NON-WANDERING FATOU COMPONENTS FOR STRONGLY ATTRACTING POLYNOMIAL SKEW PRODUCTS
Résumé
We show a partial generalization of Sullivan's non-wandering domain theorem in complex dimension two. More precisely, we show the non-existence of wandering Fatou components for polynomial skew products of $ \mathbb{C}^2$ with an invariant attracting fiber, under the assumption that the multiplier $ \lambda $ is small. We actually show a stronger result, namely that every forward orbit of any vertical Fatou disk intersects a bulging Fatou component.
Fichier principal
Non-Wandering Fatou Components For Strongly Attracting Polynomial Skew Products.pdf (239.42 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...