UNIFORM K-STABILITY AND ASYMPTOTICS OF ENERGY FUNCTIONALS IN KÄHLER GEOMETRY - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

UNIFORM K-STABILITY AND ASYMPTOTICS OF ENERGY FUNCTIONALS IN KÄHLER GEOMETRY

Résumé

Consider a polarized complex manifold (X, L) and a ray of positive metrics on L defined by a positive metric on a test configuration for (X, L). For many common functionals in Kähler geometry, we prove that the slope at infinity along the ray is given by evaluating the non-Archimedean version of the functional (as defined in our earlier paper [BHJ15]) at the non-Archimedean metric on L defined by the test configuration. Using this asymptotic result, we show that coercivity of the Mabuchi functional implies uniform K-stability, as defined in [Der15, BHJ15]. As a partial converse, we show that uniform K-stability implies coercivity of the Mabuchi functional when restricted to Bergman metrics.
Fichier principal
Vignette du fichier
BHJ2.pdf (591.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01708675 , version 1 (13-02-2018)

Identifiants

  • HAL Id : hal-01708675 , version 1

Citer

Sébastien Boucksom, Tomoyuki Hisamoto, Mattias Jonsson. UNIFORM K-STABILITY AND ASYMPTOTICS OF ENERGY FUNCTIONALS IN KÄHLER GEOMETRY. 2018. ⟨hal-01708675⟩
203 Consultations
101 Téléchargements

Partager

More