Non-Abelian adiabatic geometric transformations in a cold Strontium gas
Résumé
Topology, geometry, and gauge fields play key roles in quantum physics as exemplified by fundamental phenomena such as the Aharonov-Bohm effect, the integer quantum Hall effect, the spin Hall, and topological insulators. The concept of topological protection has also become a salient ingredient in many schemes for quantum information processing and fault-tolerant quantum computation. The physical properties of such systems crucially depend on the symmetry group of the underlying holonomy. We study here a laser-cooled gas of strontium atoms coupled to laser fields through a 4-level resonant tripod scheme. By cycling the relative phases of the tripod beams, we realize non-Abelian SU(2) geometrical transformations acting on the dark-states of the system and demonstrate their non-Abelian character. We also reveal how the gauge field imprinted on the atoms impact their internal state dynamics. It leads to a new thermometry method based on the interferometric displacement of atoms in the tripod beams.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...