
smoothing parameter T̂ . This smoothing parameter is then just plugged in the
k-means procedure for estimating τ̂ .

The following theorem states that the method leads to an optimal selection,
up to logarithmic terms (same convergence rate as in Corollary 1 with Ts).

Theorem 2. In the model (1), we assume that θ+ and θ− belong to Θ(s, L).
We suppose that there exists a constant α > 0 such that

n

σ2
≥ α ln d.

We set

T̂ := min

{
k ≥ 1 : ∀d ≥ j ≥ m ≥ k,

j∑
`=m

(Z`)2 ≤ CLj
σ2

n
ln(d ∨ n)

}
.

Then, for any γ > 0, there exist constants κ(γ, ε) and c(γ, ε) and R such that,
if

∆2 ≥ 2c(γ, ε)
σ2 ln(n)

n
∨R

(
σ2 ln(d ∨ n)

n

) 2s
1+2s

,

then

P
(
|τ̂(T̂ )− τ | ≥ κ(γ, ε)

σ2 ln(n)

n∆2

)
≤ n−γ .

4 Numerical study
In this section, we provide some simulations illustrating our theoretical results.

4.1 Rate of convergence
In this experiment, we study the rate of convergence of the estimator τ̂ . Let
d = 20, T = 10, σ = 1, τ = 0.3. Let us consider data generated from Model
(1) with the means θ− and θ+ obtained from the following distribution: θ− ∼
N (0, 1

20j2 )) θ+ ∼ N (−θ−, 10−4).
To get a first insight about the rate of convergence, we simulate 1000 times

a sample of length n, for n chosen between 20 and 4000, and plot in Figure 1
the mean and median of the error |τ − τ̂ | over the 1000 trials in function of n,
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together with the function n 7→ ln(n)Ψn(T,∆T ) corresponding to the theoretical
rate of convergence obtained in Proposition 1. Note that the rate of convergence
of |τ − τ̂ | is given in the proposition up to a constant κ(γ, ε). Nevertheless, the
figure provides an appropriate illustration of the result as soon as n is large
enough.

Figure 1: Plot of |τ̂ − τ | as a function of n (mean over 1000 trials).

Figure 2: Plot of ln(|τ̂ − τ |) as a function of ln(n) (mean and median over 1000
trials).

Then, simulating 1000 samples, for each value of the sample size n between
500 and 4000, we try to estimate of the rate of convergence by computing
the linear regression of |τ − τ̂ | by ln(n): omitting the logarithmic factor, an
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exponent −1 is to be found, corresponding to the rate of convergence 1
n . Figure

2 provides an illustration of this linear regression, considering again the mean
and the median over the 1000 trials. On this example, the estimated slope of
the regression line is −1.172 for the mean and −1.098 for the median.

4.2 Selection of T
In Theorem 2, we suggest to select T using the Lepski method. Before intro-
ducing a practical procedure for the selection of T , let us illustrate the fact that
the performance of the estimator τ̂ may indeed vary a lot as a function of T , so
that selecting the right T is a crucial issue in the estimation of τ .

We set d = 200, n = 100, σ = 1, τ = 0.3. We consider data generated from
Model (1) with means θ− and θ+ built as follows:

• Case A: θ− ∼ N (0, V ), θ+ ∼ N (0, V ), V = diag(v1, . . . , vd), vj = 1
2j2 for

j = 1, . . . , d.

• Case B: θ− is such that θ−j ∼ N (0, 1/2) for j = 1, . . . , 20, and θ−j ∼
N (0, 1

2(j−20)2 ) for j = 21, . . . , d. θ+ is such that θ+
j N (θ−j , 10−2)) for

j = 1, . . . , 20, and θ+
j ∼ N (0, 1

2(j−20)2 ) for j = 21, . . . , d.

We simulated 5000 data sets according to Model (1) in each of the two cases.
Figure 3 and 4 show the mean and median error |τ̂ − τ | over the 5000 trials in
function of T . In the first case, the best result is obtained already with T = 1,
whereas for the second, taking T around 30 is a good choice.

Figure 3: Mean and median of the error over 5000 trials for Model A.
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Figure 4: Mean and median of the error over 5000 trials for Model B.

Theorem 2 provides a theoretical way to select T . However, since the state-
ment depends on an unknown tuning constant CL, the theorem cannot be used
directly for choosing T in practice. In the sequel, two selection procedures for
T are investigated, yielding two estimators T̂1 and T̂2.

• Method 1. This method is often used to replace the search of tuning
constants in adaptive methods. The idea is instead to find a division
of the set {1, . . . , d} into {1, . . . , T̂1} and its complementary, where the
two subsets are corresponding to 2 “regimes” for the data, one of “big
coefficients”, one of small ones.
Let Z̄(T ) = 1

T

∑T
j=1 Zj and Z̄

(−T ) = 1
d−T

∑d
j=T+1 Zj , and consider

V (T ) =

T∑
j=1

(Zj − Z̄(T ))2 +

d∑
j=T+1

(Zj − Z̄(−T ))2.

This quantity V is computed for every T = 1, . . . , d and the value T̂1 is
chosen such that

T̂1 ∈ arg min
T=1,...,d

V (T ).

Indeed, this k-means-like procedure, by searching for a change-point along
Z1, . . . , Zd, should separate the first most significative differences θ−j −θ

+
j ,

j = 1, . . . , T̂1, from the remaining ones, expected to be less significative for
estimating τ̂ , in such a way that keeping for the estimation all components
until T̂1 seems a reasonable choice.

• Method 2. The second idea is more computationally involved and based
on subsampling. When performing subsampling, the indices drawn at
random are sorted, so that the parameter of interest τ remains indeed
approximatively unchanged. For each T = 1, . . . , d, we compute τ̂(T ) for
a collection of subsamples. Then, T̂2 is set to the value of T minimizing
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the variance of τ̂ over all subsamples. Here, 100 subsamples are built, each
of them containing 80% of the initial sample.

Remark 5. Proportions of data from 50% to 90% have also been tried,
with quite similar results. Observe that picking a quite small proportion of
data for subsampling could be interesting since it provides more variability
between the subsamples, but, at the same time, the fact that the ratio
between the dimension d and the sample size is modified may be annoying
when the aim is to select T . We also considered a version of subsampling
where a different subsampling index is drawn for every T = 1, . . . , d: again,
this provides more variability in the subsamples, but τ may also vary more
than in the classical version. The results were not significantly different.

The performance of the two methods is compared with the result obtained using
the value of T minimizing the average value of |τ − τ̂(T )| over a large number
of trials, called hereafter oracle T ? (here, T ? = 30 as obtained above for 5000
trials). Of course, T ? is not available in practice, since it depends on the true
τ . However, it is introduced as a benchmark. The results, corresponding to
1000 trials, are shown in Figure 5 and Table 1. Observe that the performances
of the two methods are very similar, with a slight advantage of Method 2 over
Method 1. However, Method 2 is based on subsampling, and, as such, is more
CPU-time consuming.

Figure 5: Error of the two selection procedures over 1000 trials, compared with
the error obtained using the oracle T ? = 30.
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Error over 1000 trials Oracle T ? T̂1 T̂2

Mean 0.1524 0.2207 0.2047
(Standard deviation) (0.18735) (0.21329) (0.20841)

Table 1: Mean and standard deviation over 1000 trials of the error obtained
with the oracle T ? and the two selection methods.

5 Proofs

5.1 Proof of Proposition 1
Our proof will heavily rely on standard concentration inequalities, detailed in
Appendix (see Section 6).

In the sequel, for the sake of simplicity, we will assume that, additionally to
ε < τ < 1− ε, nτ ∈ {2, . . . , n− 2}. This will not have any consequence on the
result but will avoid unnecessary integer parts.

Also, in this proof, Ψn(T,∆) will be replaced by Ψn, when there is no possible
confusion.

Let us denote by P(τ,θ+,θ−) the probability distribution associated with
model 1. We will consider the behavior of our estimators under the probabil-
ity P(τ,θ+,θ−). Using the notation x+ = (x+

1 , . . . , x
+
T ), and x− = (x−1 , . . . , x

−
T ),

observe that τ̂ may be defined in the following way:

τ̂(T ) =
1

n
arg min

k∈{2,...,n−2}


k∑
i=1

T∑
j=1

(
Yi,j −

1

k

k∑
i=1

Yi,j

)2

+

n∑
i=k+1

T∑
j=1

(
Yi,j −

1

n− k

n∑
i=k+1

Yi,j

)2


= arg min
t∈{ 2

n ,...,
n−2
n }

KT (t).

where
KT (t) = min

x−,x+
L(t, x−, x+)− L(τ, 0, 0).

Here, the function L is given (for t ∈ { 2
n , . . . ,

n−2
n }) by

L(t, x−, x+) =

nt∑
i=1

T∑
j=1

(Yi,j − θ−j − x
−
j )2 +

n∑
i=nt+1

T∑
j=1

(Yi,j − θ+
j − x

+
j )2.

Note that
dP(t,θ++x+,θ−+x−)

dP(τ,θ+,θ−)
= exp

(
− 1

2σ2
(L(t, x−, x+)− L(τ, 0, 0))

)
.

Let us consider the case t ≥ τ . The other case can be treated in a symmetrical
way.
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For t ≥ τ , and under the distribution P(τ,θ+,θ−), we may write

L(t, x−, x+)− L(τ, 0, 0)

=

nτ∑
i=1

T∑
j=1

((x−j )2 − 2ηi,jx
−
j ) +

n∑
i=nt+1

T∑
j=1

((x+
j )2 − 2ηi,jx

+
j )

+

nt∑
i=nτ+1

T∑
j=1

(
(θ+
j − θ

−
j − x

−
j )2 + 2ηi,j(θ

+
j − θ

−
j − x

−
j )
)

=

nτ∑
i=1

T∑
j=1

((x−j )2 − 2ηi,jx
−
j ) +

n∑
i=nt+1

T∑
j=1

((x+
j )2 − 2ηi,jx

+
j )

+

nt∑
i=nτ+1

T∑
j=1

(
(δj − x−j )2 + 2ηi,j(δj − x−j )

)
,

Hence,

L(t, x−, x+)− L(τ, 0, 0)

=

n∑
i=nt+1

T∑
j=1

((x+
j )2 − 2ηi,jx

+
j ) +

nt∑
i=1

T∑
j=1

((x−j )2 − 2ηi,jx
−
j )

+

nt∑
i=nτ+1

T∑
j=1

(
δ2
j − 2δjx

−
j + 2δjηi,j

)
,

where δ = (δ1, . . . , δT ) is the vector θ+ − θ−. Now, we have to minimize in
(x−, x+) this expression

n∑
i=nt+1

T∑
j=1

((x+
j )2 − 2ηi,jx

+
j ) +

nt∑
i=1

T∑
j=1

((x−j )2 − 2ηi,jx
−
j )

+

nt∑
i=nτ+1

T∑
j=1

(
δ2
j − 2δjx

−
j + 2δjηi,j

)
.

The minimum is attained by taking, for every j,

x̂+
j =

∑n
i=nt+1 ηi,j

n− nt
,

x̂−j =

∑nt
i=1 ηi,j + (nt− nτ)δj

nt
.
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So, the minimum is

KT (t) =

T∑
j=1

−(∑n
i=nt+1 ηi,j

)2
n− nt

−

(∑nt
i=1 ηi,j + (nt− nτ)δj

)2

nt

+(nt− nτ)δ2
j + 2δj

nt∑
i=nτ+1

ηi,j

)
.

Under P(τ,θ+,θ−), KT (t) can be written in the following way:

KT (t) = −
T∑
j=1

σ2V 2
j (t)−

T∑
j=1

σ2W 2
j (t) +

T∑
j=1

δ2
j

(nt− nτ)nτ

nt
+ 2N1(t)− 2N2(t),

where

σ2V 2
j (t) =

(∑n
i=nt+1 ηi,j

)2
n− nt

,

σ2W 2
j (t) =

(∑nt
i=1 ηi,j

)2

nt
,

N1(t) =

T∑
j=1

nt∑
i=nτ+1

ηi,jδj ,

N2(t) =

T∑
j=1

∑nt
i=1 ηi,j(nt− nτ)δj

nt

N1(τ) = N2(τ) = 0.

Observe that V 2
j (t), j = 1, . . . , T , are independent χ2(1) random variables, as

well as W 2
j (t), j = 1, . . . , T . Moreover, N1(t) ∼ N

(
0,
∑T
j=1 σ

2(nt− nτ)δ2
j

)
,

N2(t) ∼ N
(

0,
∑T
j=1

σ2(nt−nτ)2δ2
j

nt

)
.

We have

P (|τ̂ − τ | ≥ λΨn)

= P

(
inf

| kn−τ |≥λΨn

KT

(
k

n

)
< inf
| kn−τ |<λΨn

KT

(
k

n

))

≤ P

(
inf

| kn−τ |≥λΨn

KT

(
k

n

)
< KT (τ)

)

≤ P

(
inf

k
n−τ≥λΨn

KT

(
k

n

)
< KT (τ)

)
+ P

(
inf

k
n−τ≤−λΨn

KT

(
k

n

)
< KT (τ)

)
.
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We will only consider the first term, the other one can be treated in a symmet-
rical way. We have

P

(
inf

k
n−τ≥λΨn

KT

(
k

n

)
< KT (τ)

)

= P

(
∃k ∈ {2, . . . , n− 2}, k

n
− τ ≥ λΨn, K

T

(
k

n

)
< KT (τ)

)
≤ P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

−
T∑
j=1

V 2
j

(
k

n

)
−

T∑
j=1

W 2
j

(
k

n

)
+

2N1( kn )− 2N2( kn )

σ2
+
n∆2

T

σ2

( kn − τ)nτ

k

< −
T∑
j=1

V 2
j (τ)−

T∑
j=1

W 2
j (τ) +

2N1(τ)− 2N2(τ)

σ2

)

≤ P

∃k ∈ {nτ + nλΨn, . . . , n− 2},
T∑
j=1

V 2
j

(
k

n

)
+

T∑
j=1

W 2
j

(
k

n

)

−
T∑
j=1

V 2
j (τ)−

T∑
j=1

W 2
j (τ)−

2N1( kn )− 2N2( kn )

σ2
>
n∆2

T

σ2

( kn − τ)nτ

k

 ,

since N1(τ) = N2(τ) = 0. Thus,

P

(
inf

k
n−τ≥λΨn

KT

(
k

n

)
< KT (τ)

)

≤ P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

T∑
j=1

V 2
j

(
k

n

)
+

T∑
j=1

W 2
j

(
k

n

)
−

T∑
j=1

V 2
j (τ)−

T∑
j=1

W 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

2k

)

+ P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

|2N1( kn )− 2N2( kn )|
σ2

>
n∆2

T

σ2

( kn − τ)nτ

2k

)
:= P1 + P2.
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Furthermore, for the second term P2, using (7)

P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

|N1( kn )−N2( kn )|
σ2

>
∆2
T

σ2

n( kn − τ)nτ

4k

)

≤
∑

k∈{nτ+nλΨn,...,n−2}

P

(∣∣∣∣N1

(k
n

)∣∣∣∣ > ∆2
Tn( kn − τ)nτ

8k

)

+
∑

k∈{nτ+nλΨn,...,n−2}

P

(∣∣∣∣N2

(k
n

)∣∣∣∣ > ∆2
Tn( kn − τ)nτ

8k

)

≤
∑

k∈{nτ+nλΨn,...,n−2}

2 exp

−
(

∆2
Tn( kn−τ)nτ

8k

)2

2n∆2
T ( kn − τ)σ2

+ 2 exp

−
(

∆2
Tn( kn−τ)nτ

8k

)2

2
n∆2

T ( kn−τ)2σ2

k
n


≤ 2n

[
exp

(
−τ

2n∆2
TΨnλ

64σ2

)
+ exp

(
−τ

2n∆2
T

64σ2

)]
≤ 2n

[
exp

(
−τ

2λ

64

)
∧ exp

(
−τ

2λTσ2

64n∆2
T

)
+ exp

(
−τ

2n∆2
T

64σ2

)]
≤ 2n

[
exp

(
−τ

2λ

64

)
+ exp

(
−τ

2n∆2
T

64σ2

)]
.

To control the first term P1, we distinguish two situations. We begin with
investigating the case where n∆2

T ≤ 32Tσ2/ε2.
Then, using Lemma 5,

P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

T∑
j=1

V 2
j

(
k

n

)
+

T∑
j=1

W 2
j

(
k

n

)
−

T∑
j=1

V 2
j (τ)−

T∑
j=1

W 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

2k

)

≤ P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

T∑
j=1

(
V 2
j

(
k

n

)
− 1

)
+

T∑
j=1

(
W 2
j

(
k

n

)
− 1

)
>
n∆2

T

σ2

( kn − τ)nτ

4k

)

+ P

 T∑
j=1

(
V 2
j (τ)− 1

)
+

T∑
j=1

(
W 2
j (τ)− 1

)
>
n∆2

T

σ2

λΨnnτ

4n

 .
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Considering the first term, we have

P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

T∑
j=1

V 2
j

(
k

n

)
+

T∑
j=1

W 2
j

(
k

n

)
−

T∑
j=1

V 2
j (τ)−

T∑
j=1

W 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

2k

)

≤ 2
∑

k∈{nτ+nλΨn,...,n−2}

P

 T∑
j=1

(
V 2
j

(
k

n

)
− 1

)
>
n∆2

T

σ2

( kn − τ)nτ

8k


≤ 2

∑
k∈{nτ+nλΨn,...,n−2}

exp

−(n∆2
T

σ2

( kn − τ)nτ

8k

)2
1

16T


≤ 2n exp

(
− τ2λ2σ4T

1024(n∆2
T )2

)
.

As well,

P

 T∑
j=1

(V 2
j (τ)− 1) +

T∑
j=1

(W 2
j (τ)− 1) >

n∆2
T

σ2

λΨnnτ

4n

 ≤ 2 exp

(
− τ2λ2σ4T

1024(n∆2
T )2

)
.

The two preceding bounds lead to a bound exp(− τ2λ
1024 ), in the case where

σ4T
(n∆2

T )2 ≥ 1
λ .

Now let us investigate the more intricate case where n∆2
T ≤ 32Tσ2/ε2 (still)

but σ4T
(n∆2

T )2 ≤ 1
λ (i.e. (n∆2

T )2

σ4T ≥ λ).
We have

P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

T∑
j=1

V 2
j

k

n

)
+

T∑
j=1

W 2
j

(
k

n

)
−

T∑
j=1

V 2
j (τ)−

T∑
j=1

W 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

2k


≤ P

∃k ∈ {nτ + nλΨn, . . . , n− 2},
T∑
j=1

V 2
j

(
k

n

)
−

T∑
j=1

V 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

4k


+ P

∃k ∈ {nτ + nλΨn, . . . , n− 2},
T∑
j=1

W 2
j

(
k

n

)
−

T∑
j=1

W 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

4k

 .
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Let us compute

σ2

(
W 2
j

(
k

n

)
−W 2

j (τ)

)
=

(
nτ∑
i=1

ηi,j

)2(
1

k
− 1

nτ

)
+

(
k∑

i=nτ+1

ηi,j

)2

1

k

+
2

k

(
nτ∑
i=1

ηi,j

)(
k∑

i=nτ+1

ηi,j

)

≤ k − nτ
k

( k∑
i=nτ+1

ηi,j

)2

1

k − nτ
−

(
nτ∑
i=1

ηi,j

)2
1

nτ


+

∣∣∣∣∣2k
nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣∣ .
As well,

σ2

(
V 2
j

(
k

n

)
− V 2

j (τ)

)
=

(
n∑

i=k+1

ηi,j

)2(
1

n− k
− 1

n− nτ

)
−

(
k∑

i=nτ+1

ηi,j

)2

1

n− nτ

− 2

n− nτ

(
n∑

i=k+1

ηi,j

)(
k∑

i=nτ+1

ηi,j

)

≤ k − nτ
n− nτ

( n∑
i=k+1

ηi,j

)2
1

n− k
−

(
k∑

i=nτ+1

ηi,j

)2

1

k − nτ


+

∣∣∣∣∣ 2

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣∣
As a consequence, we get

P

∃k ∈ {nτ + nλΨn, . . . , n− 2},
T∑
j=1

W 2
j

(
k

n

)
−

T∑
j=1

W 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

4k


≤

∑
k∈{nτ+nλΨn,...,n−2}

P

(
T∑
j=1

k − nτ
k

( k∑
i=nτ+1

ηi,j

)2

1

k − nτ
−

(
nτ∑
i=1

ηi,j

)2
1

nτ


> n∆2

T

( kn − τ)nτ

8k

)

+
∑

k∈{nτ+λΨn,...,n−2}

P

∣∣∣∣ T∑
j=1

2

k

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > n∆2
T

( kn − τ)nτ

8k

 .
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As well,

P

∃k ∈ {nτ + nλΨn, . . . , n− 2},
T∑
j=1

V 2
j

(
k

n

)
−

T∑
j=1

V 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

4k


≤

∑
k∈{nτ+λΨn,...,n−2}

P

(
T∑
j=1

k − nτ
n− nτ

( n∑
i=k+1

ηi,j

)2
1

n− k
−

(
k∑

i=nτ+1

ηi,j

)2

1

k − nτ


> n∆2

T

( kn − τ)nτ

8k

)

+
∑

k∈{nτ+λΨn,...,n−2}

P

∣∣∣∣ T∑
j=1

2

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > n∆2
T

( kn − τ)nτ

8k

 .

Now,

∑
k∈{nτ+nλΨn,...,n−2}

P

(
T∑
j=1

k − nτ
k

( k∑
i=nτ+1

ηi,j

)2

1

k − nτ
−

(
nτ∑
i=1

ηi,j

)2
1

nτ


> n∆2

T

( kn − τ)nτ

8k

)

=
∑

k∈{nτ+nλΨn,...,n−2}

P

(
T∑
j=1

k − nτ
k

( k∑
i=nτ+1

ηi,j

)2

1

σ2(k − nτ)
−

(
nτ∑
i=1

ηi,j

)2
1

σ2nτ


>
n∆2

T

σ2

( kn − τ)nτ

8k

)

≤
∑

k∈{nτ+nλΨn,...,n−2}

P

 T∑
j=1

∣∣∣∣
(

k∑
i=nτ+1

ηi,j

)2

1

σ2(k − nτ)
− 1

∣∣∣∣ > n∆2
T

σ2

τ

16


+

∑
k∈{nτ+nλΨn,...,n−2}

P

 T∑
j=1

∣∣∣∣
(
nτ∑
i=1

ηi,j

)2
1

σ2nτ
− 1

∣∣∣∣ > n∆2
T

σ2

τ

16


≤ 2n exp

(
− (n∆2

T τ)2

σ4256T

)
≤ 2n exp

(
−τ

2λ

256

)
.

In the last two bounds, we have applied Lemma 5, then used the fact that we

22



are in the case (n∆2
T )2

σ4T ≥ λ. As well,

∑
k∈{nτ+λΨn,...,n−2}

P

(
T∑
j=1

k − nτ
n− nτ

( n∑
i=k+1

ηi,j

)2
1

n− k
−

(
k∑

i=nτ+1

ηi,j

)2

1

k − nτ


> n∆2

T

( kn − τ)nτ

8k

)

≤
∑

k∈{nτ+nλΨn,...,n−2}

P

 T∑
j=1

∣∣∣∣
(

n∑
i=k+1

ηi,j

)2
1

σ2(n− k)
− 1

∣∣∣∣ > n∆2
T

σ2

(1− τ)nτ

16k


+

∑
k∈{nτ+nλΨn,...,n−2}

P

 T∑
j=1

∣∣∣∣
(

k∑
i=nτ+1

ηi,j

)2

1

σ2(k − nτ)
− 1

∣∣∣∣ > n∆2
T

σ2

(1− τ)nτ

16k


≤ 2n exp

(
−τ

2(1− τ)2(n∆2
T )2

256σ4T

)
≤ 2n exp

(
−τ

2(1− τ)2λ

256

)
.

Now, let us denote by F , the σ−algebra spanned by the variables {ηi,j , i ≤
nτ, j ≤ T}. We write

∑
k∈{nτ+nλΨn,...,n−2}

P

∣∣∣∣ T∑
j=1

2

k

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > n∆2
T

( kn − τ)nτ

8k


=

∑
k∈{nτ+nλΨn,...,n−2}

E

P
∣∣∣∣ T∑

j=1

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > n∆2
T

( kn − τ)nτ

16

∣∣∣F
 .

Conditionally on F , the random variable
∑T
j=1

∑nτ
i=1 ηi,j

∑k
i=nτ+1 ηi,j follows

a centered normal distribution N (0, σ2(k − nτ)
∑T
j=1(

∑nτ
i=1 ηi,j)

2), that is∑T
j=1

∑nτ
i=1 ηi,j

∑k
i=nτ+1 ηi,j

σ(k − nτ)1/2(
∑T
j=1(

∑nτ
i=1 ηi,j)

2)1/2
∼ N (0, 1).
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Thus,

∑
k∈{nτ+nλΨn,...,n−2}

P

∣∣∣∣ T∑
j=1

2

k

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > n∆2
T

( kn − τ)nτ

8k


≤ 2

∑
k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−

(n∆2
T ( kn − τ)nτ)2

162

1

2σ2(k − nτ)
∑T
j=1(

∑nτ
i=1 ηi,j)

2

)]

≤ 2
∑

k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−

(n∆2
T ( kn − τ)nτ)2

162

1

2σ2(k − nτ)
∑T
j=1(

∑nτ
i=1 ηi,j)

2

)

× 1{∑T
j=1

(
∑nτ
i=1

ηi,j)
2

σ2nτ
≤8T

}
]

+ 2nP

 T∑
j=1

(
∑nτ
i=1 ηi,j)

2

σ2nτ
≥ 8T


≤ 2n exp

(
− λτ

163

)
+ 2n exp

(
−n∆2

T ε
2

32σ2

)
.

We used here n∆2
T ≤ 32Tσ2/ε2 together with lemma 4. To end the proof of this

part, we investigate the last term: let now Fk denote the σ−algebra spanned
by the variables {ηi,j , i > k, j ≤ T}, and using again lemma 4. We write:

∑
k∈{nτ+nλΨn,...,n−2}

P

∣∣∣∣ T∑
j=1

2

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > n∆2
T

( kn − τ)nτ

8k


≤

∑
k∈{nτ+nλΨn,...,n−2}

E

P
∣∣∣∣ T∑

j=1

1

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > n∆2
T

( kn − τ)nτ

16k

∣∣∣Fk


≤ 2

∑
k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−

(n∆2
T ( kn − τ)(n− nτ)nτ)2

162k2

1

2σ2(k − nτ)
∑T
j=1(

∑n
i=k+1 ηi,j)

2

)

× 1{∑T
j=1

(∑ni=k+1
ηi,j)

2

σ2(n−k)
≤8T

}
]

+ 2nP

 T∑
j=1

(∑n
i=k+1 ηi,j

)2
σ2(n− k)

≥ 8T

 ≤ 2n exp

(
−λτ

2(1− τ)2

163

)
+ 2n exp

(
−n∆2

T ε
2

64σ2

)
.

We now investigate the case where n∆2
T ≥ 32Tσ2/ε2. Note that, as ε < 1/2,

in this case, we also have n∆2
T ≥ 64Tσ2/ε. We have:
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P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

T∑
j=1

V 2
j

(
k

n

)
+

T∑
j=1

W 2
j

(
k

n

)
−

T∑
j=1

V 2
j (τ)−

T∑
j=1

W 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

2k

)

≤ P

∃k ∈ {nτ + λΨn, . . . , n− 2},
T∑
j=1

V 2
j

(
k

n

)
−

T∑
j=1

V 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

4k


+ P

∃k ∈ {nτ + nλΨn, . . . , n− 2},
T∑
j=1

W 2
j

(
k

n

)
−

T∑
j=1

W 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

4k


We will use the next upper bounds. We have:

σ2

(
W 2
j

(
k

n

)
−W 2

j (τ)

)
=

(
nτ∑
i=1

ηi,j

)2(
1

k
− 1

nτ

)
+

(
k∑

i=nτ+1

ηi,j

)2

1

k

+
2

k

(
nτ∑
i=1

ηi,j

)(
k∑

i=nτ+1

ηi,j

)

≤

(
k∑

i=nτ+1

ηi,j

)2

1

k
+

∣∣∣∣∣2k
nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣∣ ,
as well as

σ2

(
V 2
j

(
k

n

)
− V 2

j (τ)

)
=

(
n∑

i=k+1

ηi,j

)2(
1

n− k
− 1

n− nτ

)
−

(
k∑

i=nτ+1

ηi,j

)2

1

n− nτ

− 2

n− nτ

(
n∑

i=k+1

ηi,j

)(
k∑

i=nτ+1

ηi,j

)

≤

(
n∑

i=k+1

ηi,j

)2
k − nτ

(n− k)(n− nτ)

+

∣∣∣∣∣ 2

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣∣ .
As a consequence, we get
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P

∃k ∈ {nτ + nλΨn, . . . , n− 2},
T∑
j=1

W 2
j

(
k

n

)
−

T∑
j=1

W 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

4k


≤

∑
k∈{nτ+nλΨn,...,n−2}

P

 1

σ2

T∑
j=1

(
k∑

i=nτ+1

ηi,j

)2

1

k
>
n∆2

T

σ2

( kn − τ)nτ

8k


+ P

 1

σ2

T∑
j=1

∣∣∣∣∣2k
nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣∣ > n∆2
T

σ2

( kn − τ)nτ

8k

 .

As well,

P

∃k ∈ {nτ + nλΨn, . . . , n− 2},
T∑
j=1

V 2
j

(
k

n

)
−

T∑
j=1

V 2
j (τ) >

n∆2
T

σ2

( kn − τ)nτ

4k


≤

∑
k∈{nτ+nλΨn,...,n−2}

P

 1

σ2

T∑
j=1

(
n∑

i=k+1

ηi,j

)2
k − nτ

(n− k)(n− nτ)
>
n∆2

T

σ2

( kn − τ)nτ

8k


+ P

 1

σ2

T∑
j=1

∣∣∣∣∣ 2

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣∣ > n∆2
T

σ2

( kn − τ)nτ

8k

 .

Now, using lemma 4, we get, since n∆2
T ≥ 64Tσ2/ε,

∑
k∈{nτ+nλΨn,...,n−2}

P

 1

σ2

T∑
j=1

(
k∑

i=nτ+1

ηi,j

)2

>
n∆2

T

σ2

( kn − τ)nτ

8


≤

∑
k∈{nτ+nλΨn,...,n−2}

P

 1

σ2

T∑
j=1

(∑k
i=nτ+1 ηi,j

)2

k − nτ
>
n∆2

T

σ2

τ

8


≤ n exp

(
−n∆2

T τ

64σ2

)
.

As well, since n∆2
T ≥ 32Tσ2/ε2,

∑
k∈{nτ+λΨn,...,n−2}

P

 1

σ2

T∑
j=1

(
n∑

i=k+1

ηi,j

)2
k − nτ

(n− k)(n− nτ)
>
n∆2

T

σ2

( kn − τ)nτ

8k


≤

∑
k∈{nτ+λΨn,...,n−2}

P

 1

σ2

T∑
j=1

(
n∑

i=k+1

ηi,j

)2
1

(n− k)
>
n∆2

T

σ2

(1− τ)τ

8


≤ n exp

(
−n∆2

T τ(1− τ)

64σ2

)
.
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Now, let us denote by F , the σ−algebra spanned by the variables {ηi,j , i ≤
nτ, j ≤ T}.

∑
k∈{nτ+nλΨn,...,n−2}

P

∣∣∣∣ T∑
j=1

2

k

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > n∆2
T

( kn − τ)nτ

8k


=

∑
k∈{nτ+nλΨn,...,n−2}

E

P( 1

σ2

∣∣∣∣ T∑
j=1

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > n∆2
T

σ2

( kn − τ)nτ

16

∣∣∣F)


≤ 2
∑

k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−

(n∆2
T ( kn − τ)nτ)2

162

1

2σ2(k − nτ)
∑T
j=1(

∑nτ
i=1 ηi,j)

2

)]

≤ 2
∑

k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−

(n∆2
T ( kn − τ)nτ)2

162

1

2σ2(k − nτ)
∑T
j=1(

∑nτ
i=1 ηi,j)

2

)

× 1{∑T
j=1

(
∑nτ
i=1

ηi,j)
2

nτσ2 ≤
n∆2

T
τ

8σ2

}
]

+ 2nP

 T∑
j=1

(
∑nτ
i=1 ηi,j)

2

nτσ2
≥ n∆2

T τ

8σ2


≤ 2n exp

(
− λ

64

)
+ 2n exp

(
−n∆2

T τ

64σ2

)
.

To end the proof we investigate the last term: let now Fk be the σ−algebra
spanned by the variables {ηi,j , i > k, j ≤ T}. We write:

∑
k∈{nτ+nλΨn,...,n−2}

P

∣∣∣∣ T∑
j=1

2

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > n∆2
T

( kn − τ)nτ

8k


≤

∑
k∈{nτ+nλΨn,...,n−2}

E

P
∣∣∣∣ T∑

j=1

1

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > n∆2
T

( kn − τ)nτ

16k

∣∣∣Fk


≤ 2

∑
k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−

(n∆2
T ( kn − τ)(n− nτ)nτ)2

162k2

1

2σ2(k − nτ)
∑T
j=1(

∑n
i=k+1 ηi,j)

2

)

× 1{∑T
j=1

(∑ni=k+1
ηi,j)

2

σ2(n−k)
≤
n∆2

T
τ

8σ2

}
]

+ 2nP

 T∑
j=1

(∑n
i=k+1 ηi,j

)2
σ2(n− k)

≥ n∆2
T τ

8σ2


≤ 2n exp

(
−λτ(1− τ)2

64

)
+ 2n exp

(
−n∆2

T τ

64σ2

)
.
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Summarizing the elements above, we get:

P (|τ̂ − τ | ≥ λΨn) ≤ 2

[
(16n+ 2) exp

(
−λε

4

163

)
+ 12n exp

(
−n∆2

T ε
2

64σ2

)]
.

Taking now λ = κ(γ, ε) ln(n), this proves Proposition 1.

5.2 Proof of Theorem 2

Let us in this section define Ts :=
(
σ2 ln(d∨n)

n

) −1
1+2s

. The following lemma is
essential in the sequel.

Lemma 1. In the model (1), we assume that θ+ and θ− belong to Θ(s, L). We
suppose that there exists a constant α > 0 such that

n

σ2
≥ α ln d.

Then, for any γ, if CL is large enough (see condition (5) below), there exists a
constant R = R(γ, L,CL, ε) (see condition (6) such that, if

∆2 ≥ R
(
σ2 ln(d ∨ n)

n

) 2s
1+2s

, (4)

then, as soon as n is greater than an absolute constant, we have

P

({
∆2
T̂
≥ ∆2

2

}
∩ {T̂ ≤ Ts}

)
≥ 1− n−γ .

The proof is based on an intermediate lemma, stating that, with large prob-
ability, T̂ ≤ Ts.

Lemma 2. Under the conditions above, for any γ, if we have

CL ≥ 16 ∨ 4L2 ∨ 4(γ + 2)

α
1

1+2s

∨ 8L(γ + 2)1/2

α
1

2(1+2s)

, (5)

then
P (T̂ > Ts) ≤ (d ∨ n)−γ .

To prove the result, we will need a tail bound given in Lemma 3 below.
Recall that Z is defined by

Zj =
1

n

n∑
i=1

Y ji −
2

n

n/2∑
i=1

Y ji , j = 1, . . . , d,

that is Zj = βj +εj , j = 1, . . . , d, where βj = (1−τ)(θ+
j −θ

−
j )1{τ≥1/2}+τ(θ+

j −
θ−j )1{τ<1/2} and εj ∼ N (0, σ

2

n ).
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Lemma 3. For Ts ≤ ` ≤ k,

P

∣∣∣ k∑
j=`

(Zj)
2 −

k∑
j=`

(βj)
2
∣∣∣ > x

 ≤ 2 exp

(
− x2

64L2T−2s
s

σ2

n

)
+ exp

(
− nx

16σ2

)
,

as soon as x ≥ 8(`− k)σ2/n.

Proof of Lemma 3.

P

∣∣∣ k∑
j=`

(Zj)
2 −

k∑
j=`

(βj)
2
∣∣∣ > x

 ≤ P
 k∑
j=`

(εj)
2 + 2

∣∣∣ k∑
j=`

εjβj

∣∣∣ > x


≤ P

 k∑
j=`

(εj)
2 > x/2

+ P

∣∣∣ k∑
j=`

εjβj

∣∣∣ > x/4

 .

Now, observe that
∑k
j=` εjβj follows a Gaussian distributionN

(
0, σ

2

n

∑k
j=`(βj)

2
)
,

so that, using the concentration of the Gaussian distribution (see (7)) and the
fact that

∑k
j=`(βj)

2 ≤ 2L2T−2s
s , since θ+ and θ− are in Θ(s, L), we obtain

P

∣∣∣ k∑
j=`

εjβj

∣∣∣ > x/4

 ≤ 2 exp

(
− x2

64L2T−2s
s

σ2

n

)
.

Now, using (4), we get

P

 k∑
j=`

(εj)
2 > x/2

 ≤ exp
(
− nx

16σ2

)
,

as soon as x ≥ 8(k − `)σ2/n.

Proof of Lemma 2. We have

P (T̂ > Ts) ≤ P

∃k ≥ ` ≥ Ts, k∑
j=`

(Zj)
2 > CLk

σ2

n
ln(d ∨ n)

 .

Now, since k ≥ Ts,
k∑
j=`

(βj)
2 ≤ 2L2T−2s

s = 2L2

(
σ2 ln(d ∨ n)

n

) 2s
1+2s

= 2L2Ts
σ2 ln(d ∨ n)

n
.

Thus, if CL ≥ 4L2, we have
∑k
j=`(βj)

2 ≤ (CL/2)k σ
2

n ln(d ∨ n). We get, with
2x := CLk

σ2

n ln(d ∨ n), the following inequality:

P

 k∑
j=`

(Zj)
2 > 2x

 ≤ P
∣∣∣ k∑

j=`

(Zj)
2 −

k∑
j=`

(βj)
2
∣∣∣ > x

 .
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Now, from Lemma 3, as soon as CLk ln(d∨ n)] ≥ 16(k− `) (which is always
true for instance if CL ≥ 16), we have

P (T̂ > Ts) ≤
∑

k≥`≥Ts

P

 k∑
j=`

(Zj)
2 > CLk

σ2

n
ln(d ∨ n)


≤

∑
k≥`≥Ts

2 exp

(
−

(CLk
σ2

n ln(d ∨ n))2

64L2T−2s
s

σ2

n

)
+ exp (−CLk ln(d ∨ n)/4)

≤ d2

[
2 exp

(
−

(CLTs
σ2

n ln(d ∨ n))2

64L2T−2s
s

σ2

n

)
+ exp (−CLTs ln(d ∨ n)/4)

]

≤ d2

[
2 exp

(
− C2

L
64L2

(
σ2

n

)− 1
1+2s

(ln(d ∨ n))
2s

1+2s

)

+ exp

(
−CL

4

(
σ2

n

)− 1
1+2s

(ln(d ∨ n))
2s

1+2s

)]

≤ d2

[
2 exp

(
− C2

L
64L2

α
1

1+2s (ln(d ∨ n))

)
+ exp

(
−CL

4
α

1
1+2s (ln(d ∨ n))

)]
.

This last term is clearly less than 3(d∨n)−γ , as, by assumption, CLα
1

1+2s

4 >

γ + 2, as well as C2
Lα

1
1+2s

64L2 > γ + 2.

Equipped with Lemma 2, let us go back to the proof of Lemma 1.

Proof of Lemma 1. To simplify the exposition, let us suppose that τ ≥ 1/2, the
other case can be treated similarly, with elementary modifications.

We may write

∆2
T̂

= ∆2 −
Ts∑

j=T̂+1

(θ+
j − θ

−
j )2 −

d∑
j=Ts+1

(θ+
j − θ

−
j )2.

Yet,

d∑
k=Ts+1

(θ+
j − θ

−
j )2 ≤ 4L2T−2s

s = 4L2

(
σ2 ln(d ∨ n)

n

) 2s
1+2s

≤ ∆2/4,

as soon as R ≥ 16L2, since ∆2 ≥ R
(
σ2 ln(d∨n)

n

) 2s
1+2s

(condition (4)). Then,

P
(
{T̂ ≤ Ts} ∩ {∆2

T̂
≤ ∆2/2}

)
≤ P

{T̂ ≤ Ts} ∩{ Ts∑
j=T̂+1

(θ+
j − θ

−
j )2 ≥ ∆2/4

} .
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Now,

P

{T̂ ≤ Ts} ∩{ Ts∑
j=T̂+1

(θ+
j − θ

−
j )2 ≥ ∆2/4

}
≤ P

{T̂ ≤ Ts} ∩{ Ts∑
j=T̂+1

(Zj)2

(1− τ)2
+

[
(θj+ − θ

j
−)2 − (Zj)2

(1− τ)2

]
≥ ∆2/4

} .

From the construction of T̂ , we know that

Ts∑
j=T̂+1

(Zj)2

(1− τ)2
≤ CLTs

(1− τ)2

σ2

n
ln(d ∨ n) =

CL
(1− τ)2

(
σ2 ln(d ∨ n)

n

) 2s
1+2s

.

Thus, if CL/(1− τ)2 ≤ R/8,

Ts∑
j=T̂+1

(Zj)2

(1− τ)2
≤ ∆2/8.

Consequently,

P
(
{T̂ ≤ Ts} ∩ {∆2

T̂
≤ ∆2/2}

)
≤ P

{T̂ ≤ Ts} ∩{ Ts∑
j=T̂+1

[
(θj+ − θ

j
−)2 − (Zj)2

(1− τ)2

]
≥ ∆2/8

} .

≤
Ts∑
k=1

P

{T̂ = k} ∩
{∣∣∣∣ Ts∑

j=k+1

[
(θj+ − θ

j
−)2 − (Zj)2

(1− τ)2

] ∣∣∣∣ ≥ ∆2/8

}
≤

Ts∑
k=1

P

∣∣∣∣ Ts∑
j=k+1

[
(βj)

2 − (Zj)2
] ∣∣∣∣ ≥ (1− τ)2∆2/8


≤

Ts∑
k=1

P

 Ts∑
j=k+1

(εj)
2 + 2

∣∣∣∣ Ts∑
j=k+1

εjβj

∣∣∣∣ ≥ (1− τ)2∆2/8

 .

It remains to proceed as for Lemma 3, using the standard inequalities as (7)
and (4).

As soon as (1− τ)2n∆2/(64σ2) ≥ Ts, which is always true if R ≥ 16
(1−τ)2 , we

obtain:

Ts∑
k=1

P

 Ts∑
j=k+1

(εj)
2 ≥ (1− τ)2∆2/16

 ≤ Ts exp

(
− (1− τ)2n∆2

128σ2

)
.
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Moreover, since Var
(∑Ts

j=k+1 εjβj

)
= σ2

n

∑Ts
j=k+1(βj)

2 ≤ σ2∆2(1−τ)2

n ,

Ts∑
k=1

P

∣∣∣∣ Ts∑
j=k+1

εjβj

∣∣∣∣ ≥ (1− τ)2∆2/32

 ≤ Ts exp

(
− (1− τ)2n∆2

512σ2

)
.

Now, n∆2

σ2 ≥ R ln(d ∨ n)Ts. Hence, for R large enough, the right-hand terms
may be bounded by n−γ for n greater than some absolute constant. Combining
this bounds with Lemma 2, we get the desired result, as soon as conditions (5)
and

R ≥ 16L2 ∨ 8CL
ε2
∨ 64

ε2
∨ 29γ

ε2
(6)

are satisfied.

Proof of Theorem 2. To end the proof of the theorem,
we use Lemma 1, the definition of Ts, and Proposition 1, for any γ, γ′

P

(
|τ̂(T̂ )− τ | ≥ κ(γ, ε)

σ2 ln(n)

n∆2

)
≤ P

({
|τ̂(T̂ )− τ | ≥ κ(γ, ε)

σ2 ln(n)

n∆2

}
∩
{

∆2
T̂
≥ ∆2/2

}
∩ {T̂ ≤ Ts}

)
+ n−γ

≤
Ts∑
T=1

P

({
|τ̂(T̂ )− τ | ≥ κ(γ, ε)

σ2 ln(n)

n∆2

}
∩
{

∆2
T̂
≥ ∆2/2

}
∩ {T̂ = T}

)
+ n−γ

≤
Ts∑
T=1

P

({
|τ̂(T )− τ | ≥ κ(γ, ε)

σ2 ln(n)

2n∆2
T

}
∩
{

∆2
T ≥ ∆2/2

}
∩ {T̂ = T}

)
+ n−γ

≤
Ts∑
T=1

P

({
|τ̂(T )− τ | ≥ κ(γ, ε)

σ2 ln(n)

2n∆2

}
∩
{

∆2
T ≥

RTσ2 ln(d ∨ n)

2n

}
∩ {T̂ = T}

)
+ n−γ

≤ Tsn−γ
′
+ n−γ ,

as soon as R is large enough, which proves the theorem.

6 Appendix: concentration inequalities
Simple Gaussian concentration If N ∼ N (0, 1), then it is well known that,
for x > 0,

P (|N | > x) ≤ 2 exp
(
− x2

2

)
. (7)
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Concentration for the Chi-square distribution (large deviations)

Lemma 4. Let k be a positive integer and U be a χ2
k variable. Then

∀u2 ≥ 4k, P (U ≥ u2) ≤ exp

(
−u2

8

)
.

This lemma is standard. We give a sketch of proof, for sake of simplicity.
Recall the following result given for instance in Massart [2007]. If Xt is a
centered Gaussian process such that σ2 := suptEX

2
t , then

∀y > 0, P

(
sup
t
Xt − E sup

t
Xt ≥ y

)
≤ exp

(
− y2

2σ2

)
.

Let Z1, . . . , Zk i.i.d. standard Gaussian variables such that

P (U ≥ u2) = P

(
k∑
i=1

Z2
i ≥ u2

)
= P

(
sup
a∈S1

k∑
i=1

aiZi ≥ (u2)1/2

)

= P

(
sup
a∈S1

k∑
i=1

aiZi − E sup
a∈S1

k∑
i=1

aiZi ≥ (u2)1/2 − E sup
a∈S1

k∑
i=1

aiZi

)

where S1 = {a ∈ Rk, ‖ai‖l2(k) = 1}. Denote

Xa =

k∑
i=1

aiZi and y = (u2)1/2 − E

[
sup
a∈S1

k∑
i=1

aiZi

]
.

Notice that
a ∈ S1 ⇒ E (Xa)

2
= 1,

as well as

E sup
a∈S1

Xa = E

[
k∑
i=1

Z2
i

]1/2

≤

[
E

k∑
i=1

Z2
i

]1/2

= k1/2.

Since u2 ≥ 4k, the announced result is proved as soon as y > (u2)1/2/2.

Concentration for the Chi-square distribution (moderate deviations)

Lemma 5. If Z has a χ2 distribution with k degrees of freedom, then for any
z > 0,

P (Z − k > z) ≤ exp

(
− z2

16k

)
.

Proof. For all 0 < t < 1
2 ,

P (Z − k > z) ≤ exp (−(k + z)t)E[exp (tZ)]

≤ exp

(
−(k + z)t− k

2
ln(1− 2t)

)
,
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since the moment generating function of a χ2 distribution with k degrees of
freedom is t 7→ (1− 2t)k/2, defined for 0 < t < 1

2 . Taking t = 1
2 (1− (1 + z

k )−1)

and using ln(1 + u) ≤ u− u2

8 , for 0 ≤ u ≤ 1, we get the result.
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