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UNIFORM K-STABILITY AND ASYMPTOTICS OF ENERGY
FUNCTIONALS IN KAHLER GEOMETRY

SEBASTIEN BOUCKSOM, TOMOYUKI HISAMOTO, AND MATTIAS JONSSON

ABSTRACT. Consider a polarized complex manifold (X, L) and a ray of positive metrics
on L defined by a positive metric on a test configuration for (X, L). For many common
functionals in Kahler geometry, we prove that the slope at infinity along the ray is given
by evaluating the non-Archimedean version of the functional (as defined in our earlier pa-
per [BHJ15]) at the non-Archimedean metric on L defined by the test configuration. Using
this asymptotic result, we show that coercivity of the Mabuchi functional implies uniform
K-stability, as defined in [Der15, BHII5]. As a partial converse, we show that uniform K-
stability implies coercivity of the Mabuchi functional when restricted to Bergman metrics.
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INTRODUCTION

Let (X, L) be a polarized complex manifold, i.e. smooth projective complex variety X
endowed with an ample line bundle L. A central problem in Kéhler geometry is to give
necessary and sufficient conditions for the existence of canonical Kahler metrics in the cor-
responding Kéhler class ¢; (L), for example, constant scalar curvature Kéhler metrics (cscK
for short). To fix ideas, suppose the reduced automorphism group Aut(X, L)/C* is discrete.
In this case, the celebrated Yau-Tian-Donaldson conjecture asserts that ¢ (L) admits a cscK
metric iff (X, L) is K-stable. That K-stability follows from the existence of a cscK metric
was proved by Stoppa [Stop09], building upon work by Donaldson [Don05], but the reverse
direction is considered wide open in general.

This situation has led people to introduce stronger stability conditions that would hope-
fully imply the existence of a cscK metric. Building upon ideas of Donaldson [Don05],
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Székelyhidi [Sz€06] proposed to use a version of K-stability in which, for any test configu-
ration (X, L) for (X, L), the Donaldson-Futaki invariant DF(X, £) is bounded below by a
positive constant times a suitable norm of (X, L). (See also [Szél5] for a related notion.)

Following this lead, we defined in the prequel [BHJ15] to this paper, (X, L) to be uniformly
K-stable if there exists § > 0 such that

DF(X,L) > 6J"2(X, L)

for any normal and ample test configuration (X, £). Here J¥A(X, £) is a non-Archimedean
analogue of Aubin’s J-functional. It is equivalent to the L'-norm of (X, L) as well as the
minimum norm considered by Dervan [Derl5]. The norm is zero iff the normalization of
(X, L) is trivial, so uniform K-stability implies K-stability.

In [BHJI5] we advocated the point of view that a test configuration defines a non-
Archimedean metric on L, that is, a metric on the Berkovich analytification of (X, L) with
respect to the trivial norm on the ground field C. Further, we defined non-Archimedean
analogues of many classical functionals in Kahler geometry. One example is the functional
JNA above. Another is MNA, a non-Archimedean analogue of the Mabuchi K-energy func-
tional M. It agrees with the Donaldson-Futaki invariant, up to an explicit error term, and
uniform K-stability is equivalent to

MNA(x, L) > 6JNM (X, L)

for any ample test configuration (X, £). In [BHJ15] we proved that canonically polarized
manifolds and polarized Calabi-Yau manifolds are always uniformly K-stable.

A first goal of this paper is to exhibit precise relations between the non-Archimedean
functionals and their classical counterparts. From now on we do not a priori assume that
the reduced automorphism group of (X, L) is discrete. We prove

Theorem A. Let (X, L) be an ample test configuration for a polarized complex manifold
(X, L). Consider any smooth strictly positive S'-invariant metric ® on L defined near the
central fiber, and let (¢°)s be the corresponding ray of smooth positive metrics on L. Denoting
by M and J the Mabuchi K-energy functional and Aubin J-functional, respectively, we then

have . i
lim 280 _ MNAx, L) and lim 29 _ JNA (X, L).

§—r+00 S s—+o0 8

The corresponding equalities also hold for several other functionals, see Theorem
More generally, we prove that these asymptotic properties hold in the logarithmic setting,
for subklt pairs (X, B) and with weaker positivity assumptions, see Theorem

At least when the total space X is smooth, the assertion in Theorem A regarding the
Mabuchi functional is closely related to several statements appearing in the literature [PRSO0S,
Corollary 2], [PT09) Corollary 1], [Li12l Remark 12, p.38], following the seminal work [T1a97].
However, to the best of our knowledge, neither the precise statement given here nor its proof
is available in the literature.

As in [PRS08], the proof of Theorem A uses Deligne pairings, but the analysis here is
more delicate since the test configuration X’ is not smooth. Using resolution of singularities,
we can make X smooth, but then we lose the strict positivity of ®. It turns out that the
situation can be analyzed by estimating integrals of the form [ X, e2¥1% as 7 — 0, where
X — C is an snc test configuration for X, and ¥ is a smooth metric on the (logarithmic)
relative canonical bundle of X near the central fiber, see Lemma [3.11
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Donaldson [Don99] (see also [Mab87, [Sem92]) has advocated the point of view that the
space H of positive metrics on L is an infinite-dimensional symmetric space. One can view
the space HN* of positive non-Archimedean metrics on L as (a subset of) the associated
(conical) Tits building. Theorem A gives justification to this paradigm.

The asymptotic formulas in Theorem A allow us to study coercivity properties of the
Mabuchi functional. As an immediate consequence of Theorem A, we have

Corollary B. If the Mabuchi functional is coercive in the sense that
M>6J-C
on H for some positive constants § and C, then (X, L) is uniformly K-stable, that is,
DF(X, L) > 6J A (X, L)
holds for any normal ample test configuration (X, L).

Coercivity of the Mabuchi functional is known to hold if X is a Kéhler-Einstein manifold
without vector fields. This was first established in the Fano case by [PSSW08]; an elegant
proof can be found in [DR15]. As a special case of a very recent result of Berman, Darvas and
Lu [BDL16], coercivity of the Mabuchi functional also holds for general polarized varieties
admitting a metric of constant scalar curvature and having discrete reduced automorphism
group. Thus, if (X, L) admits a constant scalar curvature metric and Aut(X,L)/C* is
discrete, then (X, L) is uniformly K-stable. The converse statement is not currently known
in general, but see below for the Fano case.

Next, we study coercivity of the Mabuchi functional when restricted to the space of
Bergman metrics. For any m > 1 such that mL is very ample, let H,, be the space of
Fubini-Study type metrics on L, induced by the embedding of X < PNm via mL.

Theorem C. Fiz m such that (X, mL) is linearly normal, and 6 > 0. Then the following
conditions are equivalent:

(i) there exists C > 0 such that M > 6J — C on Hy,.
(ii) DF(Xy, L)) > 6JNA( Xy, L)) for all 1-parameter subgroups A of GL(N,y,, C);
(iii) MNA( Xy, Ly) > 0JNA( Xy, L)) for all 1-parameter subgroups \ of GL(N,,,C).
Here (X, L)) is the test configuration for (X, L) defined by A.

The equivalence of (ii) and (iii) stems from the close relation between the Donaldson-
Futaki invariant and the non-Archimedean Mabuchi functional. In view of Theorem A, the
equivalence between (i) and (iii) can be viewed as a generalization of the Hilbert-Mumford
criterion. The proof uses in a crucial way a deep result of Paul [Paul2|, which states that the
restrictions to H,, of the Mabuchi functional and the J-functional have log norm singularities
(see §).

Since every ample test configuration arises as a l-parameter subgroup A of GL(N,,,C)
for some m, Theorem C implies

Corollary D. A polarized manifold (X, L) is uniformly K-stable iff there exist 6 > 0 and a
sequence Cy, > 0 such that M > 6J — Cy, on Hy, for all sufficiently divisible m.

Following Paul and Tian [PT06, PT09], we say that (X, mL) is CM-stable when there
exist C,0 > 0 such that M > 6J — C on H,,.
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Corollary E. If (X, L) is uniformly K-stable, then (X, mL) is CM-stable for any sufficiently
divisible positive integer m. Hence the reduced automorphism group is finite.

Here the last statement follows from a result by Paul [Paul3 Corollary 1.1].

Let us now comment on the relation of uniform K-stability to the existence of Kahler-
Einstein metrics on Fano manifolds. In [CDS15], Chen, Donaldson and Sun proved that
a Fano manifold X admits a Kéhler-Einstein metric iff it is K-polystable; see also [Tial5].
Since then, several new proofs have appeared. Datar and Székelyhidi [DSzI5] proved an
equivariant version of the conjecture, using Aubin’s original continuity method. Chen, Sun
and Wang [CSW15] gave a proof using the Kéahler-Ricci flow.

In [BBJ15], Berman and the first and last authors of the current paper used a variational
method to prove a slightly different statement: in the absence of vector fields, the existence of
a Kéhler-Einstein metric is equivalent to uniform K-stability. In fact, the direct implication
uses Corollary B above.

In §6| we outline a different proof of the fact that a uniformly K-stable Fano manifold
admits a Kahler-Einstein metric. Our method, which largely follows ideas of Tian, relies on
Székelyhidi’s partial C%-estimates [Sz&13] along the Aubin continuity path, together with
Corollary D.

As noted above, uniform K-stability implies that the reduced automorphism group of
(X, L) is discrete. In the presence of vector fields, there should presumably be a natural
notion of uniform K-polystability. We hope to address this in future work.

There have been several important developments since a first draft of the current pa-
per was circulated. First, Z. Sjostrom Dyrefelt [SD16] and, independently, R. Dervan and
J. Ross [DR16], proved a transcendental version of Theorem A. Second, as mentioned above,
it was proved in [BBJ15] that in the case of a Fano manifold without holomorphic vector
fields, uniform K-stability is equivalent to coercivity of the Mabuchi functional, and hence
to the existence of a Kéhler-Einstein metric. Finally, the results in this paper were used
in [BDL16] to prove that an arbitrary polarized pair (X, L) admitting a cscK metric must
be K-polystable.

The organization of the paper is as follows. In the first section, we review several clas-
sical energy functionals in Kéhler geometry and their interpretation as metrics on suit-
able Deligne pairings. Then, in §2| we recall some non-Archimedean notions from [BHJI15].
Specifically, a non-Archimedean metric is an equivalence class of test configurations, and the
non-Archimedean analogues of the energy functionals in are defined using intersection
numbers. In §3| we prove Theorem A relating the classical and non-Archimedean functionals
via subgeodesic rays. These results are generalized to the logarithmic setting in Section 5]
is devoted to the relation between uniform K-stability and CM-stability. In particular, we
prove Theorem C and Corollaries D and E. Finally, in we show how to use Székelyhidi’s
partial C-estimates along the Aubin continuity path together with CM-stability to prove
that a uniformly K-stable Fano manifold admits a Kahler-Einstein metric.
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sions. The first author is also grateful to Marco Maculan, Vincent Guedj and Ahmed Zeriahi
for helpful conversations. He was partially supported by the ANR projects GRACK, MACK
and POSITIVE. The second author was supported by JSPS KAKENHI Grant Number 25-
6660 and 15H06262. The last author was partially supported by NSF grant DMS-1266207,
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1. DELIGNE PAIRINGS AND ENERGY FUNCTIONALS

In this section we recall the definition and main properties of the Deligne pairing, as well
as its relation to classical functionals in Kahler geometry.

1.1. Metrics on line bundles. We use additive notation for line bundles and metrics. If,
for i = 1,2, ¢; is a metric on a line bundle L; on X and a; € Z, then a1¢ + as¢2 is a metric
on a1l + asLy. This allows us to define metrics on Q-line bundles. A metric on the trivial
line bundle will be identified with a function on X.

If o is a (holomorphic) section of a line bundle L on a complex analytic space X, then
log |o| stands for the corresponding (possibly singular) metric on L. For any metric ¢ on L,
log |o| — ¢ is therefore a function, and

o1y := lole™® = exp(log |o| — )

is the length of ¢ in the metric ¢. o
We normalize the operator d° so that dd® = >00, and set (somewhat abusively)

dd*¢ := —dd° log |o|,

for any local trivializing section o of L. The globally defined (1, 1)-form (or current) dd®¢
is the curvature of ¢, normalized so that it represents the (integral) first Chern class of L.
If X is a complex manifold of dimension n and 7 is a holomorphic n-form on X, then

.n2

7 _
In|? == S IAT

defines a natural (smooth, positive) volume form on X. More generally, there is a bijection
between smooth metrics on the canonical bundle Kx and (smooth, positive) volume forms
on X, which associates to a smooth metric ¢ on Kx the volume form €2 locally defined by

e*? = [nl*/Inl

for any local section 7 of K.
If w is a positive (1,1)-form on X and n = dim X, then w™ is a volume form, so —% log w™
is a metric on —Kx in our notation. The Ricci form of w is defined as the curvature

Ricw := —ddc% log w"

of w of this metric; it is thus a smooth (1, 1)-form in the cohomology class ¢1(X) of —Kx.
If ¢ is a smooth positive metric on a line bundle L on X, we denote by Sy € C*°(X) the
scalar curvature of the Kahler form dd®¢; it satisfies

Sy(dd¢)™ = nRic(dd*p) A (dd¢)" . (1.1)
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1.2. Deligne pairings. While the construction below works in greater generality [EIk89L
Zha96, IMGO0], we will restrict ourselves to the following setting. Let m: Y — T be a
flat, projective morphism between smooth complex algebraic varieties, of relative dimension
n > 0. Given line bundles Ly, ..., L, on Y, consider the intersection product

Lo-...- Ly - [Y] € CHgimy—(n41)(Y) = CHaim7-1(Y).
Its push-forward belongs to CHgy7—1(T) = Pic(T) since T' is smooth, and hence defines

an isomorphism class of line bundle on T. The Deligne pairing of Lg, ..., L, selects in a
canonical way a specific representative of this isomorphism class, denoted by
(Lo L)y )7

The pairing is functorial, multilinear, and commutes with base change. It further satisfies
the following key inductive property: if Zj is a non-singular divisor in Y, flat over T" and
defined by a section og € H°(Y, L), then we have a canonical identification

<L07--'7LTL>Y/T: <L1‘Zov"'7LTL’ZO>Z()/T' (12)

For n = 0, (Lo)y/r coincides with the norm of Lo with respect to the finite flat morphism
Y — T. These properties uniquely characterize the Deligne pairing. Indeed, writing each
L; as a difference of very ample line bundles, multilinearity reduces the situation to the case
where the L; are very ample. We may thus find non-singular divisors Z; € |L;| with (;c; Z;
non-singular and flat over T for each set I of indices, and we get

(Lo, - s L)y = (Lnlzon-nZn-1) Zon-1Z0_1 /T

1.3. Metrics on Deligne pairings. We use [E1Ik90, [Zha96l Mor99] as references. Given a
smooth metric ¢; on each Lj, the Deligne pairing (Lo, ..., Ly)y/r can be endowed with a
continuous metric

<¢07 ey ¢n>Y/T)

smooth over the smooth locus of w, the construction being functorial, multilinear, and
commuting with base change. It is basically constructed by requiring that

<¢07 R ¢TL>Y/T = <¢1|Z07 ceey ¢H‘Z0>Z0/T - /Y/T log ’0—0|¢0ddc¢1 JANRRIAN ddcd’n (13)

in the notation of (|1.2)), with fy/T denoting fiber integration, i.e. the push-forward by =

as a current. By induction, the continuity of the metric (¢, ..., ¢,) reduces to that of
fy/T log |o0]g,dd“¢1 A - - - A dd®pp, and thus follows from [Stol66, Theorem 4.9].

Remark 1.1. As explained in [EIK90, 1.1], arguing by induction, the key point in checking
that (1.3)) is well-defined is the following symmetry property: if o1 € HY(Y, L) is a section
with divisor Z1 such that both Z1 and Zy N Z1 are non-singular and flat over T, then

/ 10g|0’0‘¢0ddc¢1 /\a+/ log]01|¢1a
Y/T Zy/T

:/ log|01\¢1ddc¢0/\a+/ log |00 g,
Y/T Z/T

with o = ddpa A - - - Ndd®¢yp. By the Lelong—Poincaré formula, the above equality reduces to
s (log oo, dd® log |o1]g, A @) = 7y (log |o1g, dd®1og [oo]gy A @),
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which holds by Stokes’ formula applied to a monotone reqularization of the quasi-psh func-
tions log |0 g, -

Metrics on Deligne pairings satisfy the following two crucial properties, which are direct

consequences of (|1.3)).

(i) The curvature current of (o, . .., ¢n)y, 7 satisfies
dd®(¢o, - - - ,¢n>y/T = / dd®¢o A -+ AN ddP, (1.4)
Y/T

where again fY T denotes fiber integration.
(ii) Given another smooth metric ¢f, on Ly, we have the change of metric formula

(@01, u)y /7 — (G001, bu)y /7 = /Y (G G0Ny A n g (1)

1.4. Energy functionals. Let (X, L) be a polarized manifold, i.e. a smooth projective
complex variety X with an ample line bundle L. Set

V:=(L") and S:=-nV 1Ky L"),
where n = dim X. Denote by H the set of smooth positive metrics ¢ on L. For ¢ € H,
set MA(¢) := V~1(dd°¢)". T hen MA(¢) is a probability measure equivalent to Lebesgue
measure, and [ Sy MA(¢) = S by (L.I).

We recall the following functionals in Kahler geometry. Fix a reference metric ¢por € H.
Our notation largely follows [BBGZ13, BBEGZ11].

(i) The Monge-Ampére energy functional is given by

O A R (16)
(ii) The J-functional is a translation invariant version of FE, defined as
50 i= [ (6= 6u) MA(nr) ~ E(0). (17)
The closely related I-functional is defined by

16) = [ (6= dn) MAG) = [ (6= 6.0) MAG), (19)

(iii) For any closed (1, 1)-form 6, the 6-twisted Monge-Ampére energy is given by
o) - LS v / (6 — bret) (G A (et 6. (L9)

ni= X

Taking 0 := —n Ric(dd ¢ref), we obtain the Ricci energy R := —Ey Ric(ddegyer)-
(iv) The entropy of ¢ € H is defined as
MA(¢)

1(6) =4 [ oz [m(w] MA(6), (1.10)

that is, (half) the relative entropy of the probability measure MA(¢) with respect
to MA(¢rer). We have H(¢) > 0, with equality iff ¢ — ¢ef is constant.
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(v) The Mabuchi functional (or K-energy) can now be defined via the Chen-Tian for-
mula [Che00] (see also [BB14l Proposition 3.1]) as

M(¢) = H(¢) + R(¢) + SE(9). (1.11)
These functionals vanish at ¢..s and satisfy the variational formulas:
IE(¢) = MA(¢) = V™~ (dd°¢)"
SEg(9) = V1 (dd°¢)" " A6
SR(¢) = —nV 1 (dd¢)" ' A Ric(dd drer)
SH(¢) = nV 1 (dd¢)" 1 A (Ric(dd prer) — Ric(dd o))
IM(¢) = (S — Sy) MA(9)

In particular, ¢ is a critical point of M iff dd®¢ is a cscK metric.
The functionals I, J and I — J are comparable in the sense that

1
—J<I—J<nJ (1.12)
n

on H. For ¢ € H we have J(¢) > 0, with equality iff ¢ — ¢yer is constant. These properties
are thus also shared by I and I — J.

The functionals H, I, J, M are translation invariant in the sense that H (¢ + ¢) = H(¢)
for c € R. For E and R we instead have E(¢ + ¢) = E(¢) + ¢ and R(¢ + ¢) = R(¢) — Se,
respectively.

1.5. Energy functionals as Deligne pairings. The functionals above can be expressed
using Deligne pairings, an observatlon going back at least to [PS04]. Note that any metric
¢ € H induces a smooth metric 5 LlogMA(¢) on Kx. The following identities are now easy
consequences of the change of metric formula ([1.5]).

Lemma 1.2. For any ¢ € H we have

(n+ DVE() = (6" )x — (61 )
T(0) = (6 6)x — {00 )x = — [0")x — (6] s
VI(}) = (¢ — dref, ref> — (@ — bret; &) X;
VR(8) = (3108 MA(Grer), ") x — (108 MA(drr), ) x5
VH($) = (§1og MA(8), 6"} x — (10§ MA(Grer), ") x:
VM(6) = (5 log MA(9), 6")x — (3108 MA(Grer), ) x
5[ x - (],

where ( )x denotes the Deligne pairing with respect to the constant map X — {pt}.

Remark 1.3. The formulas above make it evident that instead of fixing a reference metric
Gret € H, we could view E, H + R and M as metrics on suitable multiples of the complex
lines (L") x, (Kx, L™ x, and (n + 1)(Kx, L™ x + S{L"™") x, respectively.
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Remark 1.4. In the definition of R, we could replace — Ric dd€¢rer by dd“rer for any smooth
metric Prer on Kx. Sitmilarly, in the definition of H, we could replace the reference measure
MA (¢ref) by €2V, Doing so, and keeping the Chen-Tian formula, would only change the
Mabuchi functional M by an additive constant.

1.6. The Ding functional. Now suppose X is a Fano manifold, that is, L := —Kx is
ample. Any metric ¢ on L then induces a positive volume form =2 on X. The Ding
functional [Din88] on H is defined by

D(¢) = L(¢) — E(¢),

where
L(¢) = —élog/ e 2%,
X

This functional has proven an extremely useful tool for the study of the existence of Kéahler-
Einstein metrics, which are realized as the critical points of D, see e.g. [Berm16l BBJ15].

2. TEST CONFIGURATIONS AS NON-ARCHIMEDEAN METRICS

In this section we recall some notions and results from [BHJ15]. Let X be a smooth
projective complex variety and L a line bundle on X.

2.1. Test configurations. As in [BHJI5] we adopt the following flexible terminology for
test configurations.

Definition 2.1. A test configuration X for X consists of the following data:
(i) a flat, projective morphism of schemes m: X — C;
(ii) a C*-action on X lifting the canonical action on C;
(iii) an isomorphism X} ~ X.

We denote by 7 the coordinate on C, and by X the fiber over 7.

These conditions imply that X" is reduced and irreducible [BHJI5, Proposition 2.6]). If
X, X' are test configurations for X, then there is a unique C*-equivariant birational map
X' --» X compatible with the isomorphism in (iii). We say that X’ dominates X if this
birational map is a morphism; when it is an isomorphism we somewhat abusively identify
X and X’. Any test configuration X is dominated by its normalization X .

An snc test configuration for X is a smooth test configuration X whose central fiber Ay
has simple normal crossing support (but is not necessarily reduced).

When X is a test configuration, we define the logarithmic canonical bundle as

K38 = Ky + X rea-
Setting K(lcog = K¢ + [0], we define the relative logarithmic canonical bundle as

1 1 1
Ké\??@ = K/\(’)g o W*K(é)g = KX/C + XO,red — Xo;

this is well behaved under base change 7+ 7¢, see [BHLI15, §4.4]. Despite the terminology,

Kx, Kyc, K and K%

x/c are only Weil divisor classes in general; they are line bundles

when X is smooth.

Definition 2.2. A test configuration (X, L) for (X,L) consists of a test configuration X
for X, together with the following additional data:
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(iv) a C*-linearized Q-line bundle L on X;
(v) an isomorphism (X1,L1) ~ (X, L).

A pull-back of a test configuration (X, L) is a test configuration (X', L") where X’ domi-
nates X and £’ is the pull-back of £. In particular, the normalization (f, EN) is the pull-back
of (X, L) with v: X — X the normalization morphism.

A test configuration (X, £) is trivial if X = X x C with C* acting trivially on X. This
implies that (X, £ + ¢Xp) = (X, L) x C for some constant ¢ € Q. A test configuration for
(X, L) is almost trivial if its normalization is trivial.

We say that (X, £) is ample (resp. semiample, resp. nef) when L is relatively ample (resp.
relatively semiample, resp. nef). The pullback of a semiample (resp. nef) test configuration
is semiample (resp. nef).

If L is ample, then for every semiample test configuration (X', £) there exists a unique
ample test configuration (Xamp,Lamp) that is dominated by (X, L) and satisfies p,Ox =
OXppnp» Where g2 X' — Xy is the canonical morphism; see [BILI15, Proposition 2.17].

Note that, while & can often be chosen smooth, X, will not be smooth, in general. It
is, however, normal whenever X is.

2.2. One-parameter subgroups. Suppose L is ample. Ample test configurations are then
essentially equivalent to one-parameter degenerations of X. See [BHJ15] §2.3] for details on
what follows.

Fix m > 1 such that mL is very ample, and consider the corresponding closed embedding
X < PNm—1 with N, := h%(X,mL). Then every 1-parameter subgroup (1-PS for short)
A: C* — GL(NVy,, C) induces an ample test configuration (X, £y) for (X, L). By definition,
X is the Zariski closure in PV x C of the image of the closed embedding X x C* — PV x C*
mapping (z,7) to (A(7)x, 7). Note that (X, L)) is trivial iff A is a multiple of the identity.
We emphasize that X is not normal in general.

In fact, every ample test configuration may be obtained as above. Using one-parameter
subgroups, we can produce test configurations that are almost trivial but not trivial, as
observed in [LX14, Remark 5]. See [BHJ15, Proposition 2.12] for an elementary proof of the
following result.

Proposition 2.3. For every m divisible enough, there exists a 1-PS \: C* — GL(N,,,C)
such that the test configuration (X, Ly) is nontrivial but almost trivial.

2.3. Valuations and log discrepancies. By a valuation on X we mean a real-valued
valuation v on the function field C(X) (trivial on the ground field C). The trivial valuation
Vtriv 18 defined by vy (f) = 0 for f € C(X)*. A valuation v is divisorial if it is of the form
v = cordp, where ¢ € Qs and F' is a prime divisor on a projective normal variety admitting
a birational morphism onto X. We denote by X4V the set of valuations on X that are either
divisorial or trivial, and equip it with the weakest topology such that v — v(f) is continuous
for every f € C(X)*.

The log discrepancy Ax(v) of a valuation in X div is defined as follows. First, Ax (vtriv) =
0. For v = cordp a divisorial valuation as above, we set Ax = c¢(1 + ordp(Ky,x)), where
Ky/x is the relative canonical (Weil) divisor.

Now consider a normal test configuration & of X. Since C(X') ~ C(X)(7), any valuation
w on X restricts to a valuation r(w) on X. Let E be an irreducible component of the central
fiber Xy = > bgE. Then ordg is a C*-invariant divisorial valuation on C(X) and satisfies
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ordg(t) = bg. If we set vg := r(bg' ordg), then vg is a valuation in X4V, Conversely,
every valuation v € X9V has a unique C*-invariant preimage w under r normalized by
w(7) =1, and w is associated to an irreducible component of the central fiber of some test
configuration for X, cf. [BHJ15, Theorem 4.6].

Note that ordg is a divisorial valuation on X x C. By [BHJ15, Proposition 4.11], the log
discrepancies of ordg and vg are related as follows: Axyc(ordg) =bg(l + Ax(vg)).

2.4. Compactifications. For some purposes it is convenient to compactify test configura-
tions. The following notion provides a canonical way of doing so.

Definition 2.4. The compactification X of a test configuration X for X is defined by gluing
together X and X x (P1\ {0}) along their respective open subsets X \ Xy and X x (C\ {0}),
using the canonical C*-equivariant isomorphism X \ Xy ~ X x (C\ {0}).

The compactification X' comes with a C*-equivariant flat morphism X — P!, still denoted
by 7. By construction, 771 (P! \ {0}) is C*-equivariantly isomorphic to X x (P! \ {0}) over
P\ {0}.

Similarly, a test configuration (X, L) for (X, L) admits a compactification (X, £), where

L is a C*-linearized Q-line bundle on X. Note that L is relatively (semi)ample iff £ is.
The relative canonical differential and relative canonical differential are now defined by

Kyp = Ky — 1" Kp

1 1 1
K)g%]}n = K)gg — W*K]Polg = K)?/]P’l + XO,red —X.

2.5. Non-Archimedean metrics. Following [BHJ15, §6] (see also [BJ16b]) we introduce:

Definition 2.5. Two test configurations (X1, L1), (Xa, L) for (X, L) are equivalent if there
exists a test configuration (Xs,Ls3) that is a pull-back of both (Xi,L1) and (Xa,L2). An
equivalence class is called a non-Archimedean metric on L, and is denoted by ¢. We denote
by duriv the equivalence class of the trivial test configuration (X, L) x C.

A non-Archimedean metric ¢ is called semipositive if some (or, equivalently, any) repre-
sentative (X, L) of ¢ is nef. Note that this implies that L is nef.

When L is ample, we say that a non-Archimedean metric ¢ on L is positive if some (or,
equivalently, any) representative (X, L) of ¢ is semiample. We denote by HNA the set of
all non-Archimedean positive metrics on L. By [BHJIS, Lemma 6.3], every ¢ € HNA is
represented by a unique normal, ample test configuration.

The set of non-Archimedean metrics on a line bundle L admits two natural operations:

(i) a translation action of Q, denoted by ¢ — ¢ + ¢, and induced by (X, L) — (X, L+
CX[));

(ii) a scaling action of the semigroup N* of positive integers, denoted by ¢ — ¢4 and
induced by the base change of (X, L) by 7+ 7¢.

When L is ample (resp. nef) these operations preserve the set of positive (resp. semipositive)
metrics. The trivial metric ¢ty is fixed by the scaling action.

As in §I.1] we use additive notation for non-Archimedean metrics. A non-Archimedean
metric on Ox induces a bounded (and continuous) function on X4V,
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Remark 2.6. As explained in [BHJI15, §6.5], a non-Archimedean metric ¢ on L, as defined
above, can be viewed as a metric on the Berkovich analytification [Berk90] of L with respect
to the trivial absolute value on the ground field C. See also [BJ16b| for a more systematic
analysis, itself building upon [BEJ16, BF.J15al.

2.6. Intersection numbers and Monge-Ampeére measures. Following [BHJ15 §6.6]
we define the intersection number (¢ - ... - ¢,) of non-Archimedean metrics ¢y, ..., ¢, on
line bundles Ly, ..., L, on X as follows. Pick representatives (X, L;) of ¢;, 0 < i < n, with
the same test configuration X for X and set

where (X, £;) is the compactification of (X, £;). It follows from the projection formula that
this does not depend of the choice of the £;. Note that (¢F!) = 0. When Ly = Ox, so
that Lo = Ox (D) for a Q-Cartier Q-divisor D = > rgFE supported on Xp, we can compute
the intersection number as (¢pg - ... ¢n) =D pre(Lilg ...  Ln|E).

To a non-Archimedean metric ¢ on a big and nef line bundle L on X we associate, as
in [BHJLH, §6.7], a signed finite atomic Monge-Ampére measure on X4V, Pick a represen-

tative (X, L;) of ¢, and set

MANY () = V71 " bp(L[3)d0,,
E

where E ranges over irreducible components of Xy = )", bpFE, vg = r(bgl ordg) € X4V,
and V' = (L"). When the ¢; are semipositive, the mixed Monge-Ampére measure is a
probability measure.

2.7. Functionals on non-Archimedean metrics. Following [BHJ15, §7] we define non-
Archimedean analogues of the functionals considered in Fix a line bundle L.

Definition 2.7. Let W be a set of non-Archimedean metrics on L that is closed under
translation and scaling. A functional F': W — R is

(i) homogeneous if F(¢pq) = dF(¢) for ¢ € Wand d € N*;
(i) translation invariant if F'(¢ + ¢) = F(¢) for ¢ € W and c € Q.

When L is ample, a functional F on HN4 may be viewed as a function F(X,L) on
the set of all semiample test configurations (X, L) that is invariant under pull-back, i.e.
F(X', L) = F(X, L) whenever (X', L) is a pull-back of a (X, £) (and, in particular, invariant
under normalization). Homogeneity amounts to F'(Xy, L4) = d F(X, L) for all d € N*| and
translation invariance to F(X, L) = F(X, L + cXp) for all ¢ € Q.

For each non-Archimedean metric ¢ on L, choose a normal representative (X, L) that
dominates X x C via p: X — X x C. Then £ = p*(L x C) + D for a uniquely deter-
mined Q-Cartier divisor D supported on Xp. Write Xy = Y. pbgE and let (X, L) be the
compactification of (X, L).

In this notation, we may describe our list of non-Archimedean functionals as follows.
Assume L is big and nef. Let ¢y and ¢4,y be the trivial metrics on L and Kx, respectively.
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(i) The non-Archimedean Monge-Ampére energy of ¢ is
((an—i-l)
(n+1)V
B ( Zn-i—l)
S (n+ )V
(ii) The non-Archimedean I-functional and J-functional are given by
I (¢) : =V ¢iy) = V7 H(@ — duiv) - 67)
=V YL (p*(L xPYHY™) =V YD L").

EYMN¢) =

and

TN (@) i = Vo o) — ENA(9)

1 1

:7_. *L Pln_i_n—i-l‘
LX) = L ()
(iii) The non-Archimedean Ricci energy is
RY(9) : = V7 (e - 6")
1 * 7.-10 AN
=V <p Kxgxlpl/ﬂ:ﬂ L ) :
(iv) The non-Archimedean entropy is
B0 = [ Ax()MAYA9)
Xdiv
-1 1 n -1 % 1.1 n
—V (K;g%l L ) v (p KN L )

(v) The non-Archimedean Mabuchi functional (or K-energy) is
MNA(9) - = H¥A(6) + R¥A(6) + SENA(9)
e
(n+ 1)V
Note the resemblance to the formulas in All of these functionals are homogeneous.
They are also translation invariant, except for EN* and RN?, which satisfy
ENA(p+¢) = ENM @)+ ¢ and RN(¢ +c¢) = RNA(¢) — Sc (2.1)

for all ¢ € HNA and ¢ € Q.

The functionals IV JNA and INA — JNA are comparable on semipositive metrics in the
same way as . By [BHJ15, Lemma 7.7], when ¢ is positive, the first term in the
definition of J™* satisfies

V*l((b . (b?riv) = (¢ - ¢triv)(vtriv) = I)I(lc?;z(((ﬁ - (z)triv) = InEax bEl ordE(D).

=V (K 2) +

)E/]Pl En—‘r 1 ) )

Further, J¥A($) > 0, with equality iff ¢ = ¢y + ¢ for some ¢ € Q, and JN? is compara-
ble to both a natural L'-norm and the minimum norm in the sense of Dervan [Derl5],

see [BHJ15, Theorem 7.9]. For a normal ample test configuration (X,L) representing
¢ € HNA we also denote the J-norm by JNA(X, L).



14 SEBASTIEN BOUCKSOM, TOMOYUKI HISAMOTO, AND MATTIAS JONSSON

2.8. The Donaldson-Futaki invariant. As explained in [BHJ15], the non-Archimedean
Mabuchi functional is closely related to the Donaldson-Futaki invariant. We have

Proposition 2.8. Assume L is ample. Let ¢ € HNA be the class of an ample test configu-
ration (X, L) for (X, L), and denote by (X, L) its normalization, which is thus the unique
normal, ample representative of ¢. Then

MNA(¢) = DF(X, L) — V! ((2?0 — Xored) - En) (2.2)
DF(X,£) = DF(X, L) +2V"' ) “mp (E- L"), (2.3)
E

where E ranges over the irreducible components of Xy contained in the singular locus of X
and mg € N* is the length of (V*(’);\;) /Ox at the generic point of E, with v: X — X the
normalization.

In particular, DF(X, L) > MNA(¢), and equality holds iff X is regular in codimension
one and Xy is generically reduced.

Indeed, (2.2) and (2.3) follow from the discussion in [BHJ15, §7.3] and from [BHJI15|
Proposition 3.15], respectively.
For a general non-Archimedean metric ¢ on L we can define

DF(QS) = MNA(¢) + Vil ((XO - XO,red) : Zn)
S rn+1

(n+1)V (£")

for any normal representative (X, £) of ¢. Clearly MNA($) < DF(¢) when ¢ is semipositive.

=V (KJE/IPl '/jn) +

2.9. The non-Archimedean Ding functional [BHJI5, §7.7]. Suppose X is weakly Fano,
that is, L := —Kx is big and nef. In this case, we define the non-Archimedean Ding
functional on the space of non-Archimedean metrics on L by

DY (¢) = LNA(¢) — B¥(9),
where LNA is defined by
L¥A(6) = inf (Ax(0) + (6~ Gusn)(0))

the infimum taken over all valuations v on X that are divisorial or trivial. Recall from
that ¢ — ¢uiv is a non-Archimedean metric on Ox and induces a bounded function on
divisorial valuations. Note that LN (¢4-c) = LN (¢)+¢; hence DNA is translation invariant.

We always have DNA < JNA gee [BHJ15, Proposition 7.27]. When ¢ is semipositive, we
have DNA(¢) < MNA(¢), see [BHI15, Proposition 7.31].

2.10. Uniform K-stability. As in [BHJ15, §8] we make the following definition.

Definition 2.9. A polarized complex manifold (X, L) is uniformly K-stable if there exists
a constant § > 0 such that the following equivalent conditions hold.

(1) MNA(¢) = 0TNA(¢) for every ¢ € HYA(L);
(i) DF(6) > 8NA(9) for every 6 € HNA(L);
(iii) DF(X, L) > 6JNAX, L) for any normal ample test configuration (X, L).
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Here the equivalence between (ii) and (iii) is definitional, and (i) = (ii) follows immedi-
ately from DF < MNA. The implication (ii) == (i) follows from the homogeneity of MNA
together with the fact that DF(¢g) = MNA(¢q) for d sufficiently divisible. See [BHJL5,
Proposition 8.2] for details.

The fact that J¥A(¢) = 0 iff ¢ = @iy + ¢ implies that uniform K-stability is stronger
than K-stability as introduced by [Don02]. Our notion of uniform K-stability is equivalent
to uniform K-stability defined either with respect to the L'-norm or the minimum norm in
the sense of [Derl5|, see [BHJ15, §8.1].

In the Fano case, uniform K-stability is further equivalent to uniform Ding stability:

Theorem 2.10. Assume L := —Kx is ample and fix a number § with 0 < d < 1. Then the
following conditions are equivalent:

(1) MNA > 6JNA on fHNA’.

(ii) DNA > §JNA op HNA,

This is proved in [BBJ15| using the Minimal Model Program as in [LX14]. See [Fujl6]
for a more general result, and also [Fujl5].

3. NON-ARCHIMEDEAN LIMITS
In this section we prove Theorem A and Corollary B.

3.1. Rays of metrics and non-Archimedean limits. For any line bundle L on X, there
is a bijection between smooth rays (¢*)sso of metrics on L and S'-invariant smooth metrics
® on the pull-back of L to X x A*, with A* = A} C C the punctured unit disc. The
restriction of ® to X, for 7 € A* is given by pullback of qblog‘TH under the map X, — X
given by the C*-action. Similarly, smooth rays (¢*)sss, correspond to S!-invariant smooth
metrics on the pull-back of L to X x Aj , with ro = e™%.

A subgeodesic ray is a ray (¢°) whose corresponding metric ® is semipositive. Such rays
can of course only exist when L is nef.

Definition 3.1. We say that a smooth ray (¢°) admits a non-Archimedean metric ¢N* as
non-Archimedean limit if there exists a test configuration (X, L) representing ¢N* such that

the metric ® on L x A* corresponding to (¢°)s extends to a smooth metric on L over A.

In other words, a non-Archimedean limit exists iff ® has analytic singularities along
X x {0}, i.e. splits into a smooth part and a divisorial part after pulling-back to a blow-up.

Lemma 3.2. Given a ray (¢°)s in H, the non-Archimedean limit N € HNA is unique, if
1t exists.

Proof. Let 11 and 15 be non-Archimedean limits of (¢®)s and let ® be the smooth metric
on L x A* defined by the ray (¢°). For i = 1,2, pick a representative (X;, £;) of 1; such that
® extends as a smooth metric on £; over A. After replacing (X, £;) by suitable pullbacks,
we may assume X; = Ao =: X and that X is normal. Then £ = £1 + D for a Q-divisor D
supported on Ay. Now a smooth metric on £; induces a singular metric on £1 + D that is
smooth iff D = 0. Hence £1 = L9, so that {1 = 1. U

Remark 3.3. Following [Berk09, §2] (see also |[Jonl6l BJ16a]) one can construct a com-
pact Hausdorff space X" fibering over the interval [0,1] such that the fiber Xﬁn over any
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point p € (0,1] is homeomorphic to the complex manifold X, and the fiber Xé“ over 0 is
homeomorphic to the Berkovich analytification of X with respect to the trivial norm on C.
Similarly, the line bundle L induces a line bundle L™ over XA™. If a ray (¢°)s>o admits a
non-Archimedean limit o™, then it induces a continuous metric on LA™ whose restriction
to L?n s given by gblogpfl and whose restriction to X§" is given by ONA L In this way, pNA
is indeed the limit of ¢° as s — oo.

3.2. Non-Archimedean limits of functionals. For the rest of §3] assume that L is ample.

Definition 3.4. A functional F: H — R admits a functional FN*: HNA — R as a
non-Archimedean limit if, for every smooth subgeodesic ray (¢°) in H admitting a non-
Archimedean limit o™ € HNA | we have

- F(6%)  Na,Na
R S @
Proposition 3.5. If F: H — R admits a non-Archimedean limit FN*: HNA — R, then
FNA s homogeneous.

Proof. Consider a semiample test configuration (X, L) representing a non-Archimedean
metric N4 € HNA | and let (¢*)s be a smooth subgeodesic ray admitting #NA as a non-
Archimedean limit. For d > 1, let (X4, £4) be the normalized base change induced by
7 — 7% The associated non-Archimedean metric qbyA is then the non-Archimedean limit
of the subgeodesic ray (¢%), so lims_00 s F(das) = FNA(¢N*). On the other hand, we

clearly have limg oo (ds) " F(¢%) = lim,_,00 s~ ' F(¢°) = FNA(¢N2). The result follows. [

3.3. Asymptotics of the functionals. The following result immediately implies Theo-
rem A and Corollary B.

Theorem 3.6. The functionals E, H, I, J, M and R on H admit non-Archimedean limits
on HNA given, respectively, by ENA, HNA | NA - JNA - A NA ynd RNA,

In addition, we have the following result due to Berman [Berm16, Proposition 3.8]. See
also [BBJ15L Theorem 3.1] for a more general result.

Theorem 3.7. If L := —Kx is ample, then the Ding functional D on H admits DN* on
HNA as non-Archimedean limit.

Remark 3.8. In { we will extend the two previous results to the logarithmic setting and
with relaxzed positivity assumptions.

The main tool in the proof of Theorem is the following result.

Lemma 3.9. Fori=0,...,n, let L; be a line bundle on X with a smooth reference metric
Giret- Let also (X, L;) be a smooth test configuration for (X, L;), ®; an St_invariant smooth
metric on L; near Xy, and denote by (¢7) the corresponding ray of smooth metrics on Lj.
Then

<¢87 s 7¢Z>X - <¢O,ref> ceey (bn,ref)X =S (ZO et Zn) + O(l)

as s — 0o. Here (X,L;) is the compactification of (X,L;) for 0 < i < mn and (-,...,")x
denotes the Deligne pairing with respect to the constant morphism X — {pt}.
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Proof. The Deligne pairing F' := (Lo, ..., L,)x/c is a line bundle on C, endowed with a C*-
action and a canonical identification of its fiber at 7 = 1 with the complex line (Lo, .. ., Ly) x-
It extends to a line bundle (Lo,...,Ln)5/p1 on P! that is C*-equivariantly trivial near

P! < {0}. Denoting by w € Z the weight of the C*-action on the fiber at 0, we have
w = deg(Lo, . .. ,[,_n>);/]p1 = (E_o, .. .,E_n) )

Pick a nonzero vector v € Fy = (Lo, ..., Ly)x. The C*-action produces a section 7+ 7 - v
of FFon C*, and ¢ := 77%(7 - v) is a nowhere vanishing section of F' on C, see [BHJI15|
Corollary 1.4].
Since the metrics ®; are smooth and S'-invariant, ¥ := (®q, ..., ®,) Jc is a continuous
Slinvariant metric on F near 0 € C. Hence the function log |o|y is bounded near 0 € C.
The Sl-invariant metric ¥ defines a ray (¢*) of metrics on the line Fy through |v]ys =
|7 v|y., for s = log |7|~!, where U, is the restriction of ¥ to F,. Thus

log |[v|ys = log |7 - v|w, = wlog|T| + log|o|y, = —sw + O(1).
By functoriality, the metric ¢ on F} is nothing but the Deligne pairing (¢g, . .., ¢5). If we
set Yret = (P refs - - - » Pnref) X, it therefore follows that
<¢(S)7 RN ¢57,>X - <¢0,ref7 ey ¢n,ref>X = 1Og |U"¢ref - 1Og |U”¢5 =sw + 0(1)5
which completes the proof. O
Proof of Theorem[3.6, Let (¢°)s be a smooth subgeodesic ray in H admitting a non-Archi-
medean limit N4 € HNA, Pick a test configuration (X, £) representing ¢N* such that X is

smooth and A has snc support. Thus L is relatively semiample and (¢*)s corresponds to a
smooth S'-invariant semipositive metric ® on £ over A. By Lemma we have

(Tl + 1)V (E(¢S) - E(¢ref)) = <¢Sa o 7¢S>X - <¢ref7 ) ¢ref>X~
Using Lemma it follows that

B¢ (L") NANa
sEIJPOO S - (n + 1)V =E (¢ )

I

which proves the result for the Monge-Ampere energy E. The case of the functionals I, J
and R is similarly a direct consequence of Lemma and Lemma In view of the Chen-
Tian formulas for M and MNA| it remains to consider the case of the entropy functional H.
In fact, it turns out to be easier to treat the functional H + R.

By Lemma [I.2] we have

V(H(¢S) + R((ZSS)) = <% log MA(QSS)a (Z)S? ) ¢S>X - <¢ref= ¢ref7 o 7¢ref>X7
where o = %log MA (¢ref ), so we must show that

(Hog MA(6°), 6", ..., 6°) X — (thet, bret, -, duet)x = 5 (K'gh - £7) +0(s). (32)

The collection of metrics 1 log MA(®|x,) with 7 # 0 defines a smooth metric ¥ on K;?f(c
over A*, but the difficulty here (as opposed to the situation in [PRS0§]) is that ¥ will not a
priori extend to a smooth (or even locally bounded) metric on KL?%(C
we have assumed that X is smooth, there is no reason why & is strictly positive.

over A. Indeed, since



18 SEBASTIEN BOUCKSOM, TOMOYUKI HISAMOTO, AND MATTIAS JONSSON

Instead, pick a smooth, S'-invariant reference metric W ¢ on K;?%C over A, and denote
by (12)s>0 the corresponding ray of smooth metrics on Kx. By Lemma we have

< ref7¢ a---7¢S>X - <¢ref7¢refv'--7¢ref>X = 5( ;(()%P’l ‘Cn) +O(1)

Since
(HogMA() 6. 0%)x — (Wi %0160 = [ 10w |23 oy
Theorem is therefore a consequence of the following result. U

Lemma 3.10. We have [ log { 21/)(5 } (dd°¢®)" = O(log s) as s — 0.
Let us first prove an estimate of independent interest. See [BJ16a] for more precise results.

Lemma 3.11. Let X be an snc test configuration for X and ¥ a smooth metric on K;?ic
near Xy. Denote by €2V the induced volume form on X, for T # 0. Then

/ 2V ~ (10g|7'|_1)d as T — 0, (3.3)
X

with d denoting the dimension of the dual complex of Xy, so that d+ 1 is the largest number
of local components of Xy.

Here A ~ B means that A/B is bounded from above and below by positive constants.

Proof. Since Xp is an snc divisor, every point of Xy admits local coordinates (zp, ..., z2n)

that are defined in a neighborhood of B := {|z]| <1} and such that 22 ... z;;p = e7 with
0 <p<mnande>0. Here b; € Z~( is the multiplicity of Ay along {z; = 0}. The integer d
in the statement of the theorem is then the largest such integer p. By compactness of Xp, it

will be enough to show that
/ eV ~ (log ]T\_l)p
BNX,

The holomorphic n-form

Zp: 1 dz AEZ?/\ A N A A
: .. — .« .. — Z 1 “ .. Z
g p—f—l]:O bj 2o 2j Zp vt "
satisfies p p J

T Z Z

AN—="2N A2 Adzpyy A Adzy.

T 20 Zp

Thus 7 defines a local frame of Ki{f%c on B, so the holomorphic n-form n, := n|y, satisfies

CHne? < ¥ < O, ?

for a constant C' > 0 independent of 7. Hence it suffices to prove [, -2 ~ (log |7|71)".
To this end, we parametrize BNX; in (logarithmic) polar coordinates as follows. Consider
the p-dimensional simplex

a—{weRpH]waj—l}
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the p-dimensional (possibly disconnected) commutative compact Lie group

T= {0 Rz 1S byt = 0},

=0

and the polydisc D"7P C C*P. We may cover C* by two simply connected open sets, on
each of which we fix a branch of the complex logarithm. We then define a diffeomorphism
X+ from o x T'x D""P to B N X, by setting

zj = Wi log(eT)+2mif; for 0 < ] < p.
A simple computation shows that
X2 (e ?) = const (log [er|1)” aV,

where dV denotes the natural volume form on o x 7" x D"P. It follows that, for |7| < 1,

/ mﬁ~/ ) ~ (log 7|71,
BNX; oxXT xDn—p

which completes the proof. O
Proof of Lemma[3.10. On the one hand, we have

v /X log F\?ﬁ 8)] (dd°¢®)"

= [ o | A
X €2wjef/ fX Gwaef

since the first term on the second line is the relative entropy of the probability measure
MA(¢*) with respect to the probability measure e?¥ret / Ix e?Yiet. By Lemma we have

fX e2Vrer = O(sd), where 0 < d < n. This gives the lower bound in Lemma |3.10

To get the upper bound, it suffices to prove that the function g, := (d;f# on X, is

% we then see that

MA() - log [

62¢fef > _log/ 62wfef’
X X

uniformly bounded from above. Indeed, if 7 = e~

S
[0 [P oy = [ gy s iosg) ey
X e“Yret X,
is uniformly bounded from above, since (dd“®|x.)" has fixed mass V for all 7.

To bound g, from above, we use local coordinates (z;){ as in the proof of Lemma
With the notation in that proof, it suffices to prove that the function (Q|x,)"/e?¥" on X is
uniformly bounded from above, where €2 := %Z?:o dzj A dz;. Indeed, we have dd‘® < CQ
for some constant C' > 0. It then further suffices to prove the bound

< Ce*'r (3.4)
x,

indZO/\dfo/\"'/\de/\de/\-"/\dZn/\dZn

for 0 < 7 < p and a uniform constant C' > 0.
To prove (3.4) we use the logarithmic polar coordinates in the proof of Lemma
Namely, if x,: 0 x T x D"P — BN X, is the diffeomorphism in that proof, we have

X5 (€77) ~ (log |7|71)Pav.
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Xz AdZg A+ Adzg NdZj A Adzg Adz) ~ (loglr| T T Jaf?av.
0<I<p,l#j
Thus (3.4) holds, which completes the proof. [l

4. THE LOGARITHMIC SETTING

In this section we extend, for completeness, Theorem [3.6—and hence Theorem A and
Corollary B—to the logarithmic setting. We will also relax the positivity assumptions used.
Our conventions and notation largely follow [BBEGZ11].

4.1. Preliminaries. If X is a normal projective variety of dimension n, and ¢4, ..., ¢, are
smooth metrics on Q-line bundles L1, ..., L, on X, then we define dd“¢1 A - - - Add®¢p,, as the
pushforward of the measure dd°¢1|x,., A -+ A dd°¢n|x,., from Xieg to X. This is a signed
Radon measure of total mass (L - ...- Ly), positive if the ¢; are semipositive.

A boundary on X is a Weil Q-divisor B on X such that the Weil Q-divisor class
Kx.py :=Kx+B

is Q-Cartier. Note that B is not necessarily effective. We call (X, B) a pair.

The log discrepancy of a divisorial valuation v = cord with respect to (X, B) is defined as
in using A(x p)(v) = ¢(1+ordr(Ky/(x,p))). The pair (X, B) is subklt if Ax g)(v) >0
for all (nontrivial) divisorial valuations v. (It is klt when B is further effective.)

A pair (X, B) is log smooth if X is smooth and B has simple normal crossing support. A
log resolution of (X, B) is a projective birational morphism f: X’ — X, with X’ smooth,
such that Exc(f) + f.1(B) has simple normal crossing support. In this case, there is a
unique snc divisor B’ on X’ such that f.B' = B and K x/ py = f*K(x p). In particular the
pair (X', B') is log smooth. The pair (X, B) is subklt iff (X', B’) is subklt, and the latter is
equivalent to B’ having coefficients < 1.

A smooth metric ¢ on K (x p) canonically defines a smooth positive measure i, on Xyeg\ B
as follows. Let ¢p be the canonical singular metric on Ox,,, (B), with curvature current
given by [B]. Then 1) — ¢p is a smooth metric on Ky, ,\p, and hence induces a smooth

positive measure
[ = 2(¥—9B)

on Xyeg \ B. The fact that (X, B) is subklt means precisely that the total mass of p, is
finite. Thus we can view p,, as a finite positive measure on X that is smooth on X, \ B
and gives no mass to B or Xging.

4.2. Archimedean functionals. Let X be a normal complex projective variety of dimen-
sion n. Fix a big and nef Q-line bundle L on X and set V := (L™) > 0. For a smooth metric
¢ on L, set MA(¢) = V=1(dd°p)".

Fix a smooth positive reference metric ¢ on L The energy functionals F, I and J are
defined on smooth metrics on L exactly as in , and , respectively; they are
normalized by E(¢pet) = I(¢dref) = J(¢ref) = 0. The functionals I and J are translation
invariant, whereas E(¢ + ¢) = E(¢) + c¢. All three functionals are pullback invariant in the
following sense. Let g: X’ — X be a birational morphism, with X’ normal and projective,
and set L' := ¢*L. For any smooth metric ¢ on L, we have F(¢') = E(¢), I(¢') = I(¢) and
J(¢') = J(¢), where ¢ = ¢*¢ and where the functionals are computed with respect to the

reference metric qﬁ;ef = " Pref-
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Now consider a boundary B on X. Set Sp := —nV_l(K(XJg) - L™ 1) and fix a smooth
reference metric o on K(x py. When X is smooth and B = 0, we could pick et =

%log MA (¢ref), but in general, there seems to be no canonical way to get e from ¢per.
The analogue of the Ricci energy R is defined on smooth metrics ¢ on L by

n—1
Rp(@) =) % /X (¢ — ref)dd Yrer A (dd°®)T A (ddCreg)" 7.
7=0 reg

It satisfies Rp(¢+c) = Rp(¢)—Spcand is pullback invariant in the following sense. Suppose
q: X’ — X is a birational morphism, with X’ projective normal, and define B’ by ¢.B’ = B
and q*K(X,B) - K(X’,B’)- Set (ﬁ;ef = ¢"Prer and w;ef = q¢"Yrer. Then RB(d)) - RB’(¢,)7
where ¢’ = ¢*¢.

Now assume (X, B) is subklt and let fiyer = fiy,,, be the finite positive measure defined
in It is smooth and positive on X,er \ B, and may be assumed to have mass 1, after
adding a constant to ,.r. For a smooth semipositive metric ¢ on L, set

1 MA 1 MA
Hp(¢) := B /X log,ur:f(m MA(¢) = B /X log 62(%% MA(¢).

We may have Hp(¢ref) # 0. However, Hp is bounded from below and translation invariant.
It is also pullback invariant in the sense above, with reference measure p; . = pryy on X'.

ref

Lemma 4.1. If ¢ is a smooth semipositive metric on L, then Hp(¢) < +oo.

Proof. By pullback invariance we may assume that (X, B) is log smooth. In this case MA(¢)
and fief are smooth measures on X that are strictly positive on X;es. Consider any point
¢ € B and pick local coordinates (z1, ..., z,) at  such that the irreducible components of B
are given by {z; = 0}, 0 < i < p. Fix a volume form dV near ¢. Then et = g [[%_g |2:|**dV,
and MA(¢) = hdV, with a; > —1, ¢ > 0 and h > 0 smooth. If f = hlog(% P olzi 725,
then f is locally integrable with respect to dV. This completes the proof. O

As in §T.4] we define the Mabuchi functional on semipositive smooth metrics by
Mp:=Hp+ Rp + SBE.

Then Mp is translation invariant and pullback invariant in the sense above. At least formally,
the critical points of Mp satisfy

n(Ric(dd°¢) — [B]) A (dd°¢)" ™! = Sp(dd°¢)"
and should be conical cscK metrics, see [Lil4].

Finally consider the (weak) log Fano case, in which L := —K(x p) is big and nef. The
Ding functional is then defined on smooth metrics as Dg = Lg — F, with

1
Lp(¢) = —3 log/X e~ HoTIB),
reg

If we use Vet = —ref, then the formula for the Mabuchi functional simplifies to
Ma(6) = H(é) = (B(@) = [ (6= dut) MA()).
reg

We have Dg < Mp on smooth semipositive metrics.
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4.3. Non-Archimedean functionals. The extensions of the non-Archimedean functionals
in to the logarithmic setting were studied in [BHJ15, §7]. Let us briefly review them.
Consider a normal complex projective variety X and a big and nef Q-line bundle L on X.
Let ¢ be a non-Archimedean metric on L, represented by a normal test configuration (X, £)
for (X, L), that we assume dominates (X x C,L x C) via p: X — X x C. The formulas
in for ENA(¢), TNA(¢) and JNA(¢) are still valid.
Given a boundary B on X we set

REMN@) : = V7 (Yuriy - 67)
_ * 1.-1o o N
=V (p K(ngPl,BxIF’l)/IF’l L ) :

Now assume (X, B) is subklt and let B (resp. B) be the (component wise) Zariski closure
of B x C*in X (resp. X'). Then

HE*9) : = o A () MANA(¢)
— lo ~n — * lo ~n
=V <K(/"?g,l?)/lf”1 L ) -V (p K(ngPl,BxIPl)/Pl L > :
and
MpA(¢) : = H3*(¢) + Ry (¢) + SpE"(¢)
_ 1 log An Sp An+1
= (K gye £) + AR

While the definitions of HX*(¢) and M3*(¢) make sense for arbitrary non-Archimedean
metrics ¢, we will usually assume that ¢ is semipositive.

All the functionals above have the same invariance properties as their Archimedean
cousins. They are also homogeneous in the sense of Definition

Finally, when (X, B) is weakly log Fano, so that (X, B) is subklt and L := —K(x p) is
big and nef, the non-Archimedean Ding functional is defined by

DEA(¢) = L™ (¢) — EN*(9),
where
Ly (9) = inf (Ax,p) (v) + (& — uiv) (v))

the infimum taken over all valuations v on X that are divisorial or trivial.
The Ding functional DgA is translation invariant and pullback invariant. The formula for
the Mabuchi functional simplifies in the log Fano case to

MYA (@) = H¥A(6) — (B¥A(g) - / (& — duet) MANA (6)).

Xdiv

We have DgA < min{MgA, J NA} on semipositive metrics, see Propositions 7.27 and 7.31
in [BHJ15].
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4.4. Asymptotics. The following result generalizes Theorem and shows that if F'is one
of the functionals F, I, J, Hg, Rg or Mp on H, then F' admits a non-Archimedean limit
on HNA given by FNA. For future reference, we state the result in detail.

Theorem 4.2. Let X be a normal projective variety, L a big and nef Q-line bundle on
X, and (X, L) a test configuration for (X, L) inducing a non-Archimedean metric $~* on
L. Further, let ® be a smooth, S'-invariant metric on L near Xy, inducing a smooth ray
(¢°)s>so Of metrics on L. Fix a smooth reference metric ¢t on L. Then

- F(¢°) _ NagNA
Jim PO praggnay (4.1)
where F is any of the functionals E, I, J.
Further, if B is a boundary on X and vyt is a smooth reference metric on K(x py,
then (4.1) also holds for F = Rp. Finally, if (X,B) is subklt and ® is semipositive,
then (4.1) holds for F = Hp and F = Mp.

In addition, Berman proved that in the log Fano case, the Ding functional Dp admits
DEA as non-Archimedean limit. Indeed, the following result follows from Proposition 3.8
and §4.3 in [Berm16).

Theorem 4.3. Let (X, B) be a subklt pair with L := —K x gy big and nef, (X, L) a test
configuration for (X, L) inducing a non-Archimedean metric ONA on L, and ® a semipositive

smooth, S-invariant metric on L near Xo, inducing a smooth ray (¢%)sss, of semipositive
metrics on L. Then limy_, 4 2 Dp(¢*) = DEA (M),

In fact, it is enough to assume ® is semipositive and locally bounded in Theorem [4.3]

Remark 4.4. Theorems[{.4 and [4.4 remain true even when ® is not S'-invariant, in the
following sense. For T € A*, let ¢, be the metric on L defined as the pullback of ®|x, under
the C*-action. Then we have lim,_o(log ||~ )" F(¢,) = FNA(@NA).

4.5. Proof of Theorem By pullback invariance, we may assume that X is smooth.
After further pullback, we may also assume that X' is smooth and dominates X x C. In this
case, the asymptotic formulas for F, I and J follow immediately from Lemma [3.9

When considering the remaining functionals, we may similarly, by pullback invariance,
assume that the pair (X, B) is log smooth. The asymptotic formula for R now follows from
Lemma since we can express Rp(¢) in terms of Deligne pairings:

RB(¢) = <¢ref7 ¢n>X - <¢refa ¢?ef>X7

whereas the non-Archimedean counterpart is given by the intersection number

RYMo) =V (K L")

(X xP1, BxPl)/P!

Finally we consider the functionals Hg and Mp. Thus assume (X, B) is log smooth and

subklt. We may further assume that the divisor Xy + B has simple normal crossing support,
where B is the (component-wise) Zariski closure of the pullback of B x C* in X

Asin it suffices to prove the asymptotic formula for the functional Hg + Rp. To this

end, we express Hp in terms of Deligne pairings. Write B = . ¢; B;, where B;, i € I, are
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the irreducible components of B and ¢; € Q. Fix a smooth metric ¢; on Ox(B;) for i € I.
Then ¢ := ), ¢;¢0; is a smooth metric on Ox(B), and it follows from (1.3)) that

1 MA
V() = 5 [ Tog o (o) + e [ togloy, (dao)”

el
= (3108 MA(4), ") x — (threr, ¢")x + (¥B,¢")x + Y _ i ((8") B, — (1, ™) x)
el
= <% 10gMA(¢)7¢n> ¢ref7 X +Zcz B;»

el
for any smooth semipositive metric ¢ on L. This implies

V(Hp(¢) + Rp(9)) = (3log MA(¢), 6") x — (trer, Spa)x + Y ci{d")

el
= V(H(¢)+ R(¢)) +n Y (L' B)E(¢]p,) + O(1).
el
On the non-Archimedean side, we have
VHEA @) + R O) = (K% gy £7)
10 n n
- ( K% L ) +(B- L") ;
= VHENM) + BN + Y (Ll )
i€l
— V(HNA(¢NA) + RNA(¢NA)) + TLZCi(Lnil . BZ)ENA( %\IA%
iel
where ¢N4 is the non-Archimedean metric on L|p, represented by L|g,.

It now follows from Theorem [3.6] thatfl]
lim < (H(¢") + R(@") = FNA (@) + R,

5—

Applying Theorem on B; and B;, we also get limg_ o0 %E((Z)f) = ENA(¢NA). Thus

lim ~(Hp(¢*) + Rp(6°)) = HYA (M) + Rp(e™),

S—00 8§

which completes the proof of Theorem

4.6. Coercivity and uniform K-stability. Let us finally extend Corollary B to the log-
arithmic setting. Consider a pair (X, B) and a big and nef line bundle L on X. The
Donaldson-Futaki invariant of a normal test configuration (X, £) for (X, L) is given by

1 i) Q (Zn-ﬁ-l)
B\, &)= B (x.B)/p Bl i/
DFp(X, L) : = (K £)+S(n+DV
1
EA(QS) + V ((XO - XO,red) . En) 5

lWhile Theorem is stated in the case when L and £ are ample and ® is positive, the proof extends to
the weaker positivity assumptions used here.
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where ¢ is the non-Archimedean metric on L represented by ¢. Now assume L is ample. We
then define (X, B); L) to be uniformly K-stable if the following two equivalent conditions
hold:
(i) there exists § > 0 such that M4 (¢) >
(ii) there exists 6 > 0 such that DF (X, L
configuration (X, £).

§JNA(¢) for every ¢ € HNA(L);
) > 6JNA(X, L) for any normal ample test

The equivalence between the two conditions is proved in [BHJI5, Proposition 8.2].

Corollary 4.5. Let (X, B) be a subklt pair and L an ample line bundle on X . Suppose that
the Mabuchi functional is coercive in the sense that there exist positive constants § and C
such that Mp(¢) > 6J(¢) — C for every positive smooth metric ¢ on L. Then ((X,B);L) is
uniformly K-stable; more precisely DEg(X, L) > Mpg(¢) > §JNA(p) for every positive non-
Archimedean metric on L, where (X, L) is the unique normal ample representative of ¢.

5. UNIFORM K-STABILITY AND CM-STABILITY

From now on, X is smooth. In this section we explore the relationship between uniform
K-stability and (asymptotic) CM-stability. In particular we prove Theorem C, Corollary D
and Corollary E.

5.1. Functions with log norm singularities. In this section, G denotes a reductive
complex algebraic group.

Definition 5.1. We say that a function f : G — R has log norm singularities if there exist
finitely many rational numbers a;, finite dimensional complex vector spaces V; endowed with
a G-action and non-zero vectors v; € V; such that

= ailogllg - vil| +O(1)

for some choice of norms on the V;’s.

Remark 5.2. By the equivalence of norms on a finite dimensional vector space, the descrip-
tion of f is independent of the choice of norms on the V;. In particular, given a mazimal
compact subgroup K of G, the norms may be assumed to be K-invariant, so that f descends
to a function on the Riemannian symmetric space G/K.

Remark 5.3. Taking appropriate tensor products, is is easy to see that every function f on
G with log norm singularities may be written as

f(g) = a(log|lg - vl = log|lg - wl]) + O(1), (5.1)
where a € Q=g and v, w are vectors in a normed vector space V endowed with a G-action.

The following generalization of the Kempf-Ness/Hilbert-Mumford criterion is closely re-
lated to results of [Paul3], which they simplify to some extent. Our elementary argument
is inspired by the discussion on pp.241-243 of [Tho06].

Theorem 5.4. Let f be a function on G with log norm singularities.
(i) For each 1-PS \: C* — G, there exists fN*(\) € Q such that

(foN(r) = NN log ||~ + O(1)
for |T| < 1.



26 SEBASTIEN BOUCKSOM, TOMOYUKI HISAMOTO, AND MATTIAS JONSSON

(ii) f is bounded below on G iff fN*(X\) > 0 for all 1-PS \.

The chosen notation stems from the fact that fN4 induces a function on the (conical)
Tits building of G, i.e. the non-Archimedean analogue of G/K (compare [MFE| §2.2]).

Before entering the proof, let us recall some basic facts about representations of algebraic
tori. Let T'~ (C*)" be an algebraic torus, and introduce as usual the dual lattices

M :=Hom(T,C*) ~7Z" and N :=Hom(C*,T)~Z".

Note that N is the group of 1-PS of T. For each finite-dimensional vector space V on
which T acts and each m € M, let V,,, C V be the subspace on which each ¢t € T acts by
multiplication by m(t). The action of T on V' being diagonalizable, we have a direct sum
decomposition V' = @, s Vin, and the set of weights of V' is defined as the (finite) set
My C M of characters m € M for which V,,, # 0.

Given a non-zero vector v € V, the set M, C My of weights of v is defined as those
m € M for which the projection v,, € V,, of v is non-zero. The weight polytope of v is
defined as the convex hull P, C Mg of M, in Mg, whose support function h,: Ng — R is
the convex, positively homogeneous function defined by

h =
v(d) = max (m, A),
where the bracket denotes the dual pairing between My and Ng.

Proof of Theorem[5.]]. By Remark [5.3] we may assume f is of the form
f(g) :=logllg-v|| —log|lg - wl,

where v, w are nonzero vectors in a finite dimensional normed vector space V' equipped with
a G-action.

(i) Let first \: C* — G be a l-parameter subgroup, and denote by I, C Z the set of
weights of v with respect to \. We then have

A7) v= Z T Vs
mGIv
and hence

log A7) - vl] = max (mlog 7| + log [un ) + O(1) = - <m;1 m> log 7| ~* + O(1)

v

for |7| <1, and (i) follows with fNA()\) = min I, — min I,,.

(ii) The direct implication follows immediately from (i). For the reverse implication
we use the Cartan (or polar) decomposition G = KTK, where T' C G is any maximal
algebraic torus and K C G be a maximal compact subgroup. We then get an isomorphism
T/K NT ~ Ng, hence a group homomorphism

Log|-|: T — Ng,
which in compatible bases for 7'~ C*" and Ng >~ R" is given by
(tla s 7t7") = (IOg |t1’7 s 710g ‘tr‘)

Note that
log |m(t)| = (m, Log [t])
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forallme M and t € T, and
Log |[A(7)| = (log|7|)A
in Ny for each 1-PS A\: C* — T (i.e. A € N).
In this notation, we claim that

f(k/tk) - hk-v(LOg ’t’) - hk-w(LOg |t‘) + 0(1)7 (5'2)

forall k,k' € K andt € T.
To see that (5.2) holds, we may assume the norm on V is K-invariant. We then have for
all b,k e Kandte T

log |('tk) - v]| = log ||t - (k- v)[ =log || Y m(t)(k-v)mll

meMy.,,

=log max [[m(t)(k-v)m[l +O(1) = max ({m,Log|t]) +log|l(k-v)m)[) + O(1).

k-v kv

By the compactness of K, we further may find C' = C'(v) > 0 such that
—C <log||(k - v)m| < C
for all K € K and all m € My.,,. By the definition of the support function hg.,, we thus have
max  ((m, Log [t|) 4 log [[(k - v)m)I|) = .o (Log|t]) + O(1).

me My,

We have thus proved that
log [[(K't#) - v]) = hi.o(Log [t]) + O(1).

A similar estimate of course holds with w in place of v, and ([5.2)) follows.
As a consequence of we get

FYARTING) = B (N) = B (V) (5.3)

for all A € N. If we assume that fN* > 0 on all 1-PS of G, then hj., > hp, on N,
hence on Ng by homogeneity, and hence on Nr by density. From and the Cartan
decomposition G = KTK it follows, as desired, that f is bounded below on GG. The proof
is now complete. ([l

5.2. Proof of Theorem C and Corollaries D and E. Replacing L with mL, we may
assume for notational simplicity that m = 1. Set N := h%(L) and G := SL(N,C), so
that each o € G defines a Fubini-Study type metric ¢, on L. Note that M — dJ is bounded
below on H1 ~ GL(N,C)/ U(N) iff M (¢,)—0J(¢p») bounded below for o € G, by translation
invariance of M and J.

The key ingredient is the following result of S. Paul [Paul2].

Theorem 5.5. The functionals E, J and M all have log norm singularities on G.

Granted this result we can deduce Theorem C. The equivalence of (ii) and (iii) follows
from the same argument as Lemma 7.22 in [BHJ15|, so it suffices to show that (i) and (iii)
are equivalent. By Theorem the function f(o) := M(¢,) — 0J(¢,) on G has log norm
singularities. By Theorem it is thus bounded below iff

L FoNE)

s—+00 S

>0
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for each 1-parameter subgroup A: C* — (G. We obtain the desired result since by Theorem B,
this limit is equal to MNA(py) —§JNA(¢y), where ¢y € HNA is the non-Archimedean metric
on L defined by A.

Corollary D follows since every ample test configuration of (X, L) is induced by a 1-PS,
see The first assertion of Corollary E follows immediately, and the fact that the reduced
automorphism group of (X, L) is finite is a consequence of [Paul3, Corollary 1.1].

Proof of Theorem[5.5. Recall from [Paul2] that to the linearly normal embedding X <
PHO(X,L)* ~ PN~1 are associated the X-resultant R, i.e. the Chow coordinate of X, and
the X-hyperdiscriminant A, which cuts out the dual variety of

X x P PNV P PR

the second arrow being the Segre embedding. B
In our notation, we then have deg R = V(n + 1) and deg A =V (n(n+1) — S) [Paul2,

Proposition 5.7, and [Paul2, Theorem A] becomes

1deg A

M o) — _11 'A— -
(60) = V"l - 6] v B

log |lo - R|| + O(1), (5.4)

which proves the assertion for M (¢, ).
We next consider

J(Qba) = /X(¢a - ¢ref) MA(¢ref) - E(¢0')
On the one hand, by [Pau04, Theorem 1] (or [Zha96, Theorem 1.6, Theorem 3.6]) we have

1
E(¢O’) = degR

On the other hand, choosing any norm on the space of complex N x N-matrices (in which
G of course embeds), it is observed in the proof of [Tialdl Lemma 3.2] that

/X (65 — bet) MA(rer) = log [l + O(1).

The assertion for J(¢4) follows. O

log||o - R|| + O(1). (5.5)

5.3. Discussion of [Tial4]. The statement of [Tial4l, Lemma 3.1] sounds overoptimistic
from the GIT point of view, as it would mean that CM-stability can be tested by only
considering 1-parameter subgroups of a fixed maximal torus 7.

At least, the proof is incorrect, the problem being the estimate (3.1), which claims that
¢rk — ¢r is uniformly bounded with respect to 7 € T and k € K. As the next example
shows, this is not even true for a fixed k € K.

Example 5.6. Assume (s1,s2) is a basis of H'(X, L), let k € U(2) be the unitary transfor-
mation exchanging s1 and sz, T = (t,t71), and pick a point x with s1(z) = 0. Then

Gri(z) — ¢r(7) = 4log 7|
1s unbounded.

In any case, the methods here do not seem to be able to deduce CM-stability from K-
stability, because of the following fact.
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Proposition 5.7. For each polarized manifold (X, L) and each m large and divisible enough,
there exists a non-trivial 1-PS X in GL(Ny,, C) such that J and M remain bounded on the
corresponding Fubini-Study ray ¢° := ¢y (e-s)-

Proof. As originally observed in [LX14] (cf. Proposition [2.3)), (X, L) admits a non-trivial
ample test configuration (X, L) that is almost trivial, i.e. with trivial normalization. As
recalled in for each m large and divisible enough, (X, L) can be realized as the test
configuration induced by a 1-PS A : C* — GL(N,,, C), which is non-trivial since (X, L) is.
Since the normalization of (X, £) is trivial, the associated non-Archimedean metric is of the
form iy + ¢ for some ¢ € Q, and hence MNA(¢)) = JN¥4(¢)) = 0. Since M and J have
log norm singularities on GL(V,,,C) by Theorem M and J are indeed bounded on ¢*

by Theorem O

6. REMARKS ON THE YAU-TIAN-DONALDSON CONJECTURE

As explained in the introduction, we will here give a simple argument, following ideas
of Tian, for the existence of a Kahler-Einstein metric on a Fano manifold X, assuming
(X, —Kx) is uniformly K-stable and the partial C%-estimates due to Székelyhidi.

6.1. Partial C’-estimates and the continuity method. For the moment, consider an
arbitrary polarized manifold (X, L). For each m such that mL is very ample, we have a
‘Bergman kernel approximation’ map P,,: H — H,,, defined by setting P,,(¢) to be the
Fubini-Study metric induced by the L?-scalar product on H°(X,mL) defined by me.

Definition 6.1. A subset A C H satisfies partial CO-estimates at level m if there exists
C > 0 such that | Py (o) — ¢| < C for all ¢ € A.

Now assume X is Fano, and set L := —Kx. Given a Kéhler form a € ¢;(X), consider
Aubin’s continuity method
Ric(wt) = tw + (1 — t)av. (6.1)
It is well-known that there exists a unique maximal solution (w;);e[o,7), Wwhere 0 < T' < 1.
The following important result, due to Székelyhidi [Szé13|, confirms a conjecture of Tian.

Theorem 6.2. The set A := {w; |t €[0,T)} satisfies partial C'-estimates at level m, for
arbitrarily large positive integers m.

Given this result, we shall prove
Theorem 6.3. Any uniformly K-stable Fano manifold admits a Kdahler-Einstein metric.

By working (much) harder, Datar and Székelyhidi [DSz15] have in fact been able to deduce
from Theorem [6.2] a much better result dealing with K-polystability and allowing a compact
group action.

6.2. CM-stability and partial C°-estimates. We first present in some detail well-known
ideas due to Tian [Tial2, §4.3]. In this section, (X, L) is an arbitrary polarized manifold.

Proposition 6.4. Assume that (X,mL) is CM-stable, and that A C H satisfies partial
C-estimates at level m. Then there exist §,C > 0 such that M > §J — C on A.

The proof is based on two lemmas.

Lemma 6.5. For any two metrics ¢,v € H, we have
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(i) |J(¢) = J ()| < 2sup(¢ —¢);
(ii) M(¢) > M(yp) — Csup |¢p — | for some C > 0 only depending on a one-sided bound
(either upper or lower) for the Ricci curvature of the Kdhler metric ddi.

Proof. Recall that

B($) - B) = - +1ZV V[ (= vy n vy

As a consequence, |E(¢) — E(¢)| < sup|¢ — 9|, and (i) follows immediately.
For (ii), we basically argue as in the proof of [Tial4l Lemma 3.1]. By the Chen-Tian

formula we have
M(¢) — M(¢) = Hy(¢) + S (E(¢) — E(¥)) + ERric(daew) (V) — Eric(ddey)(®)-

Here the entropy term Hy(¢) is non-negative, and we have

ERic(adey) (#) — ERic(ddey Z V- / V) (dd¢)? A (ddep)" 71 A Ric(ddp).

Assume Ric(ddy) < Cddt) for some constant C' > 0. We may then write

(dd°p)’ A (dd“)" 7~ A Ric(ddd)
= C(dd°p)’ A (dd)" 7 — (dd°p)? A (dd)" I =1 A (C'ddep — Ric(ddep)),
a difference of two positive measures of mass CV and CV + (L™~ ! - Kx), respectively, and
the desired estimate follows.

The case where Ric(dd“y) > —C’'ddy) is treated similarly (and will anyway not be used
in what follows). O

We next recall a well-known upper bound for the Ricci curvature of restrictions of Fubini-
Study metrics.

Lemma 6.6. We have Ric(dd®¢) < N,,dd°¢ for all ¢ € Hy,.

Proof. Choose a basis of H°(X, mL), and let w be the corresponding Fubini-Study metric
on P:=PH(X,mL)*. Its curvature tensor

O(Tp,w) € C®(P, AV T3 ® End(Tp))
is Griffiths positive and satisfies
Trp, O(Tp, w) = Ric(w) = Nyw.

For each complex submanifold Y C P, the curvature of its tangent bundle 7y with
respect to wly satisfies ©(Ty,wly) < O(Tp,w)|ry as (1,1)-forms on Y with values in the
endomorphisms of Ty, as a consequence of a well-known curvature monotonicity property
going back to Griffiths. We thus have

Ric(wly) = Trp, O(Ty,wly) < Trpy, O(Th, w)|1y, -
Using now ©(7p,w) > 0, we have on the other hand
TI‘TY @(Tp,w)‘TY S TI‘T]P, @(Tp,w)’Y = wa‘y,
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and hence

Ric(wly) < Npwly.
Applying this to the images of X C P under projective transformations yields the desired
result. (]

Proof of Proposition[6.4 Since (X, mL) is CM-stable, there exist 6, C > 0 such that
M(Prn(¢)) = 0J(Pm(¢)) — C (6.2)

for all ¢ € H. By assumption on A, we also have |P,,(¢) — ¢| < C for all ¢ € A, and by
Lemma the Ricci curvature of dd®P,,(¢) is uniformly bounded above. Hence Lemma
shows, as desired, that there exists C' > 0 with M (¢) > 6.J(¢) — C’ for all ¢ € A. O

6.3. Proof of Theorem Assume now that X is a Fano manifold and set L := —Kx.
Consider the continuity method (6.1). Pick metrics ¢» and ¢; on —Kx such that o = ddy
and w; = dd“¢y, respectively. After adding a constant to ¢, (6.1) may be written

(ddgy)" = e~ 2ot (10, (6.3)
We recall the proof of the following well-known monotonicity property.
Lemma 6.7. The function t — M (p;) is non-increasing.

Proof. We have

d
—£M o) =nV— /¢t Rlc (W) Awyi'™ —wtn)

=nV 1 —10) /X Grdd® (v — ¢p) A (dd )" "
vl - /X (1 — d)ddody A (dd )™

Since d¢ is normalized so that dd¢ = 185 we have
dd®¢y A wp™?
n—

wy"

with A7 denoting the d-Laplacian with respect to w;. On the other hand, differentiating
yields

= trwtddcd)t = _%Ag(z)t

ndd®gy Nwp ™! = 2(¢p — ¢ — by )wy',
and hence ‘
= ¢r = (t = A7) 6.

We get

~OM(e) = [ (Rar—1)d) (ald) Ma)
t o . Tt t t Pt t

= % (247 —1t) Ot, Or)es, MA(¢y).
T Jx
Since Ric(w;) > tw, the d-Laplacian A} satisfies 2AY > ¢ on (0,1)-forms, and the last
integral is thus nonnegative. Indeed, this follows from the Bochner-Kodaira-Nakano identity
applied to
C®(X, A" T%) ~ C™(X, AT @ K¥%)



32

SEBASTIEN BOUCKSOM, TOMOYUKI HISAMOTO, AND MATTIAS JONSSON

with the fiber metric ; = —% logwf* on K% = —Kx, with curvature dd“y; = Ric(w;). O

We may now complete the proof of Theorem m By Corollary E, (X, —mKx) is CM-
stable for all m divisible enough. Theorem [6.2] and Proposition therefore yield 6,C > 0
such that M(¢¢) > 6.J(¢:) — C along Aubin’s continuity method. Since M (¢;) is bounded
above by Lemma [6.7] it follows that J(¢;) remains bounded. By [Tia00, Lemma 6.19], the
oscillation of ¢; is bounded, and well-known arguments allow us to conclude, see [Tia00, §6.2].
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