Learning in nonatomic anonymous games with applications to first-order mean field games - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Learning in nonatomic anonymous games with applications to first-order mean field games

Résumé

We introduce a model of anonymous games with the player dependent action sets. We propose several learning procedures based on the well-known Fictitious Play and Online Mirror Descent and prove their convergence to equilibrium under the classical monotonicity condition. Typical examples are first-order mean field games.
Fichier principal
Vignette du fichier
Learning in Anonymous Game.pdf (324.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01706948 , version 1 (12-02-2018)

Identifiants

Citer

Saeed Hadikhanloo. Learning in nonatomic anonymous games with applications to first-order mean field games. 2018. ⟨hal-01706948⟩
80 Consultations
59 Téléchargements

Altmetric

Partager

More