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Abstract. Topology, geometry, and gauge fields play key roles in quantum physics as exemplified
by fundamental phenomena such as the Aharonov-Bohm effect, the integer quantum Hall effect, the
spin Hall, and topological insulators. The concept of topological protection has also become a
salient ingredient in many schemes for quantum information processing and fault-tolerant quantum
computation. The physical properties of such systems crucially depend on the symmetry group of
the underlying holonomy. Here, we study a laser-cooled gas of strontium atoms coupled to laser
fields through a 4-level resonant tripod scheme. By cycling the relative phases of the tripod beams,
we realize non-Abelian SU(2) geometrical transformations acting on the dark states of the system
and demonstrate their non-Abelian character. We also reveal how the gauge field imprinted on
the atoms impact their internal state dynamics. It leads to a thermometry method based on the
interferometric displacement of atoms in the tripod beams.

Introduction

In 1984, M. V. Berry published the remarkable dis-
covery that cyclic parallel transport of quantum states
causes the appearance of geometrical phase factors [1].
His discovery, along with precursor works [2, 3], unified
seemingly different phenomena within the framework of
gauge theories [4, 5]. This seminal work was rapidly
generalized to non-adiabatic and noncyclic evolutions [5]
and, most saliently for our concern here, to degenerate
states by F. Wilczek and A. Zee [6]. In this case, the un-
derlying symmetry of the degenerate subspace leads to a
non-Abelian gauge field structure. These early works on
topology in quantum physics have opened up tremendous
interest in condensed matter [7–11] and more recently in
ultracold gases [12–20] and photonic devices [21–23].
Moreover, it has been noted that geometrical qubits

are resilient to certain noises, making them potential
candidates for fault-tolerant quantum computing [24–
27]. So far, beside some recent proposals [28, 29], ex-
perimental implementations have been performed for a
2-qubit gate on NV-centers in diamond [30] and for a
non-Abelian single qubit gate in superconducting circuits
[31]. These experiments were performed following a non-
adiabatic protocol allowing for high-speed manipulation
[29, 32, 33]. Recently, coherent control of ultracold spin-1
atoms confined in optical dipole traps was used to study
the geometric phases associated with singular loops in a
quantum system [34]. If non-adiabatic manipulations are
promising methods for quantum computing, they prevent
the study of external dynamic of quantum system in a
non-Abelian gauge field, where non-trivial coupling oc-
curs between the internal qubit state dynamics and the
center-of-mass motion of the particle.
Here, we report on non-Abelian adiabatic geometric

transformations implemented on a non interacting cold
fermionic gas of Strontium-87 atoms by using a 4-level
resonant tripod scheme set on the 1S0, Fg = 9/2 →
3P1, Fe = 9/2 intercombination line at λ = 689 nm
(linewidth: Γ = 2π × 7.5 kHz). About 105 atoms are
loaded in a crossed optical dipole trap, optically pumped
in the stretched Zeeman state |Fg = 9/2,mg = 9/2〉
and Doppler-cooled down to temperatures T ∼ 0.5µK
[35, 36], see Methods. A magnetic bias field isolates a
particular tripod scheme in the excited and ground Zee-
man substate manifolds. Our laser configuration consists
of two co-propagating beams (with opposite circular po-
larizations) and a third linearly-polarized beam orthogo-
nal to the previous ones. These three coplanar coupling
laser beams are set on resonance with their common ex-
cited state |e〉 = |Fe = 9/2,me = 7/2〉.

Results

Dark states basis. For any value of the amplitude and
phase of the laser beams, the effective Hilbert space de-
fined by the four coupled bare levels contains two bright
states and two degenerate dark states |D1〉 and |D2〉.
These dark states do not couple to the excited state |e〉
and are thus protected from spontaneous emission de-
cay by quantum interference. For equal Rabi transition
frequencies, we conveniently choose

|D1〉 =
e−iΦ13(r)|1〉 − e−iΦ23(r)|2〉√

2

|D2〉 =
e−iΦ13(r)|1〉+ e−iΦ23(r)|2〉 − 2|3〉√

6
, (1)

where |i〉 ≡ |mg = i +3/2〉 (i = 1, 2, 3). Φij = Φi −
Φj , where the space-dependent laser phases read Φi(r) =
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Figure 1. Tripod scheme. (a) Propagation directions of
the laser beams and their polarizations along a magnetic bias
field B. Two Electro-Optics Modulators (EOM) are used
to sweep the two independent relative phases of the laser
beams. (b) Bare energy level structure of the tripod scheme,
implemented on the intercombination line of Strontium-87.
The magnetic bias field shifts consecutive excited levels by
∆B ≃ 760Γ = 5.7MHz. It allows each tripod polarized laser
beam to selectively address one of the magnetic transitions
marked by the black arrows.

ki · r + ϑi. ki is the wavevector of the beam coupling
state |i〉 to |e〉 and ϑi its phase at origin, see Fig. 1. To
implement non-Abelian transformations on the system,
the two independent offset phases tuned by the Electro-
Optic Modulators (EOM), shown in Fig. 1a, are φi =
ϑi − ϑ3 (i = 1, 2).

In a first set of experiments, we probe and quantify the
thermal decoherence of the dark states induced by the fi-
nite temperature of our atomic sample. In a second set of
experiments, we analyze the non-Abelian character of ge-
ometric transformations within the dark-state manifold.
To do so, we consider a certain phase loop in the parame-
ter space defined by the two relative phases φ1 and φ2 of
the tripod lasers, and we compare the final populations
of the internal atomic states when the cyclic sequence is
performed, starting from two different initial points on
the loop. In all experiments, we monitor the subsequent
manipulation and evolution of the atomic system in the
dark-state manifold by measuring the bare ground-state
populations with a nuclear spin-sensitive shadow imaging
technique, see Methods.

Thermal decoherence. Starting from state |3〉, we
prepare the atoms in dark state |D2〉 after a suitable adi-
abatic laser ignition sequence, see Methods. We assume
that the atoms do not move significantly during the time
duration of this sequence, see Fig. 2. Following [37, 38],
the subsequent evolution of the atoms is described by the
Hamiltonian

H =
(p̂11−A)2

2M
+W (2)

where p̂ = −i~∇ is the momentum operator, 11 is the
identity operator in the internal dark-state manifold, M
the atom mass, A the geometrical vector potential with

Figure 2. Ballistic expansion. Time evolution of the bare
state populations after the tripod ignition sequence (duration
t0 ≃ 8µs) is completed and laser beams have reached equal
Rabi frequencies Ω = 2π×250 kHz. The blue circles, the green
squares, and the red stars correspond to the populations P̄1,
P̄2, and P̄3 with |i〉 ≡ |mg = i+3/2〉 (i = 1, 2, 3), respectively.
The error bars correspond to a 95% confidence interval. Solid
lines: theoretical predictions given by equations (5). The
temperature T , the initial and the final populations of each
spin state are the fit parameters. The dashed lines, at early
times, extrapolate the fits into the time window t0. We get
a temperature T = 0.5(1) µK meaning that the atoms do not
move significantly during the dark state preparation sequence
since v̄t0/λ ≃ 0.08.

matrix entries Ajk = i~〈Dj |∇Dk〉 and W the geometri-
cal scalar potential with matrix entries

Wjk =
~
2〈∇Dj |∇Dk〉 − (A2)jk

2M
. (3)

With our laser geometry, A, A2, andW have the same
matrix form, and are uniform and time-independent, see
Methods. Thus, we can look for states in the form |ψ〉 ⊗
|p〉 where p =Mv is the initial momentum of the atoms
and |ψ〉 some combination of dark states. Denoting by
P0(v) the initial atomic velocity distribution, we find that
the population of state |2〉 remains constant while the two
others display an out-of-phase oscillatory behavior at a
velocity-dependent frequency ωv = 2

3 [k(vx − vy) + 2ωR]:

P1(v, t) =
5P0(v)

12

(

1− 3

5
cosωvt

)

,

P2(v, t) =
P0(v)

6
,

P3(v, t) =
5P0(v)

12

(

1 +
3

5
cosωvt

)

,

(4)

where ωR = ~k2/(2M) is the recoil frequency and
k = 2π/λ is the laser wavenumber. The frequency
component proportional to k(vx − vy) comes from the
momentum-dependent coupling term A · p̂/M in equa-
tion (2) (Doppler effect) whereas the other frequency
component, proportional to ωR, comes from the scalar
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term A2/(2M)+W . With our laser configuration, light-
assisted mechanical forces can only come from photon ab-
sorption and emission cycles between a pair of orthogonal
laser beams. Such photon exchanges would induce a pop-
ulation change of state |2〉. Since no force is acting here
on the centre-of-mass of the atoms (the Abelian gauge
field is uniform and can be gauged away), the population
P2(v, t) must stay constant, as predicted by equation (4).
Since photon absorption and emission cycles between the
pair of co-propagating laser beams do not impart any
net momentum transfer to the atoms, population trans-
fer between states |1〉 and |3〉 is possible and P1(v, t) and
P3(v, t) change in time, their sum being constant due to
probability conservation.
Averaging over the Maxwellian velocity distribution of

the atoms, the bare state populations of the thermal gas
read

P̄1(t) =
5

12
− 1

4
cos

(

4

3
ωRt

)

exp

[

−4

9
(kv̄t)

2

]

,

P̄2(t) =
1

6
,

P̄3(t) =
5

12
+

1

4
cos

(

4

3
ωRt

)

exp

[

−4

9
(kv̄t)

2

]

, (5)

where v̄ =
√

kBT/M is the thermal velocity of the gas at
temperature T . We see that P̄1 and P̄3 converge to the
same value at long times. This means that the thermal
average breaks the tripod scheme into a Λ-scheme cou-
pled to the two circularly-polarized beams and a single
leg coupled to the linearly-polarized beam. As a conse-
quence, quantum coherence partially survives the ther-
mal average.
Our experimental results confirm this behavior even

if P̄1 and P̄3 do not merge perfectly, see Fig. 2. This
discrepancy can be lifted by introducing a 10% imbal-
ance between the Rabi transition frequencies in our cal-
culation. The population difference P̄3 − P̄1 measures
in fact the Fourier transform of the velocity distribution
along the diagonal direction x̂ − ŷ. It decays with a
Gaussian envelope characterized by the time constant
τ = 3/(2kv̄), as predicted by equations (5). This in-
terferometric thermometry is similar to some spectro-
scopic ones such as recoil-induced resonance [39, 40] or
stimulated two-photons transition [41, 42]. From our
measurements, we get T = 0.5(1)µK, τ ≃ 24µs and
v̄ ≃ 6.9mm/s.
Non-Abelian transformations. We now investigate

the geometric non-Abelian unitary operator U acting on
the dark-state manifold when the relative phases of the
tripod beams are adiabatically swept along some closed
loop C in parameter space. For a pinned atom (M → ∞),
U is given by the loop integral along C of the 2×2 Mead-
Berry 1-form ω ≡ [ωjk] ≡ [i~〈Dj |dDk〉]

U = P exp

(

i

~

∮

C

ω

)

, (6)

Figure 3. Geometric gate operation. (a) Phase loop in
parameter space (φ2, φ1). φi (i = 1, 2) are the two inde-
pendent offset phases tuned by the EOMs shown in Fig. 1a.
We have performed two counterclockwise cycles: the first one
is a → b → c and starts from the origin, the second one
is c → a → b and starts from the upper corner. The loop is
completed in 12µs and its excursion is φ0. (b) Measured bare
state populations P̄1 (blue circles), P̄2 (green squares) and P̄3

(red stars) as a function of φ0 for the first cycle. The Rabi
frequencies are Ω = 2π×450 kHz and T = 0.5µK. Dark state
reconstruction as a function of φ0. (c) Population of |D1〉
(blue circles) and |D2〉 (red squares). (d) Azimuthal phase ϕ.
The solid and dashed curves in panels (b), (c), and (d) are
the theoretical predictions for a pinned atom and for a gas at
temperature T respectively. The error bars correspond to a
95% confidence interval.

where P is the path-ordering operator [6].

As before, the system is initially prepared in dark state
|D2〉. Then, starting from the origin, the phase loop is
cycled counterclockwise, see Fig. 3a. Each segment is
linearly swept in ∆t = 4µs and the phase excursion is
φ0. The total duration 3∆t of the loop is thus less than
the thermal decoherence time τ discussed above. In Fig.
3b, we plot the bare state populations measured right
after the phase loop as a function of φ0 and their com-
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Figure 4. Unitary operators reconstruction. (a) Ele-
ments of operator U given by equation (7) for the phase loop
a → b → c at φ0 = π, see Fig. 3a. The blue, red, and
green bars correspond to a pinned atom, a gas at tempera-
ture T = 0.5µK, and the experimental data respectively. (b)
Same as (a) but for the phase loop c → a → b. The error
bars correspond to a 95% confidence interval.

parison to theoretical predictions for pinned atoms and
for atoms at finite temperature under the adiabatic as-
sumption. This clearly shows that thermal effects are
an important ingredient to reproduce the experimental
results and that the adiabatic approximation is well jus-
tified, see Methods. Note that the mismatch with pinned
atoms decreases with increasing φ0. This is because the
thermal decoherence is quenched by the increasing geo-
metrical coupling among the dark states when the sweep
rate γ = φ0/∆t > kv̄, ωR

1. As a further approximation,
we now disregard thermal decoherence and consider that
the system after the phase loop is described by a pure
quantum state |ψout〉 =

∑

j=1,2 dj |Dj〉 2. As shown in
Figs. 3b and 3c, one can easily extract the dark state
populations and the absolute value of the azimuthal an-
gle ϕ = Arg(d2)−Arg(d1) from the measured bare state
populations, see Methods. When φ0 & 0.7π, the values
for ϕ match well with the prediction for a pinned atom
confirming the quenching of thermal decoherence. At
φ0 = π, the two dark state populations are almost equal.
In the language of the Bloch sphere representation, this
corresponds to a rotation of the initial south pole state
|D2〉 to the equatorial plane.

We now reconstruct the full geometric unitary operator
U for φ0 = π. Up to an unobservable global phase, we

1 The thermal decoherence quenching can be quantified by the

bare population distance ∆P =
√

∑

3

i=1
(Pi − P0i)2, where Pi

and P0i are the experimental and pinned-atom populations. At
φ0 = π, we get ∆P = 0.04(5). This value increases when φ0

decreases, reaching ∆P = 0.19(5) at φ0 = 0
2 A pure state is denoted by a density matrix ρ fulfilling Tr{ρ2} =
1. For a finite-temperature gas, we find Tr{ρ2} = 0.95 at φ0 = π.
This value decreases when φ0 decreases, reaching Tr{ρ2} = 0.8
at φ0 = 0

write:

U =

[

α β
−β∗ α∗

]

(7)

with |α|2+ |β|2 = 1. The previous dark state reconstruc-
tion, done after the phase loop applied on |D2〉, gives
access to |α|, |β| and Arg(α)−Arg(β), see Methods. To
obtain Arg(α) and Arg(β) and fully determine U , we
start from a linear combination of dark states |D1〉 and
|D2〉, perform the phase loop and process the new data.
The results are shown in Fig. 4a and compared to the
theoretical predictions for a pinned atom and a gas at
finite temperature. The good agreement with our data
validates the expected small impact of temperature for
φ0 = π.
Probing non-Abelianity. With the previous phase

loop protocol, we have U = UcUbUa where a, b, and c
label the edges of the loop, see Fig. 3a. To illustrate the
non-commutative nature of the transformation group, we
will cycle the phase loop counterclockwise starting from
the upper corner. We then reconstruct the correspond-
ing unitary operator U ′ = UbUaUc like done for U . The
results are depicted in Fig. 4b and show that U and U ′

are indeed different, though unitarily related, confirm-
ing the sensitivity of these geometric transformations to
path ordering. The Frobenius distance between the two
unitaries is D =

√

2− |Tr(U †U ′)| = 1.27(25) and is in
agreement with the theoretical result for a pinned atom
(D = 1.09) and for a finite-temperature gas (D = 1.14).
These values have to be contrasted with the maximum
possible Frobenius distance D = 2.

Discussion

Using a tripod scheme on Strontium-87 atoms, we have
implemented adiabatic geometric transformations acting
on two degenerate dark states. This system realizes a
universal geometric single-qubit gate. We have studied
SU(2) transformations associated to laser beams phase
loop sequences and shown their non-Abelian character.
In contrast to recent works done in optical lattices [14–
20], our system realizes an artificial gauge field in contin-
uous space. Depending on the laser field configuration,
different manifestations of artificial gauge fields can be
engineered such as spin-orbit coupling [38, 43], Zitter-
bewegung [38], magnetic monopole [37] or non-Abelian
Aharomov-Bohm effect [43] (see [44, 45] for reviews). A
generalization to the SU(3) symmetry is also discussed in
[46]. Some of these schemes might be difficult to imple-
ment in optical lattices. Gauge fields generated by opti-
cal fields come from a redistribution of photons among
the different plane waves modes and involve momenta
transfer comparable to the photon recoil. Observing
mechanical effects of non-uniform or non-Abelian gauge
fields would thus require atomic gases colder than the re-
coil temperature and thus cooling techniques beyond the
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mere Doppler cooling done here [47, 48]. However, the
gauge field is still driving the internal state dynamics re-
gardless of the temperature of the gas provided the adia-
batic condition is fulfilled. Noticeably, this internal state
dynamics is still present when the gauge field is Abelian
and uniform. It led us to an interferometric thermometry
based on the Fourier transform of the velocity distribu-
tion of the gas.

Methods

Cold sample preparation and implementation

of the tripod scheme. The cold gas is obtained by
laser cooling on the 1S0 → 3P1 intercombination line at
689 nm (linewidth Γ = 2π × 7.5 kHz). Atoms are first
laser cooled in a magneto-optical trap and then trans-
ferred into an ellipsoidal crossed optical dipole trap at
795nm (trapping frequencies 150, 70, and 350 Hz) where
they are held against gravity. Atoms are then optically
pumped in the stretched mg = Fg = 9/2 magnetic
substate and subsequently Doppler cooled in the optical
trap using the close mg = Fg = 9/2 → m′

e = F ′
e = 11/2

transition, see Fig. 5. The atomic cloud contains
about 105 atoms at a temperature T = 0.5µK (recoil
temperature TR = ~ωR/kB ≈ 0.23µK, where kB is the
Boltzmann constant). A magnetic field bias of B = 67G
is applied to lift the degeneracy of the Zeeman excited
states. Because the Zeeman shift between levels in the
excited manifold Fe = 9/2 is large, one can isolate a
tripod scheme between three ground-state levels and a
single excited state, namely |e〉 = |Fe = 9/2,me = 7/2〉,
as indicated in Fig. 5. The Zeeman shift of the
ground-state levels (Landé factor g = −1.3 × 10−4)
is weak (12 kHz) and is compensated by changing
accordingly the frequencies of the three tripod laser
beams. The lasers are finally tuned at resonance and
their polarizations are chosen according to the electrical
dipole transition selection rules. In practice, the two
laser beams with right and left circular polarizations,
respectively addressing the mg = 5/2 → me = 7/2
and mg = 9/2 → me = 7/2 transitions, are co-
propagating. The laser beam with linear polarization,
aligned with the magnetic bias field, addressing the
mg = 7/2 → me = 7/2, is orthogonal to the circularly
polarized beams, see Fig. 1b. The plane of the lasers
is chosen orthogonal to the direction of gravity. The
two independent laser offset phases φ1 and φ2 (see main
text) can be tuned by using two electro-optic modulators.

Adiabatic approximation. The two indepen-
dent laser offset phases φ1 and φ2 are ramped from
0 to φ0 ≤ 1.2π at a constant rate γ during the
sweep time ∆t = 4µs. The AC-Stark shifts of the
bright states is given by

√
3Ω = 2π × 780 kHz. Since

γ = φ0/∆t ≤ 2π × 150 kHz, we have
√
3Ω/γ ≥ 5.2 and

the adiabatic approximation is well justified.

Figure 5. Energy levels and experimentally relevant

transitions. A magnetic bias field B = 67G lifts the de-
generacy of the different Zeeman manifolds and allows to ad-
dress each transition individually. The Landé factors g are
indicated for each hyperfine level. The black arrows corre-
spond to the tripod beams (see main text for more details).
The dashed red arrows indicate the transitions used for the
shadow spin-sensitive imaging system. The dash-dotted pur-
ple arrow is the red-detuned cooling transition used in the
far-off resonant dipole trap.

Initial dark state preparation. Starting with
atoms in the |mg = 9/2〉 stretched state, the tripod
beams are turned on following two different sequences.
The first sequence prepares dark state |D2〉, see equa-
tion (1). More precisely, we first turn on the two laser
beams connecting the empty bare states |mg = 5/2〉
and |mg = 7/2〉 to the excited state |me = 7/2〉 and
then adiabatically ramp on the last laser beam. This
projects state |mg = 9/2〉 onto |D2〉 with a fidelity
of 95%. Since the bare state |mg = 9/2〉 is only
present in |D2〉, our choice of basis in the dark-state
manifold is well adapted to understand the dark state
preparation. A different ignition sequence is used to
prepare a combination of dark states |D1〉 and |D2〉. By
turning on sequentially abruptly the left-circular beam,
and adiabatically the right-circular beam, we create a
coherent (dark) superposition of the state |mg = 5/2〉
and |mg = 9/2〉. Finally, we turn on abruptly the
linearly-polarized beam and we expect to produce the
linear combination (|D1〉 +

√
3|D2〉)/2. In practice, a

systematic phase rotation occurs once the last beam is
turned on which adds an extra mixing among the dark
states. Performing the bare state population analysis,
we find that this initial state corresponds in fact to
0.6|D1〉+ 0.8ei0.15π|D2〉.

Spin sensitive imaging system. The bare state
populations in the ground-state are obtained with a
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nuclear spin-sensitive shadow imaging technique on the
Fg = 9/2 → F ′

e = 11/2 line, see Fig. 5. First we measure
the population of state |mg = 9/2〉 with a shadow laser
tuned on the closed mg = 9/2 → m′

e = 11/2 transition.
Then, using the same atomic ensemble, we measure the
population of state |mg = 7/2〉 by tuning the shadow
laser on the mg = 7/2 → m′

e = 9/2 transition. This
transition is open but its large enough Clebsch-Gordan
coefficient (

√

9/11 ∼ 0.9) ensures a good coupling with
the shadow laser. The population of state |mg = 5/2〉 is
measured in the same way (mg = 5/2 → m′

e = 7/2 open

transition, its Clebsch-Gordan coefficient
√

36/55 ∼ 0.8
being still large enough). The shadow laser beam
shines the atoms during 40µs with an on-resonance
saturation parameter I/Is = 0.5 (saturation intensity

Is = 3µW/cm
2
). With such values, the average number

of ballistic photons scattered per atom is less than one
and optical pumping can be safely ignored, ensuring an
accurate measurement of the ground-state populations.
To achieve a good statistics, the same experiment was
repeated 100 times and the corresponding data averaged.
The error bars on the bare state populations correspond
to a 95% confidence interval.

Dark states and unitary matrix reconstruction.

A state in the dark-state manifold takes the form |ψ〉 =
∑

j=1,2 dj |Dj〉 with |d1|2 and |d2|2 = 1−|d1|2 the popula-
tions of states |D1〉 and |D2〉 and ϕ = Arg(d2)−Arg(d1)
the azimuthal angle. Using equation (1), we immediately
find

|d2| =
√

3P̄3/2,

cosϕ = (P̄1 − P̄2)/
√

P̄3(2− 3P̄3).

Do note that the normalization of |ψ〉 restricts the pos-
sible values of the P̄i summing up to 1. The sign of ϕ
is determined using the prediction of equation (6) for a
pinned atom (M → ∞).

To reconstruct the unitary matrix U , as expressed
in equation (7), we perform the phase loop sequence
on two different initial dark states (their representative
points on the Bloch sphere should not be opposite) and
perform the dark state reconstruction for each of them.
The two phase terms in U are reconstructed up to a
sign. As for the dark state reconstruction, we rely on the
prediction for a pinned atom to lift this sign ambiguity.

Gauge fields and adiabatic Schrödinger equa-

tion. The time-dependent interaction operator for the
resonant tripod scheme, in the rotating-wave approxima-
tion, has the following expression:

H(t) =
~Ω(r, t)

2

3
∑

i=1

|e〉〈i|+H.c. (8)

We assume here that the laser Rabi frequencies coupling
the ground-states |i〉 = |mg = i + 3/2〉 to the excited
state |e〉 = |me = 7/2〉 have all the same amplitude de-
noted by Ω. The time dependency comes from the cyclic
ramping sequence of the two offset laser phases φj (j =
1, 2). Neglecting transitions outside the dark-state man-
ifold (adiabatic approximation), the system is described
by a quantum state |ψ(r, t)〉 = Σj=1,2Ψj(r, t)|Dj(r, t)〉,
where Ψj is the wave function of the centre-of-mass of
the atom in an internal state |Dj〉. In this basis, the
adiabatic Schrödinger equation for the column vector
Ψ = (Ψ1,Ψ2)

T reads:

i~Ψ̇ =

[

(p̂11−A)2

2M
+W − ωt

]

Ψ, (9)

where the dot denotes time derivative. The first two
terms on the right-hand side describe the dynamics of
an atom subjected to the synthetic gauge field. The last
term ωt ≡ [ωjk] ≡ [i~〈Dj |Ḋk〉] is due to the cyclic ramp-
ing sequence of the laser phases. Only this term remains
for a pinned atom (M → +∞), in which case one re-
covers equation (6). The general expressions of A and
W are given in the main text. With equal and constant
Rabi frequencies amplitude, and for the orientation of
our laser beams, one finds:

A =
2~(k2 − k1)

3
M,

A2

2M
=

8ER

9
M,

W = −4ER

9
M,

where ER = ~ωR = ~
2k2/(2M) is the recoil energy and

kj is the wavevector of laser beam j (see main text). As
one can see, all these operators have the same matrix
form. The matrix M reads:

M =
11 + s ·σ

2
=

(

3/4 −
√
3/4

−
√
3/4 1/4

)

(10)

and satisfies M2 = M, its unit Bloch vector being s =
(−

√
3/2, 0, 1/2). As a consequence, all these operators

can be diagonalized at once by the same transformation
and amenable to the simple projector matrix form:

M → MD =

(

1 0
0 0

)

. (11)

Because of our laser beams geometry, the vector poten-
tial A is in fact Abelian since its only non-zero matrix
component is along k2 − k1.
In contrast, the operator ωt has a different matrix

form. Indeed, the two offset phases φj of the lasers (see
main text) can be addressed at will. Following [44], we
get:

ωt =
~

2

(

φ̇1 + φ̇2 (φ̇1 − φ̇2)/
√
3

(φ̇1 − φ̇2)/
√
3 (φ̇1 + φ̇2)/3

)

. (12)
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In particular, we note that ωt leads to non-Abelian
transformations. An immediate consequence is that, for
a given phase loop in parameter space, the geometric
unitary operator associated with a cycle of phase ramps
depends on the starting point of the cycle on the loop.
Different starting points lead to different, though unitar-
ily related, non-commuting geometric unitary operators.
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dreas Roth, Hartmut Buhmann, Laurens W Molenkamp,
Xiao-Liang Qi, and Shou-Cheng Zhang, “Quantum spin
hall insulator state in hgte quantum wells,” Science 318,
766–770 (2007).

[10] David Hsieh, D Qian, L Wray, Y Xia, Y S Hor, R J Cava,
and M Zahid Hasan, “A topological dirac insulator in a
quantum spin hall phase,” Nature 452, 970–974 (2008).

[11] Cui-Zu Chang, Jinsong Zhang, Xiao Feng, Jie Shen,
Zuocheng Zhang, Minghua Guo, Kang Li, Yunbo Ou,
Pang Wei, Li-Li Wang, et al., “Experimental observa-
tion of the quantum anomalous hall effect in a magnetic
topological insulator,” Science 340, 167–170 (2013).

[12] Zoran Hadzibabic, Peter Krüger, Marc Cheneau, Bap-
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