NON-WANDERING FATOU COMPONENTS FOR STRONGLY ATTRACTING POLYNOMIAL SKEW PRODUCTS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

NON-WANDERING FATOU COMPONENTS FOR STRONGLY ATTRACTING POLYNOMIAL SKEW PRODUCTS

Résumé

We show a partial generalization of Sullivan's non-wandering domain theorem in complex dimension two. More precisely, we show the non-existence of wandering Fatou components for polynomial skew products in $\mathbb{C}^2$ with an invariant attracting fiber, under the assumption that the multiplier $\lambda$ is small. We actually show a stronger result, namely that every forward orbit of any vertical Fatou disk intersects a fattened Fatou component.
Fichier principal
Vignette du fichier
Non-Wandering Fatou Components For Strongly Attracting Polynomial Skew Products.pdf (239.27 Ko) Télécharger le fichier
Non-Wandering Fatou Components For Strongly Attracting Polynomial Skew Products.aux (2.63 Ko) Télécharger le fichier
Non-Wandering Fatou Components For Strongly Attracting Polynomial Skew Products.blg (962 B) Télécharger le fichier
Non-Wandering Fatou Components For Strongly Attracting Polynomial Skew Products.synctex.gz (260.18 Ko) Télécharger le fichier
Non-Wandering Fatou Components For Strongly Attracting Polynomial Skew Products.toc (1.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01710467 , version 1 (16-02-2018)
hal-01710467 , version 2 (11-12-2018)

Identifiants

Citer

Zhuchao Ji. NON-WANDERING FATOU COMPONENTS FOR STRONGLY ATTRACTING POLYNOMIAL SKEW PRODUCTS. 2018. ⟨hal-01710467v1⟩
169 Consultations
311 Téléchargements

Altmetric

Partager

More