NON-WANDERING FATOU COMPONENTS FOR STRONGLY ATTRACTING POLYNOMIAL SKEW PRODUCTS - Archive ouverte HAL
Article Dans Une Revue The Journal of Geometric Analysis Année : 2019

NON-WANDERING FATOU COMPONENTS FOR STRONGLY ATTRACTING POLYNOMIAL SKEW PRODUCTS

Résumé

We show a partial generalization of Sullivan's non-wandering domain theorem in complex dimension two. More precisely, we show the non-existence of wandering Fatou components for polynomial skew products of $ \mathbb{C}^2$ with an invariant attracting fiber, under the assumption that the multiplier $ \lambda $ is small. We actually show a stronger result, namely that every forward orbit of any vertical Fatou disk intersects a bulging Fatou component.
Fichier principal
Vignette du fichier
Non-Wandering Fatou Components For Strongly Attracting Polynomial Skew Products.pdf (239.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01710467 , version 1 (16-02-2018)
hal-01710467 , version 2 (11-12-2018)

Identifiants

Citer

Zhuchao Ji. NON-WANDERING FATOU COMPONENTS FOR STRONGLY ATTRACTING POLYNOMIAL SKEW PRODUCTS. The Journal of Geometric Analysis, 2019. ⟨hal-01710467v2⟩
169 Consultations
311 Téléchargements

Altmetric

Partager

More