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UNIFORM K-STABILITY AND ASYMPTOTICS OF ENERGY

FUNCTIONALS IN KÄHLER GEOMETRY

SÉBASTIEN BOUCKSOM, TOMOYUKI HISAMOTO, AND MATTIAS JONSSON

Abstract. Consider a polarized complex manifold (X,L) and a ray of positive metrics
on L defined by a positive metric on a test configuration for (X,L). For many common
functionals in Kähler geometry, we prove that the slope at infinity along the ray is given
by evaluating the non-Archimedean version of the functional (as defined in our earlier pa-
per [BHJ15]) at the non-Archimedean metric on L defined by the test configuration. Using
this asymptotic result, we show that coercivity of the Mabuchi functional implies uniform
K-stability, as defined in [Der15, BHJ15]. As a partial converse, we show that uniform K-
stability implies coercivity of the Mabuchi functional when restricted to Bergman metrics.
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Introduction

Let (X,L) be a polarized complex manifold, i.e. smooth projective complex variety X
endowed with an ample line bundle L. A central problem in Kähler geometry is to give
necessary and sufficient conditions for the existence of canonical Kähler metrics in the cor-
responding Kähler class c1(L), for example, constant scalar curvature Kähler metrics (cscK
for short). To fix ideas, suppose the reduced automorphism group Aut(X,L)/C∗ is discrete.
In this case, the celebrated Yau-Tian-Donaldson conjecture asserts that c1(L) admits a cscK
metric iff (X,L) is K-stable. That K-stability follows from the existence of a cscK metric
was proved by Stoppa [Stop09], building upon work by Donaldson [Don05], but the reverse
direction is considered wide open in general.

This situation has led people to introduce stronger stability conditions that would hope-
fully imply the existence of a cscK metric. Building upon ideas of Donaldson [Don05],

Date: May 24, 2016.

1

ar
X

iv
:1

60
3.

01
02

6v
2 

 [
m

at
h.

D
G

] 
 2

2 
M

ay
 2

01
6
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Székelyhidi [Szé06] proposed to use a version of K-stability in which, for any test configu-
ration (X ,L) for (X,L), the Donaldson-Futaki invariant DF(X ,L) is bounded below by a
positive constant times a suitable norm of (X ,L). (See also [Szé15] for a related notion.)

Following this lead, we defined in the prequel [BHJ15] to this paper, (X,L) to be uniformly
K-stable if there exists δ > 0 such that

DF(X ,L) ≥ δJNA(X ,L)

for any normal and ample test configuration (X ,L). Here JNA(X ,L) is a non-Archimedean
analogue of Aubin’s J-functional. It is equivalent to the L1-norm of (X ,L) as well as the
minimum norm considered by Dervan [Der15]. The norm is zero iff the normalization of
(X ,L) is trivial, so uniform K-stability implies K-stability.

In [BHJ15] we advocated the point of view that a test configuration defines a non-
Archimedean metric on L, that is, a metric on the Berkovich analytification of (X,L) with
respect to the trivial norm on the ground field C. Further, we defined non-Archimedean
analogues of many classical functionals in Kähler geometry. One example is the functional
JNA above. Another is MNA, a non-Archimedean analogue of the Mabuchi K-energy func-
tional M . It agrees with the Donaldson-Futaki invariant, up to an explicit error term, and
uniform K-stability is equivalent to

MNA(X ,L) ≥ δJNA(X ,L)

for any ample test configuration (X ,L). In [BHJ15] we proved that canonically polarized
manifolds and polarized Calabi-Yau manifolds are always uniformly K-stable.

A first goal of this paper is to exhibit precise relations between the non-Archimedean
functionals and their classical counterparts. From now on we do not a priori assume that
the reduced automorphism group of (X,L) is discrete. We prove

Theorem A. Let (X ,L) be an ample test configuration for a polarized complex manifold
(X,L). Consider any smooth strictly positive S1-invariant metric Φ on L defined near the
central fiber, and let (φs)s be the corresponding ray of smooth positive metrics on L. Denoting
by M and J the Mabuchi K-energy functional and Aubin J-functional, respectively, we then
have

lim
s→+∞

M(φs)

s
= MNA(X ,L) and lim

s→+∞

J(φs)

s
= JNA(X ,L).

The corresponding equalities also hold for several other functionals, see Theorem 3.6.
More generally, we prove that these asymptotic properties hold in the logarithmic setting,
for subklt pairs (X,B) and with weaker positivity assumptions, see Theorem 4.2.

At least when the total space X is smooth, the assertion in Theorem A regarding the
Mabuchi functional is closely related to several statements appearing in the literature [PRS08,
Corollary 2], [PT09, Corollary 1], [Li12, Remark 12, p.38], following the seminal work [Tia97].
However, to the best of our knowledge, neither the precise statement given here nor its proof
is available in the literature.

As in [PRS08], the proof of Theorem A uses Deligne pairings, but the analysis here is
more delicate since the test configuration X is not smooth. Using resolution of singularities,
we can make X smooth, but then we lose the strict positivity of Φ. It turns out that the
situation can be analyzed by estimating integrals of the form

∫
Xτ e

2Ψ|Xτ as τ → 0, where

X → C is an snc test configuration for X, and Ψ is a smooth metric on the (logarithmic)
relative canonical bundle of X near the central fiber, see Lemma 3.11.
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Donaldson [Don99] (see also [Mab87, Sem92]) has advocated the point of view that the
space H of positive metrics on L is an infinite-dimensional symmetric space. One can view
the space HNA of positive non-Archimedean metrics on L as (a subset of) the associated
(conical) Tits building. Theorem A gives justification to this paradigm.

The asymptotic formulas in Theorem A allow us to study coercivity properties of the
Mabuchi functional. As an immediate consequence of Theorem A, we have

Corollary B. If the Mabuchi functional is coercive in the sense that

M ≥ δJ − C

on H for some positive constants δ and C, then (X,L) is uniformly K-stable, that is,

DF(X ,L) ≥ δJNA(X ,L)

holds for any normal ample test configuration (X ,L).

Coercivity of the Mabuchi functional is known to hold if X is a Kähler-Einstein manifold
without vector fields. This was first established in the Fano case by [PSSW08]; an elegant
proof can be found in [DR15]. As a special case of a very recent result of Berman, Darvas and
Lu [BDL16], coercivity of the Mabuchi functional also holds for general polarized varieties
admitting a metric of constant scalar curvature and having discrete reduced automorphism
group. Thus, if (X,L) admits a constant scalar curvature metric and Aut(X,L)/C∗ is
discrete, then (X,L) is uniformly K-stable. The converse statement is not currently known
in general, but see below for the Fano case.

Next, we study coercivity of the Mabuchi functional when restricted to the space of
Bergman metrics. For any m ≥ 1 such that mL is very ample, let Hm be the space of
Fubini-Study type metrics on L, induced by the embedding of X ↪→ PNm via mL.

Theorem C. Fix m such that (X,mL) is linearly normal, and δ > 0. Then the following
conditions are equivalent:

(i) there exists C > 0 such that M ≥ δJ − C on Hm.
(ii) DF(Xλ,Lλ) ≥ δJNA(Xλ,Lλ) for all 1-parameter subgroups λ of GL(Nm,C);

(iii) MNA(Xλ,Lλ) ≥ δJNA(Xλ,Lλ) for all 1-parameter subgroups λ of GL(Nm,C).

Here (Xλ,Lλ) is the test configuration for (X,L) defined by λ.

The equivalence of (ii) and (iii) stems from the close relation between the Donaldson-
Futaki invariant and the non-Archimedean Mabuchi functional. In view of Theorem A, the
equivalence between (i) and (iii) can be viewed as a generalization of the Hilbert-Mumford
criterion. The proof uses in a crucial way a deep result of Paul [Pau12], which states that the
restrictions toHm of the Mabuchi functional and the J-functional have log norm singularities
(see §5).

Since every ample test configuration arises as a 1-parameter subgroup λ of GL(Nm,C)
for some m, Theorem C implies

Corollary D. A polarized manifold (X,L) is uniformly K-stable iff there exist δ > 0 and a
sequence Cm > 0 such that M ≥ δJ − Cm on Hm for all sufficiently divisible m.

Following Paul and Tian [PT06, PT09], we say that (X,mL) is CM-stable when there
exist C, δ > 0 such that M ≥ δJ − C on Hm.
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Corollary E. If (X,L) is uniformly K-stable, then (X,mL) is CM-stable for any sufficiently
divisible positive integer m. Hence the reduced automorphism group is finite.

Here the last statement follows from a result by Paul [Pau13, Corollary 1.1].

Let us now comment on the relation of uniform K-stability to the existence of Kähler-
Einstein metrics on Fano manifolds. In [CDS15], Chen, Donaldson and Sun proved that
a Fano manifold X admits a Kähler-Einstein metric iff it is K-polystable; see also [Tia15].
Since then, several new proofs have appeared. Datar and Székelyhidi [DSz15] proved an
equivariant version of the conjecture, using Aubin’s original continuity method. Chen, Sun
and Wang [CSW15] gave a proof using the Kähler-Ricci flow.

In [BBJ15], Berman and the first and last authors of the current paper used a variational
method to prove a slightly different statement: in the absence of vector fields, the existence of
a Kähler-Einstein metric is equivalent to uniform K-stability. In fact, the direct implication
uses Corollary B above.

In §6 we outline a different proof of the fact that a uniformly K-stable Fano manifold
admits a Kähler-Einstein metric. Our method, which largely follows ideas of Tian, relies on
Székelyhidi’s partial C0-estimates [Szé13] along the Aubin continuity path, together with
Corollary D.

As noted above, uniform K-stability implies that the reduced automorphism group of
(X,L) is discrete. In the presence of vector fields, there should presumably be a natural
notion of uniform K-polystability. We hope to address this in future work.

There have been several important developments since a first draft of the current pa-
per was circulated. First, Z. Sjöström Dyrefelt [SD16] and, independently, R. Dervan and
J. Ross [DR16], proved a transcendental version of Theorem A. Second, as mentioned above,
it was proved in [BBJ15] that in the case of a Fano manifold without holomorphic vector
fields, uniform K-stability is equivalent to coercivity of the Mabuchi functional, and hence
to the existence of a Kähler-Einstein metric. Finally, the results in this paper were used
in [BDL16] to prove that an arbitrary polarized pair (X,L) admitting a cscK metric must
be K-polystable.

The organization of the paper is as follows. In the first section, we review several clas-
sical energy functionals in Kähler geometry and their interpretation as metrics on suit-
able Deligne pairings. Then, in §2, we recall some non-Archimedean notions from [BHJ15].
Specifically, a non-Archimedean metric is an equivalence class of test configurations, and the
non-Archimedean analogues of the energy functionals in §1 are defined using intersection
numbers. In §3 we prove Theorem A relating the classical and non-Archimedean functionals
via subgeodesic rays. These results are generalized to the logarithmic setting in §4. Section 5
is devoted to the relation between uniform K-stability and CM-stability. In particular, we
prove Theorem C and Corollaries D and E. Finally, in §6, we show how to use Székelyhidi’s
partial C0-estimates along the Aubin continuity path together with CM-stability to prove
that a uniformly K-stable Fano manifold admits a Kähler-Einstein metric.

Acknowledgment. The authors would like to thank Robert Berman for very useful discus-
sions. The first author is also grateful to Marco Maculan, Vincent Guedj and Ahmed Zeriahi
for helpful conversations. He was partially supported by the ANR projects GRACK, MACK
and POSITIVE. The second author was supported by JSPS KAKENHI Grant Number 25-
6660 and 15H06262. The last author was partially supported by NSF grant DMS-1266207,
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1. Deligne pairings and energy functionals

In this section we recall the definition and main properties of the Deligne pairing, as well
as its relation to classical functionals in Kähler geometry.

1.1. Metrics on line bundles. We use additive notation for line bundles and metrics. If,
for i = 1, 2, φi is a metric on a line bundle Li on X and ai ∈ Z, then a1φ1 + a2φ2 is a metric
on a1L1 + a2L2. This allows us to define metrics on Q-line bundles. A metric on the trivial
line bundle will be identified with a function on X.

If σ is a (holomorphic) section of a line bundle L on a complex analytic space X, then
log |σ| stands for the corresponding (possibly singular) metric on L. For any metric φ on L,
log |σ| − φ is therefore a function, and

|σ|φ := |σ|e−φ = exp(log |σ| − φ)

is the length of σ in the metric φ.
We normalize the operator dc so that ddc = i

π∂∂̄, and set (somewhat abusively)

ddcφ := −ddc log |σ|φ

for any local trivializing section σ of L. The globally defined (1, 1)-form (or current) ddcφ
is the curvature of φ, normalized so that it represents the (integral) first Chern class of L.

If X is a complex manifold of dimension n and η is a holomorphic n-form on X, then

|η|2 :=
in

2

2n
η ∧ η̄

defines a natural (smooth, positive) volume form on X. More generally, there is a bijection
between smooth metrics on the canonical bundle KX and (smooth, positive) volume forms
on X, which associates to a smooth metric φ on KX the volume form e2φ locally defined by

e2φ := |η|2/|η|2φ

for any local section η of KX .
If ω is a positive (1, 1)-form on X and n = dimX, then ωn is a volume form, so −1

2 logωn

is a metric on −KX in our notation. The Ricci form of ω is defined as the curvature

Ricω := −ddc 1
2 logωn

of ω of this metric; it is thus a smooth (1, 1)-form in the cohomology class c1(X) of −KX .
If φ is a smooth positive metric on a line bundle L on X, we denote by Sφ ∈ C∞(X) the

scalar curvature of the Kähler form ddcφ; it satisfies

Sφ(ddcφ)n = nRic(ddcφ) ∧ (ddcφ)n−1. (1.1)
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1.2. Deligne pairings. While the construction below works in greater generality [Elk89,
Zha96, MG00], we will restrict ourselves to the following setting. Let π : Y → T be a
flat, projective morphism between smooth complex algebraic varieties, of relative dimension
n ≥ 0. Given line bundles L0, . . . , Ln on Y , consider the intersection product

L0 · . . . · Ln · [Y ] ∈ CHdimY−(n+1)(Y ) = CHdimT−1(Y ).

Its push-forward belongs to CHdimT−1(T ) = Pic(T ) since T is smooth, and hence defines
an isomorphism class of line bundle on T . The Deligne pairing of L0, . . . , Ln selects in a
canonical way a specific representative of this isomorphism class, denoted by

〈L0, . . . , Ln〉Y/T .
The pairing is functorial, multilinear, and commutes with base change. It further satisfies
the following key inductive property: if Z0 is a non-singular divisor in Y , flat over T and
defined by a section σ0 ∈ H0(Y, L0), then we have a canonical identification

〈L0, . . . , Ln〉Y/T = 〈L1|Z0 , . . . , Ln|Z0〉Z0/T . (1.2)

For n = 0, 〈L0〉Y/T coincides with the norm of L0 with respect to the finite flat morphism
Y → T . These properties uniquely characterize the Deligne pairing. Indeed, writing each
Li as a difference of very ample line bundles, multilinearity reduces the situation to the case
where the Li are very ample. We may thus find non-singular divisors Zi ∈ |Li| with

⋂
i∈I Zi

non-singular and flat over T for each set I of indices, and we get

〈L0, . . . , Ln〉Y/T = 〈Ln|Z0∩···∩Zn−1〉Z0∩···∩Zn−1/T .

1.3. Metrics on Deligne pairings. We use [Elk90, Zha96, Mor99] as references. Given a
smooth metric φj on each Lj , the Deligne pairing 〈L0, . . . , Ln〉Y/T can be endowed with a
continuous metric

〈φ0, . . . , φn〉Y/T ,
smooth over the smooth locus of π, the construction being functorial, multilinear, and
commuting with base change. It is basically constructed by requiring that

〈φ0, . . . , φn〉Y/T = 〈φ1|Z0 , . . . , φn|Z0〉Z0/T −
∫
Y/T

log |σ0|φ0dd
cφ1 ∧ · · · ∧ ddcφn (1.3)

in the notation of (1.2), with
∫
Y/T denoting fiber integration, i.e. the push-forward by π

as a current. By induction, the continuity of the metric 〈φ0, . . . , φn〉 reduces to that of∫
Y/T log |σ0|φ0dd

cφ1 ∧ · · · ∧ ddcφn, and thus follows from [Stol66, Theorem 4.9].

Remark 1.1. As explained in [Elk90, I.1], arguing by induction, the key point in checking
that (1.3) is well-defined is the following symmetry property: if σ1 ∈ H0(Y,L1) is a section
with divisor Z1 such that both Z1 and Z0 ∩ Z1 are non-singular and flat over T , then∫

Y/T
log |σ0|φ0dd

cφ1 ∧ α+

∫
Z0/T

log |σ1|φ1α

=

∫
Y/T

log |σ1|φ1dd
cφ0 ∧ α+

∫
Z1/T

log |σ0|φ0α

with α = ddcφ2∧ · · · ∧ddcφn. By the Lelong–Poincaré formula, the above equality reduces to

π∗ (log |σ0|φ0dd
c log |σ1|φ1 ∧ α) = π∗ (log |σ1|φ1dd

c log |σ0|φ0 ∧ α) ,
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which holds by Stokes’ formula applied to a monotone regularization of the quasi-psh func-
tions log |σi|φi.

Metrics on Deligne pairings satisfy the following two crucial properties, which are direct
consequences of (1.3).

(i) The curvature current of 〈φ0, . . . , φn〉Y/T satisfies

ddc〈φ0, . . . , φn〉Y/T =

∫
Y/T

ddcφ0 ∧ · · · ∧ ddcφn, (1.4)

where again
∫
Y/T denotes fiber integration.

(ii) Given another smooth metric φ′0 on L0, we have the change of metric formula

〈φ′0, φ1, . . . , φn〉Y/T − 〈φ0, φ1, . . . , φn〉Y/T =

∫
Y/T

(φ′0 − φ0)ddcφ1 ∧ · · · ∧ ddcφn. (1.5)

1.4. Energy functionals. Let (X,L) be a polarized manifold, i.e. a smooth projective
complex variety X with an ample line bundle L. Set

V := (Ln) and S̄ := −nV −1(KX · Ln−1),

where n = dimX. Denote by H the set of smooth positive metrics φ on L. For φ ∈ H,
set MA(φ) := V −1(ddcφ)n. Then MA(φ) is a probability measure equivalent to Lebesgue
measure, and

∫
X Sφ MA(φ) = S̄ by (1.1).

We recall the following functionals in Kähler geometry. Fix a reference metric φref ∈ H.
Our notation largely follows [BBGZ13, BBEGZ11].

(i) The Monge-Ampère energy functional is given by

E(φ) =
1

n+ 1

n∑
j=0

V −1

∫
X

(φ− φref)(dd
cφ)j ∧ (ddcφref)

n−j . (1.6)

(ii) The J-functional is a translation invariant version of E, defined as

J(φ) :=

∫
X

(φ− φref) MA(φref)− E(φ). (1.7)

The closely related I-functional is defined by

I(φ) :=

∫
X

(φ− φref) MA(φref)−
∫
X

(φ− φref) MA(φ). (1.8)

(iii) For any closed (1, 1)-form θ, the θ-twisted Monge-Ampère energy is given by

Eθ(φ) =
1

n

n−1∑
j=0

V −1

∫
X

(φ− φref)(dd
cφ)j ∧ (ddcφref)

n−1−j ∧ θ. (1.9)

Taking θ := −nRic(ddcφref), we obtain the Ricci energy R := −EnRic(ddcφref).
(iv) The entropy of φ ∈ H is defined as

H(φ) := 1
2

∫
X

log

[
MA(φ)

MA(φref)

]
MA(φ), (1.10)

that is, (half) the relative entropy of the probability measure MA(φ) with respect
to MA(φref). We have H(φ) ≥ 0, with equality iff φ− φref is constant.
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(v) The Mabuchi functional (or K-energy) can now be defined via the Chen-Tian for-
mula [Che00] (see also [BB14, Proposition 3.1]) as

M(φ) = H(φ) +R(φ) + S̄E(φ). (1.11)

These functionals vanish at φref and satisfy the variational formulas:

δE(φ) = MA(φ) = V −1(ddcφ)n

δEθ(φ) = V −1(ddcφ)n−1 ∧ θ
δR(φ) = −nV −1(ddcφ)n−1 ∧ Ric(ddcφref)

δH(φ) = nV −1(ddcφ)n−1 ∧ (Ric(ddcφref)− Ric(ddcφ))

δM(φ) = (S̄ − Sφ) MA(φ)

In particular, φ is a critical point of M iff ddcφ is a cscK metric.
The functionals I, J and I − J are comparable in the sense that

1

n
J ≤ I − J ≤ nJ (1.12)

on H. For φ ∈ H we have J(φ) ≥ 0, with equality iff φ− φref is constant. These properties
are thus also shared by I and I − J .

The functionals H, I, J , M are translation invariant in the sense that H(φ+ c) = H(φ)
for c ∈ R. For E and R we instead have E(φ + c) = E(φ) + c and R(φ + c) = R(φ) − S̄c,
respectively.

1.5. Energy functionals as Deligne pairings. The functionals above can be expressed
using Deligne pairings, an observation going back at least to [PS04]. Note that any metric
φ ∈ H induces a smooth metric 1

2 log MA(φ) on KX . The following identities are now easy
consequences of the change of metric formula (1.5).

Lemma 1.2. For any φ ∈ H we have

(n+ 1)V E(φ) = 〈φn+1〉X − 〈φn+1
ref 〉X ;

V J(φ) = 〈φ, φnref〉X − 〈φn+1
ref 〉X −

1

n+ 1

[
〈φn+1〉X − 〈φn+1

ref 〉X
]

;

V I(φ) = 〈φ− φref , φ
n
ref〉X − 〈φ− φref , φ

n〉X ;

V R(φ) = 〈12 log MA(φref), φ
n〉X − 〈12 log MA(φref), φ

n
ref〉X ;

V H(φ) = 〈12 log MA(φ), φn〉X − 〈12 log MA(φref), φ
n〉X ;

VM(φ) = 〈12 log MA(φ), φn〉X − 〈12 log MA(φref), φ
n
ref〉X

+
S̄

n+ 1

[
〈φn+1〉X − 〈φn+1

ref 〉X
]
,

where 〈 〉X denotes the Deligne pairing with respect to the constant map X → {pt}.

Remark 1.3. The formulas above make it evident that instead of fixing a reference metric
φref ∈ H, we could view E, H + R and M as metrics on suitable multiples of the complex
lines 〈Ln+1〉X , 〈KX , L

n〉X , and (n+ 1)〈KX , L
n〉X + S̄〈Ln+1〉X , respectively.
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Remark 1.4. In the definition of R, we could replace −Ric ddcφref by ddcψref for any smooth
metric ψref on KX . Similarly, in the definition of H, we could replace the reference measure
MA(φref) by e2ψref . Doing so, and keeping the Chen-Tian formula, would only change the
Mabuchi functional M by an additive constant.

1.6. The Ding functional. Now suppose X is a Fano manifold, that is, L := −KX is
ample. Any metric φ on L then induces a positive volume form e−2φ on X. The Ding
functional [Din88] on H is defined by

D(φ) = L(φ)− E(φ),

where

L(φ) = −1
2 log

∫
X
e−2φ.

This functional has proven an extremely useful tool for the study of the existence of Kähler-
Einstein metrics, which are realized as the critical points of D, see e.g. [Berm16, BBJ15].

2. Test configurations as non-Archimedean metrics

In this section we recall some notions and results from [BHJ15]. Let X be a smooth
projective complex variety and L a line bundle on X.

2.1. Test configurations. As in [BHJ15] we adopt the following flexible terminology for
test configurations.

Definition 2.1. A test configuration X for X consists of the following data:

(i) a flat, projective morphism of schemes π : X → C;
(ii) a C∗-action on X lifting the canonical action on C;

(iii) an isomorphism X1 ' X.

We denote by τ the coordinate on C, and by Xτ the fiber over τ .
These conditions imply that X is reduced and irreducible [BHJ15, Proposition 2.6]). If

X ,X ′ are test configurations for X, then there is a unique C∗-equivariant birational map
X ′ 99K X compatible with the isomorphism in (iii). We say that X ′ dominates X if this
birational map is a morphism; when it is an isomorphism we somewhat abusively identify

X and X ′. Any test configuration X is dominated by its normalization X̃ .
An snc test configuration for X is a smooth test configuration X whose central fiber X0

has simple normal crossing support (but is not necessarily reduced).
When X is a test configuration, we define the logarithmic canonical bundle as

K log
X := KX + X0,red.

Setting K log
C := KC + [0], we define the relative logarithmic canonical bundle as

K log
X/C := K log

X − π
∗K log

C = KX/C + X0,red −X0;

this is well behaved under base change τ 7→ τd, see [BHJ15, §4.4]. Despite the terminology,

KX , KX/C, K log
X and K log

X/C are only Weil divisor classes in general; they are line bundles

when X is smooth.

Definition 2.2. A test configuration (X ,L) for (X,L) consists of a test configuration X
for X, together with the following additional data:
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(iv) a C∗-linearized Q-line bundle L on X ;
(v) an isomorphism (X1,L1) ' (X,L).

A pull-back of a test configuration (X ,L) is a test configuration (X ′,L′) where X ′ domi-

nates X and L′ is the pull-back of L. In particular, the normalization (X̃ , L̃) is the pull-back

of (X ,L) with ν : X̃ → X the normalization morphism.
A test configuration (X ,L) is trivial if X = X × C with C∗ acting trivially on X. This

implies that (X ,L + cX0) = (X,L) × C for some constant c ∈ Q. A test configuration for
(X,L) is almost trivial if its normalization is trivial.

We say that (X ,L) is ample (resp. semiample, resp. nef) when L is relatively ample (resp.
relatively semiample, resp. nef). The pullback of a semiample (resp. nef) test configuration
is semiample (resp. nef).

If L is ample, then for every semiample test configuration (X ,L) there exists a unique
ample test configuration (Xamp,Lamp) that is dominated by (X ,L) and satisfies µ∗OX =
OXamp , where µ : X → Xamp is the canonical morphism; see [BHJ15, Proposition 2.17].

Note that, while X can often be chosen smooth, Xamp will not be smooth, in general. It
is, however, normal whenever X is.

2.2. One-parameter subgroups. Suppose L is ample. Ample test configurations are then
essentially equivalent to one-parameter degenerations of X. See [BHJ15, §2.3] for details on
what follows.

Fix m ≥ 1 such that mL is very ample, and consider the corresponding closed embedding
X ↪→ PNm−1 with Nm := h0(X,mL). Then every 1-parameter subgroup (1-PS for short)
λ : C∗ → GL(Nm,C) induces an ample test configuration (Xλ,Lλ) for (X,L). By definition,
Xλ is the Zariski closure in PV ×C of the image of the closed embedding X×C∗ ↪→ PV ×C∗
mapping (x, τ) to (λ(τ)x, τ). Note that (Xλ,Lλ) is trivial iff λ is a multiple of the identity.
We emphasize that Xλ is not normal in general.

In fact, every ample test configuration may be obtained as above. Using one-parameter
subgroups, we can produce test configurations that are almost trivial but not trivial, as
observed in [LX14, Remark 5]. See [BHJ15, Proposition 2.12] for an elementary proof of the
following result.

Proposition 2.3. For every m divisible enough, there exists a 1-PS λ : C∗ → GL(Nm,C)
such that the test configuration (Xλ,Lλ) is nontrivial but almost trivial.

2.3. Valuations and log discrepancies. By a valuation on X we mean a real-valued
valuation v on the function field C(X) (trivial on the ground field C). The trivial valuation
vtriv is defined by vtriv(f) = 0 for f ∈ C(X)∗. A valuation v is divisorial if it is of the form
v = c ordF , where c ∈ Q>0 and F is a prime divisor on a projective normal variety admitting
a birational morphism onto X. We denote by Xdiv the set of valuations on X that are either
divisorial or trivial, and equip it with the weakest topology such that v 7→ v(f) is continuous
for every f ∈ C(X)∗.

The log discrepancy AX(v) of a valuation in Xdiv is defined as follows. First, AX(vtriv) =
0. For v = c ordF a divisorial valuation as above, we set AX = c(1 + ordF (KY/X)), where
KY/X is the relative canonical (Weil) divisor.

Now consider a normal test configuration X of X. Since C(X ) ' C(X)(τ), any valuation
w on X restricts to a valuation r(w) on X. Let E be an irreducible component of the central
fiber X0 =

∑
bEE. Then ordE is a C∗-invariant divisorial valuation on C(X ) and satisfies
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ordE(t) = bE . If we set vE := r(b−1
E ordE), then vE is a valuation in Xdiv. Conversely,

every valuation v ∈ Xdiv has a unique C∗-invariant preimage w under r normalized by
w(τ) = 1, and w is associated to an irreducible component of the central fiber of some test
configuration for X, cf. [BHJ15, Theorem 4.6].

Note that ordE is a divisorial valuation on X ×C. By [BHJ15, Proposition 4.11], the log
discrepancies of ordE and vE are related as follows: AX×C(ordE) = bE(1 +AX(vE)).

2.4. Compactifications. For some purposes it is convenient to compactify test configura-
tions. The following notion provides a canonical way of doing so.

Definition 2.4. The compactification X̄ of a test configuration X for X is defined by gluing
together X and X × (P1 \ {0}) along their respective open subsets X \X0 and X × (C \ {0}),
using the canonical C∗-equivariant isomorphism X \ X0 ' X × (C \ {0}).

The compactification X̄ comes with a C∗-equivariant flat morphism X̄ → P1, still denoted
by π. By construction, π−1(P1 \ {0}) is C∗-equivariantly isomorphic to X × (P1 \ {0}) over
P1 \ {0}.

Similarly, a test configuration (X ,L) for (X,L) admits a compactification (X̄ , L̄), where
L̄ is a C∗-linearized Q-line bundle on X̄ . Note that L̄ is relatively (semi)ample iff L is.

The relative canonical differential and relative canonical differential are now defined by

KX̄/P1 := KX̄ − π∗KP1

K log
X̄/P1 := K log

X̄ − π
∗K log

P1 = KX̄/P1 + X0,red −X0.

2.5. Non-Archimedean metrics. Following [BHJ15, §6] (see also [BJ16b]) we introduce:

Definition 2.5. Two test configurations (X1,L1), (X2,L2) for (X,L) are equivalent if there
exists a test configuration (X3,L3) that is a pull-back of both (X1,L1) and (X2,L2). An
equivalence class is called a non-Archimedean metric on L, and is denoted by φ. We denote
by φtriv the equivalence class of the trivial test configuration (X,L)× C.

A non-Archimedean metric φ is called semipositive if some (or, equivalently, any) repre-
sentative (X ,L) of φ is nef. Note that this implies that L is nef.

When L is ample, we say that a non-Archimedean metric φ on L is positive if some (or,
equivalently, any) representative (X ,L) of φ is semiample. We denote by HNA the set of
all non-Archimedean positive metrics on L. By [BHJ15, Lemma 6.3], every φ ∈ HNA is
represented by a unique normal, ample test configuration.

The set of non-Archimedean metrics on a line bundle L admits two natural operations:

(i) a translation action of Q, denoted by φ 7→ φ+ c, and induced by (X ,L) 7→ (X ,L+
cX0);

(ii) a scaling action of the semigroup N∗ of positive integers, denoted by φ 7→ φd and
induced by the base change of (X ,L) by τ 7→ τd.

When L is ample (resp. nef) these operations preserve the set of positive (resp. semipositive)
metrics. The trivial metric φtriv is fixed by the scaling action.

As in §1.1 we use additive notation for non-Archimedean metrics. A non-Archimedean
metric on OX induces a bounded (and continuous) function on Xdiv.
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Remark 2.6. As explained in [BHJ15, §6.5], a non-Archimedean metric φ on L, as defined
above, can be viewed as a metric on the Berkovich analytification [Berk90] of L with respect
to the trivial absolute value on the ground field C. See also [BJ16b] for a more systematic
analysis, itself building upon [BFJ16, BFJ15a].

2.6. Intersection numbers and Monge-Ampère measures. Following [BHJ15, §6.6]
we define the intersection number (φ0 · . . . · φn) of non-Archimedean metrics φ0, . . . , φn on
line bundles L0, . . . , Ln on X as follows. Pick representatives (X ,Li) of φi, 0 ≤ i ≤ n, with
the same test configuration X for X and set

(φ0 · . . . · φn) := (L̄0 · . . . · L̄n),

where (X̄ , L̄i) is the compactification of (X ,Li). It follows from the projection formula that
this does not depend of the choice of the Li. Note that (φn+1

triv ) = 0. When L0 = OX , so
that L0 = OX(D) for a Q-Cartier Q-divisor D =

∑
rEE supported on X0, we can compute

the intersection number as (φ0 · . . . · φn) =
∑

E rE(L1|E · . . . · Ln|E).
To a non-Archimedean metric φ on a big and nef line bundle L on X we associate, as

in [BHJ15, §6.7], a signed finite atomic Monge-Ampère measure on Xdiv. Pick a represen-
tative (X ,Li) of φ, and set

MANA(φ) = V −1
∑
E

bE(L|nE)δvE ,

where E ranges over irreducible components of X0 =
∑

E bEE, vE = r(b−1
E ordE) ∈ Xdiv,

and V = (Ln). When the φi are semipositive, the mixed Monge-Ampère measure is a
probability measure.

2.7. Functionals on non-Archimedean metrics. Following [BHJ15, §7] we define non-
Archimedean analogues of the functionals considered in §1.4. Fix a line bundle L.

Definition 2.7. Let W be a set of non-Archimedean metrics on L that is closed under
translation and scaling. A functional F : W → R is

(i) homogeneous if F (φd) = dF (φ) for φ ∈Wand d ∈ N∗;
(ii) translation invariant if F (φ+ c) = F (φ) for φ ∈W and c ∈ Q.

When L is ample, a functional F on HNA may be viewed as a function F (X ,L) on
the set of all semiample test configurations (X ,L) that is invariant under pull-back, i.e.
F (X ′,L′) = F (X ,L) whenever (X ′,L′) is a pull-back of a (X ,L) (and, in particular, invariant
under normalization). Homogeneity amounts to F (Xd,Ld) = dF (X ,L) for all d ∈ N∗, and
translation invariance to F (X ,L) = F (X ,L+ cX0) for all c ∈ Q.

For each non-Archimedean metric φ on L, choose a normal representative (X ,L) that
dominates X × C via ρ : X → X × C. Then L = ρ∗(L × C) + D for a uniquely deter-
mined Q-Cartier divisor D supported on X0. Write X0 =

∑
E bEE and let (X̄ , L̄) be the

compactification of (X ,L).
In this notation, we may describe our list of non-Archimedean functionals as follows.

Assume L is big and nef. Let φtriv and ψtriv be the trivial metrics on L and KX , respectively.
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(i) The non-Archimedean Monge-Ampère energy of φ is

ENA(φ) : =
(φn+1)

(n+ 1)V

=

(
L̄n+1

)
(n+ 1)V

.

(ii) The non-Archimedean I-functional and J-functional are given by

INA(φ) : = V −1(φ · φntriv)− V −1((φ− φtriv) · φn)

= V −1(L̄ · (ρ∗(L× P1)n)− V −1(D · L̄n).

and

JNA(φ) : = V −1(φ · φntriv)− ENA(φ)

=
1

V
(L̄ · (ρ∗(L× P1)n)− 1

(n+ 1)V
(L̄n+1).

(iii) The non-Archimedean Ricci energy is

RNA(φ) : = V −1(ψtriv · φn)

= V −1
(
ρ∗K log

X×P1/P1 · L̄n
)
.

(iv) The non-Archimedean entropy is

HNA(φ) : =

∫
Xdiv

AX(v) MANA(φ)

= V −1
(
K log
X̄/P1 · L̄n

)
− V −1

(
ρ∗K log

X×P1/P1 · L̄n
)
.

(v) The non-Archimedean Mabuchi functional (or K-energy) is

MNA(φ) : = HNA(φ) +RNA(φ) + S̄ENA(φ)

= V −1
(
K log
X̄/P1 · L̄n

)
+

S̄

(n+ 1)V

(
L̄n+1

)
.

Note the resemblance to the formulas in §1.5. All of these functionals are homogeneous.
They are also translation invariant, except for ENA and RNA, which satisfy

ENA(φ+ c) = ENA(φ) + c and RNA(φ+ c) = RNA(φ)− S̄c (2.1)

for all φ ∈ HNA and c ∈ Q.
The functionals INA, JNA and INA − JNA are comparable on semipositive metrics in the

same way as (1.12). By [BHJ15, Lemma 7.7], when φ is positive, the first term in the
definition of JNA satisfies

V −1(φ · φntriv) = (φ− φtriv)(vtriv) = max
Xdiv

(φ− φtriv) = max
E

b−1
E ordE(D).

Further, JNA(φ) ≥ 0, with equality iff φ = φtriv + c for some c ∈ Q, and JNA is compara-
ble to both a natural L1-norm and the minimum norm in the sense of Dervan [Der15],
see [BHJ15, Theorem 7.9]. For a normal ample test configuration (X ,L) representing
φ ∈ HNA we also denote the J-norm by JNA(X ,L).
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2.8. The Donaldson-Futaki invariant. As explained in [BHJ15], the non-Archimedean
Mabuchi functional is closely related to the Donaldson-Futaki invariant. We have

Proposition 2.8. Assume L is ample. Let φ ∈ HNA be the class of an ample test configu-

ration (X ,L) for (X,L), and denote by (X̃ , L̃) its normalization, which is thus the unique
normal, ample representative of φ. Then

MNA(φ) = DF(X̃ , L̃)− V −1
(

(X̃0 − X̃0,red) · L̃n
)

(2.2)

DF(X ,L) = DF(X̃ , L̃) + 2V −1
∑
E

mE (E · Ln) , (2.3)

where E ranges over the irreducible components of X0 contained in the singular locus of X
and mE ∈ N∗ is the length of

(
ν∗OX̃

)
/OX at the generic point of E, with ν : X̃ → X the

normalization.
In particular, DF(X ,L) ≥ MNA(φ), and equality holds iff X is regular in codimension

one and X0 is generically reduced.

Indeed, (2.2) and (2.3) follow from the discussion in [BHJ15, §7.3] and from [BHJ15,
Proposition 3.15], respectively.

For a general non-Archimedean metric φ on L we can define

DF(φ) = MNA(φ) + V −1
(
(X0 −X0,red) · L̄n

)
= V −1

(
KX̄/P1 · L̄n

)
+

S̄

(n+ 1)V

(
L̄n+1

)
for any normal representative (X ,L) of φ. Clearly MNA(φ) ≤ DF(φ) when φ is semipositive.

2.9. The non-Archimedean Ding functional [BHJ15, §7.7]. Suppose X is weakly Fano,
that is, L := −KX is big and nef. In this case, we define the non-Archimedean Ding
functional on the space of non-Archimedean metrics on L by

DNA(φ) = LNA(φ)− ENA(φ),

where LNA is defined by

LNA(φ) = inf
v

(AX(v) + (φ− φtriv)(v)) ,

the infimum taken over all valuations v on X that are divisorial or trivial. Recall from §2.5
that φ − φtriv is a non-Archimedean metric on OX and induces a bounded function on
divisorial valuations. Note that LNA(φ+c) = LNA(φ)+c; hence DNA is translation invariant.

We always have DNA ≤ JNA, see [BHJ15, Proposition 7.27]. When φ is semipositive, we
have DNA(φ) ≤MNA(φ), see [BHJ15, Proposition 7.31].

2.10. Uniform K-stability. As in [BHJ15, §8] we make the following definition.

Definition 2.9. A polarized complex manifold (X,L) is uniformly K-stable if there exists
a constant δ > 0 such that the following equivalent conditions hold.

(i) MNA(φ) ≥ δJNA(φ) for every φ ∈ HNA(L);
(ii) DF(φ) ≥ δJNA(φ) for every φ ∈ HNA(L);

(iii) DF(X ,L) ≥ δJNA(X ,L) for any normal ample test configuration (X ,L).
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Here the equivalence between (ii) and (iii) is definitional, and (i) =⇒ (ii) follows immedi-
ately from DF ≤ MNA. The implication (ii) =⇒ (i) follows from the homogeneity of MNA

together with the fact that DF(φd) = MNA(φd) for d sufficiently divisible. See [BHJ15,
Proposition 8.2] for details.

The fact that JNA(φ) = 0 iff φ = φtriv + c implies that uniform K-stability is stronger
than K-stability as introduced by [Don02]. Our notion of uniform K-stability is equivalent
to uniform K-stability defined either with respect to the L1-norm or the minimum norm in
the sense of [Der15], see [BHJ15, §8.1].

In the Fano case, uniform K-stability is further equivalent to uniform Ding stability :

Theorem 2.10. Assume L := −KX is ample and fix a number δ with 0 ≤ δ ≤ 1. Then the
following conditions are equivalent:

(i) MNA ≥ δJNA on HNA;
(ii) DNA ≥ δJNA on HNA.

This is proved in [BBJ15] using the Minimal Model Program as in [LX14]. See [Fuj16]
for a more general result, and also [Fuj15].

3. Non-Archimedean limits

In this section we prove Theorem A and Corollary B.

3.1. Rays of metrics and non-Archimedean limits. For any line bundle L on X, there
is a bijection between smooth rays (φs)s>0 of metrics on L and S1-invariant smooth metrics
Φ on the pull-back of L to X × ∆∗, with ∆∗ = ∆∗1 ⊂ C the punctured unit disc. The

restriction of Φ to Xτ for τ ∈ ∆∗ is given by pullback of φlog |τ |−1
under the map Xτ → X

given by the C∗-action. Similarly, smooth rays (φs)s>s0 correspond to S1-invariant smooth
metrics on the pull-back of L to X ×∆∗r0 , with r0 = e−s0 .

A subgeodesic ray is a ray (φs) whose corresponding metric Φ is semipositive. Such rays
can of course only exist when L is nef.

Definition 3.1. We say that a smooth ray (φs) admits a non-Archimedean metric φNA as
non-Archimedean limit if there exists a test configuration (X ,L) representing φNA such that
the metric Φ on L×∆∗ corresponding to (φs)s extends to a smooth metric on L over ∆.

In other words, a non-Archimedean limit exists iff Φ has analytic singularities along
X ×{0}, i.e. splits into a smooth part and a divisorial part after pulling-back to a blow-up.

Lemma 3.2. Given a ray (φs)s in H, the non-Archimedean limit φNA ∈ HNA is unique, if
it exists.

Proof. Let ψ1 and ψ2 be non-Archimedean limits of (φs)s and let Φ be the smooth metric
on L×∆∗ defined by the ray (φs). For i = 1, 2, pick a representative (Xi,Li) of ψi such that
Φ extends as a smooth metric on Li over ∆. After replacing (Xi,Li) by suitable pullbacks,
we may assume X1 = X2 =: X and that X is normal. Then L2 = L1 +D for a Q-divisor D
supported on X0. Now a smooth metric on L1 induces a singular metric on L1 +D that is
smooth iff D = 0. Hence L1 = L2, so that ψ1 = ψ2. �

Remark 3.3. Following [Berk09, §2] (see also [Jon16, BJ16a]) one can construct a com-
pact Hausdorff space XAn fibering over the interval [0, 1] such that the fiber XAn

ρ over any
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point ρ ∈ (0, 1] is homeomorphic to the complex manifold X, and the fiber XAn
0 over 0 is

homeomorphic to the Berkovich analytification of X with respect to the trivial norm on C.
Similarly, the line bundle L induces a line bundle LAn over XAn. If a ray (φs)s>0 admits a
non-Archimedean limit φNA, then it induces a continuous metric on LAn whose restriction

to LAn
ρ is given by φlog ρ−1

and whose restriction to Xan
0 is given by φNA. In this way, φNA

is indeed the limit of φs as s→∞.

3.2. Non-Archimedean limits of functionals. For the rest of §3, assume that L is ample.

Definition 3.4. A functional F : H → R admits a functional FNA : HNA → R as a
non-Archimedean limit if, for every smooth subgeodesic ray (φs) in H admitting a non-
Archimedean limit φNA ∈ HNA, we have

lim
s→+∞

F (φs)

s
= FNA(φNA). (3.1)

Proposition 3.5. If F : H → R admits a non-Archimedean limit FNA : HNA → R, then
FNA is homogeneous.

Proof. Consider a semiample test configuration (X ,L) representing a non-Archimedean
metric φNA ∈ HNA, and let (φs)s be a smooth subgeodesic ray admitting φNA as a non-
Archimedean limit. For d ≥ 1, let (Xd,Ld) be the normalized base change induced by
τ → τd. The associated non-Archimedean metric φNA

d is then the non-Archimedean limit

of the subgeodesic ray (φds), so lims→∞ s
−1F (φds) = FNA(φNA

d ). On the other hand, we

clearly have lims→∞(ds)−1F (φds) = lims→∞ s
−1F (φs) = FNA(φNA). The result follows. �

3.3. Asymptotics of the functionals. The following result immediately implies Theo-
rem A and Corollary B.

Theorem 3.6. The functionals E, H, I, J , M and R on H admit non-Archimedean limits
on HNA given, respectively, by ENA, HNA, INA, JNA, MNA and RNA.

In addition, we have the following result due to Berman [Berm16, Proposition 3.8]. See
also [BBJ15, Theorem 3.1] for a more general result.

Theorem 3.7. If L := −KX is ample, then the Ding functional D on H admits DNA on
HNA as non-Archimedean limit.

Remark 3.8. In §4 we will extend the two previous results to the logarithmic setting and
with relaxed positivity assumptions.

The main tool in the proof of Theorem 3.6 is the following result.

Lemma 3.9. For i = 0, . . . , n, let Li be a line bundle on X with a smooth reference metric
φi,ref . Let also (X ,Li) be a smooth test configuration for (X,Li), Φi an S1-invariant smooth
metric on Li near X0, and denote by (φsi ) the corresponding ray of smooth metrics on Li.
Then

〈φs0, . . . , φsn〉X − 〈φ0,ref , . . . , φn,ref〉X = s
(
L̄0 · . . . · L̄n

)
+O(1)

as s → ∞. Here (X̄ , L̄i) is the compactification of (X ,Li) for 0 ≤ i ≤ n and 〈·, . . . , ·〉X
denotes the Deligne pairing with respect to the constant morphism X → {pt}.
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Proof. The Deligne pairing F := 〈L0, . . . ,Ln〉X/C is a line bundle on C, endowed with a C∗-
action and a canonical identification of its fiber at τ = 1 with the complex line 〈L0, . . . , Ln〉X .
It extends to a line bundle 〈L̄0, . . . , L̄n〉X̄/P1 on P1 that is C∗-equivariantly trivial near

P1 r {0}. Denoting by w ∈ Z the weight of the C∗-action on the fiber at 0, we have

w = deg〈L̄0, . . . , L̄n〉X̄/P1 =
(
L̄0, . . . , L̄n

)
.

Pick a nonzero vector v ∈ F1 = 〈L0, . . . , Ln〉X . The C∗-action produces a section τ 7→ τ · v
of F on C∗, and σ := τ−w(τ · v) is a nowhere vanishing section of F on C, see [BHJ15,
Corollary 1.4].

Since the metrics Φi are smooth and S1-invariant, Ψ := 〈Φ0, . . . ,Φn〉X/C is a continuous

S1-invariant metric on F near 0 ∈ C. Hence the function log |σ|Ψ is bounded near 0 ∈ C.
The S1-invariant metric Ψ defines a ray (ψs) of metrics on the line F1 through |v|ψs =

|τ · v|Ψτ , for s = log |τ |−1, where Ψτ is the restriction of Ψ to Fτ . Thus

log |v|ψs = log |τ · v|Ψτ = w log |τ |+ log |σ|Ψτ = −sw +O(1).

By functoriality, the metric ψs on F1 is nothing but the Deligne pairing 〈φs0, . . . , φsn〉. If we
set ψref = 〈φ0,ref , . . . , φn,ref〉X , it therefore follows that

〈φs0, . . . , φsn〉X − 〈φ0,ref , . . . , φn,ref〉X = log |v|ψref
− log |v|ψs = sw +O(1),

which completes the proof. �

Proof of Theorem 3.6. Let (φs)s be a smooth subgeodesic ray in H admitting a non-Archi-
medean limit φNA ∈ HNA. Pick a test configuration (X ,L) representing φNA such that X is
smooth and X0 has snc support. Thus L is relatively semiample and (φs)s corresponds to a
smooth S1-invariant semipositive metric Φ on L over ∆. By Lemma 1.2, we have

(n+ 1)V (E(φs)− E(φref)) = 〈φs, . . . , φs〉X − 〈φref , . . . , φref〉X .

Using Lemma 3.9, it follows that

lim
s→+∞

E(φs)

s
=

(
L̄n+1

)
(n+ 1)V

= ENA(φNA),

which proves the result for the Monge-Ampère energy E. The case of the functionals I, J
and R is similarly a direct consequence of Lemma 1.2 and Lemma 3.9. In view of the Chen-
Tian formulas for M and MNA, it remains to consider the case of the entropy functional H.
In fact, it turns out to be easier to treat the functional H +R.

By Lemma 1.2 we have

V (H(φs) +R(φs)) = 〈12 log MA(φs), φs, . . . , φs〉X − 〈ψref , φref , . . . , φref〉X ,

where ψref = 1
2 log MA(φref), so we must show that

〈12 log MA(φs), φs, . . . , φs〉X − 〈ψref , φref , . . . , φref〉X = s
(
K log
X̄/P1 · L̄n

)
+ o(s). (3.2)

The collection of metrics 1
2 log MA(Φ|Xτ ) with τ 6= 0 defines a smooth metric Ψ on K log

X/C
over ∆∗, but the difficulty here (as opposed to the situation in [PRS08]) is that Ψ will not a

priori extend to a smooth (or even locally bounded) metric on K log
X/C over ∆. Indeed, since

we have assumed that X is smooth, there is no reason why Φ is strictly positive.
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Instead, pick a smooth, S1-invariant reference metric Ψref on K log
X/C over ∆, and denote

by (ψsref)s>0 the corresponding ray of smooth metrics on KX . By Lemma 3.9 we have

〈ψsref , φ
s, . . . , φs〉X − 〈ψref , φref , . . . , φref〉X = s

(
K log
X̄/P1 · L̄n

)
+O(1).

Since

〈12 log MA(φs), φs, . . . , φs〉X − 〈ψsref , φ
s, . . . , φs〉X = 1

2

∫
X

log

[
MA(φs)

e2ψsref

]
(ddcφs)n,

Theorem 3.6 is therefore a consequence of the following result. �

Lemma 3.10. We have
∫
X log

[
MA(φs)

e
2ψs

ref

]
(ddcφs)n = O(log s) as s→∞.

Let us first prove an estimate of independent interest. See [BJ16a] for more precise results.

Lemma 3.11. Let X be an snc test configuration for X and Ψ a smooth metric on K log
X/C

near X0. Denote by e2Ψτ the induced volume form on Xτ for τ 6= 0. Then∫
Xτ
e2Ψτ ∼

(
log |τ |−1

)d
as τ → 0, (3.3)

with d denoting the dimension of the dual complex of X0, so that d+ 1 is the largest number
of local components of X0.

Here A ∼ B means that A/B is bounded from above and below by positive constants.

Proof. Since X0 is an snc divisor, every point of X0 admits local coordinates (z0, . . . , zn)

that are defined in a neighborhood of B := {|zi| ≤ 1} and such that zb00 . . . z
bp
p = ετ with

0 ≤ p ≤ n and ε > 0. Here bi ∈ Z>0 is the multiplicity of X0 along {zi = 0}. The integer d
in the statement of the theorem is then the largest such integer p. By compactness of X0, it
will be enough to show that ∫

B∩Xτ
e2Ψτ ∼

(
log |τ |−1

)p
.

The holomorphic n-form

η :=
1

p+ 1

p∑
j=0

(−1)j

bj

dz0

z0
∧ · · · ∧ d̂zj

zj
∧ · · · ∧ dzp

zp
∧ dzp+1 ∧ · · · ∧ dzn

satisfies

η ∧ dτ
τ

=
dz0

z0
∧ · · · ∧ dzp

zp
∧ dzp+1 ∧ · · · ∧ dzn.

Thus η defines a local frame of K log
X/C on B, so the holomorphic n-form ητ := η|Xτ satisfies

C−1|ητ |2 ≤ e2Ψτ ≤ C|ητ |2

for a constant C > 0 independent of τ . Hence it suffices to prove
∫
B∩Xτ |ητ |

2 ∼
(
log |τ |−1

)p
.

To this end, we parametrize B∩Xτ in (logarithmic) polar coordinates as follows. Consider
the p-dimensional simplex

σ = {w ∈ Rp+1
≥0 |

p∑
j=0

bjwj = 1},
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the p-dimensional (possibly disconnected) commutative compact Lie group

T = {θ ∈ (R/Z)p+1 |
p∑
j=0

bjθj = 0},

and the polydisc Dn−p ⊂ Cn−p. We may cover C∗ by two simply connected open sets, on
each of which we fix a branch of the complex logarithm. We then define a diffeomorphism
χτ from σ × T × Dn−p to B ∩ Xτ by setting

zj = ewj log(ετ)+2πiθj for 0 ≤ j ≤ p.

A simple computation shows that

χ∗τ (|ητ |2) = const
(
log |ετ |−1

)p
dV,

where dV denotes the natural volume form on σ × T × Dn−p. It follows that, for |τ | � 1,∫
B∩Xτ

|ητ |2 ∼
∫
σ×T×Dn−p

χ∗τ (|ητ |2) ∼
(
log |τ |−1

)p
,

which completes the proof. �

Proof of Lemma 3.10. On the one hand, we have

V −1

∫
X

log

[
MA(φs)

e2ψsref

]
(ddcφs)n

=

∫
X

log

[
MA(φs)

e2ψsref/
∫
X e

2ψsref

]
MA(φs)− log

∫
X
e2ψsref ≥ − log

∫
X
e2ψsref ,

since the first term on the second line is the relative entropy of the probability measure
MA(φs) with respect to the probability measure e2ψsref/

∫
X e

2ψsref . By Lemma 3.11 we have∫
X e

2ψsref = O(sd), where 0 ≤ d ≤ n. This gives the lower bound in Lemma 3.10.

To get the upper bound, it suffices to prove that the function gτ :=
(ddcΦ|Xτ )n

e2Ψτ
on Xτ is

uniformly bounded from above. Indeed, if τ = e−s, we then see that∫
X

log

[
MA(φs)

e2ψsref

]
(ddcφs)n =

∫
Xτ

(log V −1 + log gτ )(ddcΦ|Xτ )n

is uniformly bounded from above, since (ddcΦ|Xτ )n has fixed mass V for all τ .
To bound gτ from above, we use local coordinates (zj)

n
0 as in the proof of Lemma 3.11.

With the notation in that proof, it suffices to prove that the function (Ω|Xτ )n/e2Ψτ on Xτ is
uniformly bounded from above, where Ω := i

2

∑n
j=0 dzj ∧ dz̄j . Indeed, we have ddcΦ ≤ CΩ

for some constant C > 0. It then further suffices to prove the bound

indz0 ∧ dz̄0 ∧ · · · ∧ ̂dzj ∧ dz̄j ∧ · · · ∧ dzn ∧ dzn
∣∣∣∣
Xτ
≤ Ce2Ψτ (3.4)

for 0 ≤ j ≤ p and a uniform constant C > 0.
To prove (3.4) we use the logarithmic polar coordinates in the proof of Lemma 3.10.

Namely, if χτ : σ × T × Dn−p → B ∩Xτ is the diffeomorphism in that proof, we have

χ∗τ (e2Ψτ ) ∼ (log |τ |−1)pdV.
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χ∗τ (indz0 ∧ dz̄0 ∧ · · · ∧ ̂dzj ∧ dz̄j ∧ · · · ∧ dzn ∧ dzn) ∼ (log |τ |−1)p
∏

0≤l≤p,l 6=j
|zl|2dV.

Thus (3.4) holds, which completes the proof. �

4. The logarithmic setting

In this section we extend, for completeness, Theorem 3.6—and hence Theorem A and
Corollary B—to the logarithmic setting. We will also relax the positivity assumptions used.
Our conventions and notation largely follow [BBEGZ11].

4.1. Preliminaries. If X is a normal projective variety of dimension n, and φ1, . . . , φn are
smooth metrics on Q-line bundles L1, . . . , Ln on X, then we define ddcφ1∧· · ·∧ddcφn as the
pushforward of the measure ddcφ1|Xreg ∧ · · · ∧ ddcφn|Xreg from Xreg to X. This is a signed
Radon measure of total mass (L1 · . . . · Ln), positive if the φi are semipositive.

A boundary on X is a Weil Q-divisor B on X such that the Weil Q-divisor class

K(X,B) := KX +B

is Q-Cartier. Note that B is not necessarily effective. We call (X,B) a pair.
The log discrepancy of a divisorial valuation v = c ordF with respect to (X,B) is defined as

in §2.3, using A(X,B)(v) = c(1 + ordF (KY/(X,B))). The pair (X,B) is subklt if A(X,B)(v) > 0
for all (nontrivial) divisorial valuations v. (It is klt when B is further effective.)

A pair (X,B) is log smooth if X is smooth and B has simple normal crossing support. A
log resolution of (X,B) is a projective birational morphism f : X ′ → X, with X ′ smooth,
such that Exc(f) + f−1

∗ (B) has simple normal crossing support. In this case, there is a
unique snc divisor B′ on X ′ such that f∗B

′ = B and K(X′,B′) = f∗K(X,B). In particular the
pair (X ′, B′) is log smooth. The pair (X,B) is subklt iff (X ′, B′) is subklt, and the latter is
equivalent to B′ having coefficients < 1.

A smooth metric ψ on K(X,B) canonically defines a smooth positive measure µψ on Xreg\B
as follows. Let φB be the canonical singular metric on OXreg(B), with curvature current
given by [B]. Then ψ − φB is a smooth metric on KXreg\B, and hence induces a smooth
positive measure

µψ := e2(ψ−φB)

on Xreg \ B. The fact that (X,B) is subklt means precisely that the total mass of µψ is
finite. Thus we can view µψ as a finite positive measure on X that is smooth on Xreg \ B
and gives no mass to B or Xsing.

4.2. Archimedean functionals. Let X be a normal complex projective variety of dimen-
sion n. Fix a big and nef Q-line bundle L on X and set V := (Ln) > 0. For a smooth metric
φ on L, set MA(φ) = V −1(ddcφ)n.

Fix a smooth positive reference metric φref on L The energy functionals E, I and J are
defined on smooth metrics on L exactly as in (1.6), (1.8) and (1.7), respectively; they are
normalized by E(φref) = I(φref) = J(φref) = 0. The functionals I and J are translation
invariant, whereas E(φ+ c) = E(φ) + c. All three functionals are pullback invariant in the
following sense. Let q : X ′ → X be a birational morphism, with X ′ normal and projective,
and set L′ := q∗L. For any smooth metric φ on L, we have E(φ′) = E(φ), I(φ′) = I(φ) and
J(φ′) = J(φ), where φ′ = q∗φ and where the functionals are computed with respect to the
reference metric φ′ref := q∗φref .
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Now consider a boundary B on X. Set S̄B := −nV −1(K(X,B) · Ln−1) and fix a smooth
reference metric ψref on K(X,B). When X is smooth and B = 0, we could pick ψref =
1
2 log MA(φref), but in general, there seems to be no canonical way to get ψref from φref .

The analogue of the Ricci energy R is defined on smooth metrics φ on L by

RB(φ) :=

n−1∑
j=0

1

V

∫
Xreg

(φ− φref)dd
cψref ∧ (ddcφ)j ∧ (ddcφref)

n−1−j .

It satisfies RB(φ+c) = RB(φ)−S̄Bc and is pullback invariant in the following sense. Suppose
q : X ′ → X is a birational morphism, with X ′ projective normal, and define B′ by q∗B

′ = B
and q∗K(X,B) = K(X′,B′). Set φ′ref = q∗φref and ψ′ref := q∗ψref . Then RB(φ) = RB′(φ

′),
where φ′ = q∗φ.

Now assume (X,B) is subklt and let µref = µψref
be the finite positive measure defined

in §4.1. It is smooth and positive on Xref \ B, and may be assumed to have mass 1, after
adding a constant to ψref . For a smooth semipositive metric φ on L, set

HB(φ) :=
1

2

∫
Xreg

log
MA(φ)

µref
MA(φ) =

1

2

∫
Xreg

log
MA(φ)

e2(ψref−φB)
MA(φ).

We may have HB(φref) 6= 0. However, HB is bounded from below and translation invariant.
It is also pullback invariant in the sense above, with reference measure µ′ref = µψ′ref

on X ′.

Lemma 4.1. If φ is a smooth semipositive metric on L, then HB(φ) < +∞.

Proof. By pullback invariance we may assume that (X,B) is log smooth. In this case MA(φ)
and µref are smooth measures on X that are strictly positive on Xreg. Consider any point
ξ ∈ B and pick local coordinates (z1, . . . , zn) at ξ such that the irreducible components of B
are given by {zi = 0}, 0 ≤ i ≤ p. Fix a volume form dV near ξ. Then µref = g

∏p
i=0 |zi|2aidV ,

and MA(φ) = hdV , with ai > −1, g > 0 and h ≥ 0 smooth. If f = h log(hg
∏p
i=0 |zi|−2ai),

then f is locally integrable with respect to dV . This completes the proof. �

As in §1.4 we define the Mabuchi functional on semipositive smooth metrics by

MB := HB +RB + S̄BE.

ThenMB is translation invariant and pullback invariant in the sense above. At least formally,
the critical points of MB satisfy

n(Ric(ddcφ)− [B]) ∧ (ddcφ)n−1 = S̄B(ddcφ)n

and should be conical cscK metrics, see [Li14].

Finally consider the (weak) log Fano case, in which L := −K(X,B) is big and nef. The
Ding functional is then defined on smooth metrics as DB = LB − E, with

LB(φ) := −1

2
log

∫
Xreg

e−2(φ+φB).

If we use ψref = −φref , then the formula for the Mabuchi functional simplifies to

MB(φ) = HB(φ)− (E(φ)−
∫
Xreg

(φ− φref) MA(φ)).

We have DB ≤MB on smooth semipositive metrics.
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4.3. Non-Archimedean functionals. The extensions of the non-Archimedean functionals
in §2.7 to the logarithmic setting were studied in [BHJ15, §7]. Let us briefly review them.

Consider a normal complex projective variety X and a big and nef Q-line bundle L on X.
Let φ be a non-Archimedean metric on L, represented by a normal test configuration (X ,L)
for (X,L), that we assume dominates (X × C, L × C) via ρ : X → X × C. The formulas
in §2.7 for ENA(φ), INA(φ) and JNA(φ) are still valid.

Given a boundary B on X we set

RNA
B (φ) : = V −1(ψtriv · φn)

= V −1
(
ρ∗K log

(X×P1,B×P1)/P1 · L̄n
)
.

Now assume (X,B) is subklt and let B (resp. B̄) be the (component wise) Zariski closure
of B × C∗ in X (resp. X̄ ). Then

HNA
B (φ) : =

∫
Xdiv

A(X,B)(v) MANA(φ)

= V −1
(
K log

(X̄ ,B̄)/P1 · L̄n
)
− V −1

(
ρ∗K log

(X×P1,B×P1)/P1 · L̄n
)
.

and

MNA
B (φ) : = HNA

B (φ) +RNA
B (φ) + S̄BE

NA(φ)

=
1

V

(
K log

(X̄ ,B̄)/P1 · L̄n
)

+
S̄B

(n+ 1)V

(
L̄n+1

)
.

While the definitions of HNA
B (φ) and MNA

B (φ) make sense for arbitrary non-Archimedean
metrics φ, we will usually assume that φ is semipositive.

All the functionals above have the same invariance properties as their Archimedean
cousins. They are also homogeneous in the sense of Definition 2.7.

Finally, when (X,B) is weakly log Fano, so that (X,B) is subklt and L := −K(X,B) is
big and nef, the non-Archimedean Ding functional is defined by

DNA
B (φ) = LNA

B (φ)− ENA(φ),

where

LNA
B (φ) = inf

v

(
A(X,B)(v) + (φ− φtriv)(v)

)
,

the infimum taken over all valuations v on X that are divisorial or trivial.
The Ding functional DNA

B is translation invariant and pullback invariant. The formula for
the Mabuchi functional simplifies in the log Fano case to

MNA
B (φ) = HNA

B (φ)− (ENA(φ)−
∫
Xdiv

(φ− φref) MANA(φ)).

We have DNA
B ≤ min{MNA

B , JNA} on semipositive metrics, see Propositions 7.27 and 7.31
in [BHJ15].
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4.4. Asymptotics. The following result generalizes Theorem 3.6 and shows that if F is one
of the functionals E, I, J , HB, RB or MB on H, then F admits a non-Archimedean limit
on HNA given by FNA. For future reference, we state the result in detail.

Theorem 4.2. Let X be a normal projective variety, L a big and nef Q-line bundle on
X, and (X ,L) a test configuration for (X,L) inducing a non-Archimedean metric φNA on
L. Further, let Φ be a smooth, S1-invariant metric on L near X0, inducing a smooth ray
(φs)s>s0 of metrics on L. Fix a smooth reference metric φref on L. Then

lim
s→+∞

F (φs)

s
= FNA(φNA), (4.1)

where F is any of the functionals E, I, J .
Further, if B is a boundary on X and ψref is a smooth reference metric on K(X,B),

then (4.1) also holds for F = RB. Finally, if (X,B) is subklt and Φ is semipositive,
then (4.1) holds for F = HB and F = MB.

In addition, Berman proved that in the log Fano case, the Ding functional DB admits
DNA
B as non-Archimedean limit. Indeed, the following result follows from Proposition 3.8

and §4.3 in [Berm16].

Theorem 4.3. Let (X,B) be a subklt pair with L := −K(X,B) big and nef, (X ,L) a test

configuration for (X,L) inducing a non-Archimedean metric φNA on L, and Φ a semipositive
smooth, S1-invariant metric on L near X0, inducing a smooth ray (φs)s>s0 of semipositive
metrics on L. Then lims→+∞

1
sDB(φs) = DNA

B (φNA).

In fact, it is enough to assume Φ is semipositive and locally bounded in Theorem 4.3.

Remark 4.4. Theorems 4.2 and 4.3 remain true even when Φ is not S1-invariant, in the
following sense. For τ ∈ ∆∗, let φτ be the metric on L defined as the pullback of Φ|Xτ under
the C∗-action. Then we have limτ→0(log |τ |−1)−1F (φτ ) = FNA(φNA).

4.5. Proof of Theorem 4.2. By pullback invariance, we may assume that X is smooth.
After further pullback, we may also assume that X is smooth and dominates X ×C. In this
case, the asymptotic formulas for E, I and J follow immediately from Lemma 3.9.

When considering the remaining functionals, we may similarly, by pullback invariance,
assume that the pair (X,B) is log smooth. The asymptotic formula for RB now follows from
Lemma 3.9 since we can express RB(φ) in terms of Deligne pairings:

RB(φ) = 〈ψref , φ
n〉X − 〈ψref , φ

n
ref〉X ,

whereas the non-Archimedean counterpart is given by the intersection number

RNA
B (φ) = V −1

(
ρ∗K log

(X×P1,B×P1)/P1 · L̄n
)
X̄
.

Finally we consider the functionals HB and MB. Thus assume (X,B) is log smooth and
subklt. We may further assume that the divisor X0 +B has simple normal crossing support,
where B is the (component-wise) Zariski closure of the pullback of B × C∗ in X .

As in §3.3 it suffices to prove the asymptotic formula for the functional HB +RB. To this
end, we express HB in terms of Deligne pairings. Write B =

∑
i ciBi, where Bi, i ∈ I, are
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the irreducible components of B and ci ∈ Q. Fix a smooth metric ψi on OX(Bi) for i ∈ I.
Then ψB :=

∑
i ciψi is a smooth metric on OX(B), and it follows from (1.3) that

V HB(φ) =
1

2

∫
X

log
MA(φ)

e2(ψref−ψB)
(ddcφ)n +

∑
i∈I

ci

∫
X

log |σi|ψi(dd
cφ)n

= 〈12 log MA(φ), φn〉X − 〈ψref , φ
n〉X + 〈ψB, φn〉X +

∑
i∈I

ci (〈φn〉Bi − 〈ψi, φn〉X)

= 〈12 log MA(φ), φn〉X − 〈ψref , φ
n〉X +

∑
i∈I

ci〈φn〉Bi ,

for any smooth semipositive metric φ on L. This implies

V (HB(φ) +RB(φ)) = 〈12 log MA(φ), φn〉X − 〈ψref , φ
n
ref〉X +

∑
i∈I

ci〈φn〉Bi

= V (H(φ) +R(φ)) + n
∑
i∈I

ci(L
n−1 ·Bi)E(φ|Bi) +O(1).

On the non-Archimedean side, we have

V (HNA
B (φNA) +RNA

B (φNA)) =
(
K log

(X̄ ,B̄)/P1 · L̄n
)
X̄

=
(
K log
X̄/P1 · L̄n

)
X̄

+
(
B̄ · L̄n

)
X̄

= V (HNA(φNA) +RNA(φNA)) +
∑
i∈I

ci

(
L̄|nB̄i

)
B̄i

= V (HNA(φNA) +RNA(φNA)) + n
∑
i∈I

ci(L
n−1 ·Bi)ENA(φNA

i ),

where φNA
i is the non-Archimedean metric on L|Bi represented by L|Bi .

It now follows from Theorem 3.6 that1

lim
s→∞

1

s
(H(φs) +R(φs)) = HNA(φNA) +R(φNA),

Applying Theorem 3.6 on Bi and Bi, we also get lims→∞
1
sE(φsi ) = ENA(φNA

i ). Thus

lim
s→∞

1

s
(HB(φs) +RB(φs)) = HNA

B (φNA) +RB(φNA),

which completes the proof of Theorem 4.2.

4.6. Coercivity and uniform K-stability. Let us finally extend Corollary B to the log-
arithmic setting. Consider a pair (X,B) and a big and nef line bundle L on X. The
Donaldson-Futaki invariant of a normal test configuration (X ,L) for (X,L) is given by

DFB(X ,L) : =
1

V
(K(X̄ .B̄)/P1 · L̄n) + S̄B

(L̄n+1)

(n+ 1)V

= MNA
B (φ) +

1

V
((X0 −X0,red) · Ln) ,

1While Theorem 3.6 is stated in the case when L and L are ample and Φ is positive, the proof extends to
the weaker positivity assumptions used here.
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where φ is the non-Archimedean metric on L represented by φ. Now assume L is ample. We
then define (X,B);L) to be uniformly K-stable if the following two equivalent conditions
hold:

(i) there exists δ > 0 such that MNA
B (φ) ≥ δJNA(φ) for every φ ∈ HNA(L);

(ii) there exists δ > 0 such that DFB(X ,L) ≥ δJNA(X ,L) for any normal ample test
configuration (X ,L).

The equivalence between the two conditions is proved in [BHJ15, Proposition 8.2].

Corollary 4.5. Let (X,B) be a subklt pair and L an ample line bundle on X. Suppose that
the Mabuchi functional is coercive in the sense that there exist positive constants δ and C
such that MB(φ) ≥ δJ(φ)−C for every positive smooth metric φ on L. Then ((X,B);L) is
uniformly K-stable; more precisely DFB(X ,L) ≥MB(φ) ≥ δJNA(φ) for every positive non-
Archimedean metric on L, where (X ,L) is the unique normal ample representative of φ.

5. Uniform K-stability and CM-stability

From now on, X is smooth. In this section we explore the relationship between uniform
K-stability and (asymptotic) CM-stability. In particular we prove Theorem C, Corollary D
and Corollary E.

5.1. Functions with log norm singularities. In this section, G denotes a reductive
complex algebraic group.

Definition 5.1. We say that a function f : G→ R has log norm singularities if there exist
finitely many rational numbers ai, finite dimensional complex vector spaces Vi endowed with
a G-action and non-zero vectors vi ∈ Vi such that

f(g) =
∑
i

ai log ‖g · vi‖+O(1)

for some choice of norms on the Vi’s.

Remark 5.2. By the equivalence of norms on a finite dimensional vector space, the descrip-
tion of f is independent of the choice of norms on the Vi. In particular, given a maximal
compact subgroup K of G, the norms may be assumed to be K-invariant, so that f descends
to a function on the Riemannian symmetric space G/K.

Remark 5.3. Taking appropriate tensor products, is is easy to see that every function f on
G with log norm singularities may be written as

f(g) = a (log ‖g · v‖ − log ‖g · w‖) +O(1), (5.1)

where a ∈ Q>0 and v, w are vectors in a normed vector space V endowed with a G-action.

The following generalization of the Kempf-Ness/Hilbert-Mumford criterion is closely re-
lated to results of [Pau13], which they simplify to some extent. Our elementary argument
is inspired by the discussion on pp.241–243 of [Tho06].

Theorem 5.4. Let f be a function on G with log norm singularities.

(i) For each 1-PS λ : C∗ → G, there exists fNA(λ) ∈ Q such that

(f ◦ λ)(τ) = fNA(λ) log |τ |−1 +O(1)

for |τ | ≤ 1.
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(ii) f is bounded below on G iff fNA(λ) ≥ 0 for all 1-PS λ.

The chosen notation stems from the fact that fNA induces a function on the (conical)
Tits building of G, i.e. the non-Archimedean analogue of G/K (compare [MFF, §2.2]).

Before entering the proof, let us recall some basic facts about representations of algebraic
tori. Let T ' (C∗)r be an algebraic torus, and introduce as usual the dual lattices

M := Hom(T,C∗) ' Zr and N := Hom(C∗, T ) ' Zr.

Note that N is the group of 1-PS of T . For each finite-dimensional vector space V on
which T acts and each m ∈ M , let Vm ⊂ V be the subspace on which each t ∈ T acts by
multiplication by m(t). The action of T on V being diagonalizable, we have a direct sum
decomposition V =

⊕
m∈M Vm, and the set of weights of V is defined as the (finite) set

MV ⊂M of characters m ∈M for which Vm 6= 0.
Given a non-zero vector v ∈ V , the set Mv ⊂ MV of weights of v is defined as those

m ∈ M for which the projection vm ∈ Vm of v is non-zero. The weight polytope of v is
defined as the convex hull Pv ⊂ MR of Mv in MR, whose support function hv : NR → R is
the convex, positively homogeneous function defined by

hv(λ) = max
m∈Mv

〈m,λ〉,

where the bracket denotes the dual pairing between MR and NR.

Proof of Theorem 5.4. By Remark 5.3 we may assume f is of the form

f(g) := log ‖g · v‖ − log ‖g · w‖,

where v, w are nonzero vectors in a finite dimensional normed vector space V equipped with
a G-action.

(i) Let first λ : C∗ → G be a 1-parameter subgroup, and denote by Iv ⊂ Z the set of
weights of v with respect to λ. We then have

λ(τ) · v =
∑
m∈Iv

τmvm,

and hence

log ‖λ(τ) · v‖ = max
m∈Iv

(m log |τ |+ log ‖vm‖) +O(1) = −
(

min
m∈Iv

m

)
log |τ |−1 +O(1)

for |τ | ≤ 1, and (i) follows with fNA(λ) = min Iw −min Iv.
(ii) The direct implication follows immediately from (i). For the reverse implication

we use the Cartan (or polar) decomposition G = KTK, where T ⊂ G is any maximal
algebraic torus and K ⊂ G be a maximal compact subgroup. We then get an isomorphism
T/K ∩ T ' NR, hence a group homomorphism

Log | · | : T → NR,

which in compatible bases for T ' C∗r and NR ' Rr is given by

(t1, . . . , tr) 7→ (log |t1|, . . . , log |tr|).

Note that

log |m(t)| = 〈m,Log |t|〉
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for all m ∈M and t ∈ T , and

Log |λ(τ)| = (log |τ |)λ
in NR for each 1-PS λ : C∗ → T (i.e. λ ∈ N).

In this notation, we claim that

f(k′tk) = hk·v(Log |t|)− hk·w(Log |t|) +O(1), (5.2)

for all k, k′ ∈ K and t ∈ T .
To see that (5.2) holds, we may assume the norm on V is K-invariant. We then have for

all k, k′ ∈ K and t ∈ T

log ‖(k′tk) · v‖ = log ‖t · (k · v)‖ = log ‖
∑

m∈Mk·v

m(t)(k · v)m‖

= log max
m∈Mk·v

‖m(t)(k · v)m‖+O(1) = max
m∈Mk·v

(〈m,Log |t|〉+ log ‖(k · v)m)‖) +O(1).

By the compactness of K, we further may find C = C(v) > 0 such that

−C ≤ log ‖(k · v)m‖ ≤ C
for all k ∈ K and all m ∈Mk·v. By the definition of the support function hk·v, we thus have

max
m∈Mk·v

(〈m,Log |t|〉+ log ‖(k · v)m)‖) = hk·v(Log |t|) +O(1).

We have thus proved that

log ‖(k′tk) · v‖ = hk·v(Log |t|) +O(1).

A similar estimate of course holds with w in place of v, and (5.2) follows.
As a consequence of 5.2, we get

fNA(k−1λk) = hk·v(λ)− hk·w(λ) (5.3)

for all λ ∈ N . If we assume that fNA ≥ 0 on all 1-PS of G, then hk·v ≥ hk·w on N ,
hence on NQ by homogeneity, and hence on NR by density. From (5.2) and the Cartan
decomposition G = KTK it follows, as desired, that f is bounded below on G. The proof
is now complete. �

5.2. Proof of Theorem C and Corollaries D and E. Replacing L with mL, we may
assume for notational simplicity that m = 1. Set N := h0(L) and G := SL(N,C), so
that each σ ∈ G defines a Fubini-Study type metric φσ on L. Note that M − δJ is bounded
below onH1 ' GL(N,C)/U(N) iff M(φσ)−δJ(φσ) bounded below for σ ∈ G, by translation
invariance of M and J .

The key ingredient is the following result of S. Paul [Pau12].

Theorem 5.5. The functionals E, J and M all have log norm singularities on G.

Granted this result we can deduce Theorem C. The equivalence of (ii) and (iii) follows
from the same argument as Lemma 7.22 in [BHJ15], so it suffices to show that (i) and (iii)
are equivalent. By Theorem 5.5, the function f(σ) := M(φσ) − δJ(φσ) on G has log norm
singularities. By Theorem 5.4, it is thus bounded below iff

lim
s→+∞

(f ◦ λ)(e−s)

s
≥ 0



28 SÉBASTIEN BOUCKSOM, TOMOYUKI HISAMOTO, AND MATTIAS JONSSON

for each 1-parameter subgroup λ : C∗ → G. We obtain the desired result since by Theorem B,
this limit is equal to MNA(φλ)−δJNA(φλ), where φλ ∈ HNA is the non-Archimedean metric
on L defined by λ.

Corollary D follows since every ample test configuration of (X,L) is induced by a 1-PS,
see §2.2. The first assertion of Corollary E follows immediately, and the fact that the reduced
automorphism group of (X,L) is finite is a consequence of [Pau13, Corollary 1.1].

Proof of Theorem 5.5. Recall from [Pau12] that to the linearly normal embedding X ↪→
PH0(X,L)∗ ' PN−1 are associated the X-resultant R, i.e. the Chow coordinate of X, and
the X-hyperdiscriminant ∆, which cuts out the dual variety of

X × Pn−1 ↪→ PN−1 × Pn−1 ↪→ PNn−1,

the second arrow being the Segre embedding.
In our notation, we then have degR = V (n + 1) and deg ∆ = V

(
n(n+ 1)− S̄

)
[Pau12,

Proposition 5.7], and [Pau12, Theorem A] becomes

M(φσ) = V −1 log ‖σ ·∆‖ − V −1 deg ∆

degR
log ‖σ ·R‖+O(1), (5.4)

which proves the assertion for M(φσ).
We next consider

J(φσ) =

∫
X

(φσ − φref) MA(φref)− E(φσ).

On the one hand, by [Pau04, Theorem 1] (or [Zha96, Theorem 1.6, Theorem 3.6]) we have

E(φσ) =
1

degR
log ‖σ ·R‖+O(1). (5.5)

On the other hand, choosing any norm on the space of complex N ×N -matrices (in which
G of course embeds), it is observed in the proof of [Tia14, Lemma 3.2] that∫

X
(φσ − φref) MA(φref) = log ‖σ‖+O(1).

The assertion for J(φσ) follows. �

5.3. Discussion of [Tia14]. The statement of [Tia14, Lemma 3.1] sounds overoptimistic
from the GIT point of view, as it would mean that CM-stability can be tested by only
considering 1-parameter subgroups of a fixed maximal torus T .

At least, the proof is incorrect, the problem being the estimate (3.1), which claims that
φτk − φτ is uniformly bounded with respect to τ ∈ T and k ∈ K. As the next example
shows, this is not even true for a fixed k ∈ K.

Example 5.6. Assume (s1, s2) is a basis of H0(X,L), let k ∈ U(2) be the unitary transfor-
mation exchanging s1 and s2, τ = (t, t−1), and pick a point x with s1(x) = 0. Then

φτk(x)− φτ (x) = 4 log |τ |

is unbounded.

In any case, the methods here do not seem to be able to deduce CM-stability from K-
stability, because of the following fact.
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Proposition 5.7. For each polarized manifold (X,L) and each m large and divisible enough,
there exists a non-trivial 1-PS λ in GL(Nm,C) such that J and M remain bounded on the
corresponding Fubini-Study ray φs := φλ(e−s).

Proof. As originally observed in [LX14] (cf. Proposition 2.3), (X,L) admits a non-trivial
ample test configuration (X ,L) that is almost trivial, i.e. with trivial normalization. As
recalled in §2.2, for each m large and divisible enough, (X ,L) can be realized as the test
configuration induced by a 1-PS λ : C∗ → GL(Nm,C), which is non-trivial since (X ,L) is.
Since the normalization of (X ,L) is trivial, the associated non-Archimedean metric is of the
form φtriv + c for some c ∈ Q, and hence MNA(φλ) = JNA(φλ) = 0. Since M and J have
log norm singularities on GL(Nm,C) by Theorem 5.5, M and J are indeed bounded on φs

by Theorem 5.4. �

6. Remarks on the Yau-Tian-Donaldson conjecture

As explained in the introduction, we will here give a simple argument, following ideas
of Tian, for the existence of a Kähler-Einstein metric on a Fano manifold X, assuming
(X,−KX) is uniformly K-stable and the partial C0-estimates due to Székelyhidi.

6.1. Partial C0-estimates and the continuity method. For the moment, consider an
arbitrary polarized manifold (X,L). For each m such that mL is very ample, we have a
‘Bergman kernel approximation’ map Pm : H → Hm, defined by setting Pm(φ) to be the
Fubini-Study metric induced by the L2-scalar product on H0(X,mL) defined by mφ.

Definition 6.1. A subset A ⊂ H satisfies partial C0-estimates at level m if there exists
C > 0 such that |Pm(φ)− φ| ≤ C for all φ ∈ A.

Now assume X is Fano, and set L := −KX . Given a Kähler form α ∈ c1(X), consider
Aubin’s continuity method

Ric(ωt) = tωt + (1− t)α. (6.1)

It is well-known that there exists a unique maximal solution (ωt)t∈[0,T ), where 0 < T ≤ 1.
The following important result, due to Székelyhidi [Szé13], confirms a conjecture of Tian.

Theorem 6.2. The set A := {ωt | t ∈ [0, T )} satisfies partial C0-estimates at level m, for
arbitrarily large positive integers m.

Given this result, we shall prove

Theorem 6.3. Any uniformly K-stable Fano manifold admits a Kähler-Einstein metric.

By working (much) harder, Datar and Székelyhidi [DSz15] have in fact been able to deduce
from Theorem 6.2 a much better result dealing with K-polystability and allowing a compact
group action.

6.2. CM-stability and partial C0-estimates. We first present in some detail well-known
ideas due to Tian [Tia12, §4.3]. In this section, (X,L) is an arbitrary polarized manifold.

Proposition 6.4. Assume that (X,mL) is CM-stable, and that A ⊂ H satisfies partial
C0-estimates at level m. Then there exist δ, C > 0 such that M ≥ δJ − C on A.

The proof is based on two lemmas.

Lemma 6.5. For any two metrics φ, ψ ∈ H, we have
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(i) |J(φ)− J(ψ)| ≤ 2 sup(φ− ψ);
(ii) M(φ) ≥M(ψ)−C sup |φ−ψ| for some C > 0 only depending on a one-sided bound

(either upper or lower) for the Ricci curvature of the Kähler metric ddcψ.

Proof. Recall that

E(φ)− E(ψ) =
1

n+ 1

n∑
j=0

V −1

∫
X

(φ− ψ)(ddcφ)j ∧ (ddcψ)n−j .

As a consequence, |E(φ)− E(ψ)| ≤ sup |φ− ψ|, and (i) follows immediately.
For (ii), we basically argue as in the proof of [Tia14, Lemma 3.1]. By the Chen-Tian

formula 1.11, we have

M(φ)−M(ψ) = Hψ(φ) + S̄ (E(φ)− E(ψ)) + ERic(ddcψ)(ψ)− ERic(ddcψ)(φ).

Here the entropy term Hψ(φ) is non-negative, and we have

ERic(ddcψ)(φ)− ERic(ddcψ)(ψ) =
n−1∑
j=0

V −1

∫
X

(φ− ψ)(ddcφ)j ∧ (ddcψ)n−j−1 ∧ Ric(ddcψ).

Assume Ric(ddcψ) ≤ Cddcψ for some constant C > 0. We may then write

(ddcφ)j ∧ (ddcψ)n−j−1 ∧ Ric(ddcψ)

= C(ddcφ)j ∧ (ddcψ)n−j − (ddcφ)j ∧ (ddcψ)n−j−1 ∧ (C ′ddcψ − Ric(ddcψ)),

a difference of two positive measures of mass CV and CV + (Ln−1 ·KX), respectively, and
the desired estimate follows.

The case where Ric(ddcψ) ≥ −C ′ddcψ is treated similarly (and will anyway not be used
in what follows). �

We next recall a well-known upper bound for the Ricci curvature of restrictions of Fubini-
Study metrics.

Lemma 6.6. We have Ric(ddcφ) ≤ Nmdd
cφ for all φ ∈ Hm.

Proof. Choose a basis of H0(X,mL), and let ω be the corresponding Fubini-Study metric
on P := PH0(X,mL)∗. Its curvature tensor

Θ(TP, ω) ∈ C∞(P,Λ1,1T ∗P ⊗ End(TP))

is Griffiths positive and satisfies

TrTP Θ(TP, ω) = Ric(ω) = Nmω.

For each complex submanifold Y ⊂ P, the curvature of its tangent bundle TY with
respect to ω|Y satisfies Θ(TY , ω|Y ) ≤ Θ(TP, ω)|TY as (1, 1)-forms on Y with values in the
endomorphisms of TY , as a consequence of a well-known curvature monotonicity property
going back to Griffiths. We thus have

Ric(ω|Y ) = TrTY Θ(TY , ω|Y ) ≤ TrTY Θ(TP, ω)|TY .

Using now Θ(TP, ω) ≥ 0, we have on the other hand

TrTY Θ(TP, ω)|TY ≤ TrTP Θ(TP, ω)|Y = Nmω|Y ,
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and hence
Ric(ω|Y ) ≤ Nmω|Y .

Applying this to the images of X ⊂ P under projective transformations yields the desired
result. �

Proof of Proposition 6.4. Since (X,mL) is CM-stable, there exist δ, C > 0 such that

M(Pm(φ)) ≥ δJ(Pm(φ))− C (6.2)

for all φ ∈ H. By assumption on A, we also have |Pm(φ) − φ| ≤ C for all φ ∈ A, and by
Lemma 6.6, the Ricci curvature of ddcPm(φ) is uniformly bounded above. Hence Lemma 6.5
shows, as desired, that there exists C ′ > 0 with M(φ) ≥ δJ(φ)− C ′ for all φ ∈ A. �

6.3. Proof of Theorem 6.3. Assume now that X is a Fano manifold and set L := −KX .
Consider the continuity method (6.1). Pick metrics ψ and φt on −KX such that α = ddcψ
and ωt = ddcφt, respectively. After adding a constant to φt, (6.1) may be written

(ddcφt)
n = e−2(tφt+(1−t)ψ). (6.3)

We recall the proof of the following well-known monotonicity property.

Lemma 6.7. The function t→M(φt) is non-increasing.

Proof. We have

− d

dt
M(φt) = nV −1

∫
X
φ̇t
(
Ric(ωt) ∧ ωn−1

t − ωnt
)

= nV −1(1− t)
∫
X
φ̇tdd

c(ψ − φt) ∧ (ddcφt)
n−1

= nV −1(1− t)
∫
X

(ψ − φt)ddcφ̇t ∧ (ddcφt)
n−1.

Since dc is normalized so that ddc = i
π∂∂, we have

n
ddcφ̇t ∧ ωn−1

t

ωnt
= trωtdd

cφ̇t = − 1
2π∆′′t φ̇t

with ∆′′t denoting the ∂̄-Laplacian with respect to ωt. On the other hand, differentiating 6.3
yields

nddcφ̇t ∧ ωn−1
t = 2(ψ − φt − tφ̇t)ωnt ,

and hence
ψ − φt =

(
t− 1

π∆′′t
)
φ̇t.

We get

− d

dt
M(φt) =

1− t
2π

∫
X

((
1
π∆′′t − t

)
φ̇t

)(
∆′′t φ̇t

)
MA(φt)

=
1− t
2π

∫
X
〈
(

1
π∆′′t − t

)
∂̄φ̇t, ∂̄φ̇t〉ωt MA(φt).

Since Ric(ωt) ≥ tωt, the ∂̄-Laplacian ∆′′t satisfies 1
π∆′′t ≥ t on (0, 1)-forms, and the last

integral is thus nonnegative. Indeed, this follows from the Bochner-Kodaira-Nakano identity
applied to

C∞(X,Λ0,1T ∗X) ' C∞(X,Λn,1T ∗X ⊗K∗X)
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with the fiber metric ψt = −1
2 logωnt on K∗X = −KX , with curvature ddcψt = Ric(ωt). �

We may now complete the proof of Theorem 6.3. By Corollary E, (X,−mKX) is CM-
stable for all m divisible enough. Theorem 6.2 and Proposition 6.4 therefore yield δ, C > 0
such that M(φt) ≥ δJ(φt) − C along Aubin’s continuity method. Since M(φt) is bounded
above by Lemma 6.7, it follows that J(φt) remains bounded. By [Tia00, Lemma 6.19], the
oscillation of φt is bounded, and well-known arguments allow us to conclude, see [Tia00, §6.2].
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[Tia14] G. Tian. K-stability implies CM-stability. arXiv:1409.7836v1. 28, 30
[Tia15] G. Tian. K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math. 68 (2015), 1085–

1156. 4
[Zha96] S.-W. Zhang. Heights and reductions of semi-stable varieties. Compositio Math. 104 (1996),

77–105. 6, 28
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