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Saeed Hadikhanloo∗
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Abstract

We introduce a model of non atomic anonymous games with the player dependent action
sets. We propose several learning procedures based on the well-known fictitious play and online
mirror descent and prove their convergence to equilibrium under the classical monotonicity
condition. Typical examples are first-order mean field games.

1 Introduction

Our goal in this article is to propose learning procedures for first order mean field games with
monotone costs. Mean field games (MFGs) were introduced simultaneously by Lasry and Lions
[14][15][15][13] and Huang, Caines and Malhamé [11][12]. In short, these games are differential
games with an infinite number of players. The equilibrium configuration is usually described by
a PDE system (of a Hamilton-Jacobi coupled with a Fokker-Planck equations); but we can give a
weaker description of an equilibrium in terms of distribution over the set of trajectories.

Let us describe this weaker formulation. Let Γ = AC([0, T ];Rd) be the set of all absolutely
continuous paths in Rd, endowed with the uniform norm. For a given m0 ∈ P(Rd), called the
initial measure, we denote

Pm0(Γ) = {η ∈ P(Γ) ; e0]η = m0} ,

the set of all measures over set of trajectories Γ such that the induced measure e0]η at instant
t = 0 equals to our given initial measure m0. We call a distribution, η∗ ∈ Pm0(Γ) an equilibrium
distribution if for η∗−almost every γ, we have

γ ∈ argminz∈Γ,z(0)=γ(0)

{∫ T

0

(
L(z(t), ż(t)) + f(z(t), et]η

∗)
)

dt+ g(z(T ), eT ]η
∗)

}
This formulation is known in the literature; for example, Cardliaguet and Hadikhanloo [8] worked
on the potential first order mean field games and proved the convergence of fictitious play to the
equilibrium distribution. They also showed that under strong assumptions on the data, one can
obtain the first order MFG solution from an equilibrium distribution.

In this article our goal is to give algorithms for finding such distribution equilibria. We mostly
work with two algorithms similar to learning procedures in games, called fictitious play and online
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mirror descent. For example, fictitious play in this framework reads as follows. Let an arbitrary
η1 ∈ Pm0(Γ) and construct recursively ηk, η̄k ∈ Pm0(Γ) with the following rule. Let ηk+1 be such
that for ηk+1−almost every γ, we have

γ ∈ argminz∈Γ,z(0)=γ(0)

{∫ T

0

(
L(z(t), ż(t)) + f(z(t), et]η̄

k)
)

dt+ g(z(T ), eT ]η̄
k)

}
,

and then η̄k+1 = k
k+1 η̄

k + k
k+1η

k+1. We prove that such procedure converge to an equilibrium
distribution in the case of monotonicty of f and g.

As explained above, our main purpose is to work in the framework of first-order MFGs; however,
the approach can be used for a larger class of games and hence we work under a more general model,
that is the framework of non atomic anonymous games. This framework is closely related to the
model used by Mas-Colell [16], Blanchet and Carlier [3][4][5]. Contrasting to their approach, we
work with a model that the action sets are not identical for all players and they depend on the types
of players. This is the case in first-order MFGs; the players choose the paths with fixed (player
dependent) initial positions as their actions.

We provided sufficient conditions proving the existence of an equilibrium. Moreover, we proved
the uniqueness of the equilibrium under an adapted monotonicity notion. The strict monotonicity
yields the uniqueness of the Nash equilibrium in several games (Lasry and Lions [14],[15], Hofbauer
and Sandholm [10], Blanchet and Carlier [4]). In non atomic anonymous games with (not necessarily
strict) monotone costs, equilibrium uniqueness is a direct consequence of monotonicity and an
additional assumption, called the unique minimiser condition.

After setting a proper framework, the next question we deal with, is to propose algorithms
similar to learning procedures in games, ensuring convergence to equilibria. There are several
learning procedures in static games with finitely many players and/or a finite number of actions
per player (see for example the monograph [9]). Here we extend two of the most known of them to
non atomic anonymous games: fictitious play and online mirror descent.

Fictitious play was introduced by Brown [6]. The procedure is as follows. Let a fixed game
be played for many rounds. At every round, the players set their belief about the actions of other
players, equal to the average of empirical frequency of actions played in previous rounds. Then
they choose their best action against to this belief. Convergence toward an equilibrium has been
proved for different classes of finite games, for example potential games (Monderer, Shapley [19]),
zero sum games (Robinson [21]) and 2 × 2 games (Miyasawa [18]). Cardaliaguet, Hadikhanloo
[8] proved the convergence of a similar procedure (still called fictitious play) in first and second
order potential MFGs. We should note that our approach in this article, covers a different class of
first-order MFGs, that are the ones with monotone costs.

The second procedure we consider is the online mirror descent (OMD). The method was first
introduced by Nemirovski, Yudin [20], as a generalization of standard gradient descent. The form
of the algorithm is closely related to the notion of no-regret procedures in online optimization.
A good explanatory introduction can be found in Shalev Shwartz[24]. Roughly speaking, the
procedure deals with two variables, a primal one and a dual one. They are revised at every round;
the dual is revised by using the sub-gradient of the objective function and the primal is obtained
by a quasi projection via a strongly convex penalty function on the convex domain. Mertikopolous
[17] proved the convergence of OMD to equilibria in the class of games with convex action sets
and concave costs. Here we examine the convergence properties of OMD in monotone anonymous
games.
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In the proof of convergence of both procedures to the equilibrium, we define a value φn ∈ R, n ∈
N measuring how much the actual profile of action at step n is far from being an equilibrium; in
fictitious play the quantity φn is calculated by using the best response function and in OMD by the
Fenchel coupling. We then prove that indeed limn→∞ φn = 0; this gives our desired convergence
toward the equilibrium.

Here is how the paper is organized: in section 3 a general model of anonymous game is proposed.
The notion of Nash equilibrium is reviewed and the existence is proved under general continuity
conditions. Then we define monotonicity in terms of the cost function, and its consequence on the
uniqueness of the Nash equilibrium. Section 4 is devoted to the definition of fictitious play and its
convergence under Lipschitz conditions. Section 5 deals with the online mirror descent algorithm
and its convergence. Section 6 shows that the first order MFG can be considered as an example
of anonymous games and shows that the previous results can be applied under suitable conditions.
For sake of completeness, we provide in the Appendix some disintegration theorems which are used
in the proofs.

Acknowledgement. The extension of online mirror descent to the case of non atomic anonymous
games was inspired from the explanations of Panayotis Mertikopoulos; I would like to sincerely
thank him for his permanent supports. I wish to thank as well the support of ANR (Agence
Nationale de la Recherche) MFG (ANR-16-CE40-0015-01).

2 Preliminaries

For a measure space X let P(X) denotes the set of probability measures on X.

Definition 2.1. A correspondence A : I → V,A(i) = Ai is called continuous if:

• it is upper semi continuous i.e. the graph {(i, a) ∈ I × V | a ∈ Ai} is closed in I × V ,

• it is lower semi continuous i.e. for every open set U ⊆ V the set {i ∈ I | Ai ∩U 6= ∅} is open
in I.

3 Non atomic anonymous games

3.1 Model

Let us introduce our general model of anonymous game G. Let I be the set of players and λ ∈ P(I)
a prior non atomic probability measure on I modelling the repartition of players on I. Let V be a
measure space. For every player i ∈ I, let Ai ⊂ V be the action set of i. Define the set of admissible
profiles of actions

A = {Ψ : I → V measurable | Ψ(i) ∈ Ai for λ-almost every i ∈ I}.

We identify the action profiles up to λ−zero measure subsets of I, i.e. Ψ1 = Ψ2 iff Ψ1(i) = Ψ2(i)
for λ-almost every i ∈ I. The induced measure of a typical profile Ψ ∈ A on the set of actions,
that captures the portion of players who have chosen a given subset of actions, is denoted by
Ψ]λ ∈ P(V ). More precisely, Ψ]λ is the push-forward of measure of λ by application Ψ, that is for
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every measurable set B ⊆ V we have Ψ]λ(B) = λ(Ψ−1(B)). Since the set consisting of measures
Ψ]λ for all admissible profiles Ψ, may be different from P(V ), it is sufficient to work with:

PG(V ) = { η ∈ P(V ) | ∃ Ψ ∈ A : η = Ψ]λ }.

For every i ∈ I let ci : A → R be the cost paid by player i. We call the game anonymous, if for
every player i ∈ I, there exists Ji : Ai × PG(V ) → R such that ci(Ψ) = Ji(Ψ(i),Ψ]λ). In other
words, Ji(a, η) captures the cost endured by a typical player i ∈ I, whose action is a ∈ Ai while
facing the distribution of actions η ∈ P(V ) chosen by other players. We consider here anonymous
games where the players have identical cost function, i.e. there is J : V × PG(V ) → R such that
for every i ∈ I we have Ji = J . We use the following notation for referring to such game:

G = (I, λ, V, (Ai)i∈I , J).

Example 3.1 (Population Game [10]). Set I = [0, 1] be the set of players and λ the Lebesgue
measure as the distribution of players on I. Let N ∈ N represents the number of populations in
the game i.e. there is a partition of players I1, I2, · · · , IN ⊆ I where for every 1 ≤ p ≤ N, Ip ⊆ I
represents the set of players belonging to population p. For every player i ∈ I suppose the set of
actions Ai is finite and depends only on the population where the player i comes from, i.e. for
every population p there is Sp such that for all i ∈ Ip we have Ai = Sp. Set V = ∪pSp. For every
population p the cost function has the form Jp : Sp×∆(V )→ R where Jp(a, (mj)1≤j≤|V |) is the cost
payed by a typical player in population p whose action is a ∈ Sp while facing (mj)1≤j≤|V | where for
every 1 ≤ j ≤ |V |, mj ≥ 0 is the portion of players who have chosen action j ∈ V . The form of
the cost function illustrates the fact that the population games are anonymous.

Example 3.2. In section 5, we show that the First order MFG is an anonymous game with suitable
actions sets and cost function.

3.2 Nash equilibria

Inspired from the notion of Nash equilibrium in non atomic games (see Schmeidler [23], Mas-Colell
[16]), we omit the effect of λ−zero measure subsets of players in the definition of equilibria:

Definition 3.1. A profile Ψ̃ ∈ A is called a Nash equilibrium if

Ψ̃(i) ∈ arg min
a∈Ai

J(a, Ψ̃]λ) for λ-almost every i ∈ I.

The corresponding distribution η̃ = Ψ̃]λ is called a Nash (or equilibrium) distribution.

One can note that the definition of Nash equilibrium highly depends on the prior distribution
of players λ. The following theorem gives a sufficient condition under which the game possesses
at least one equilibrium. Let I be a topological and V be a metric space (with B(I),B(V ) as
their σ−fields). Suppose the Ai’s are uniformly bounded for λ-almost every i ∈ I, i.e. there exist
M > 0, v ∈ V such that:

for λ−almost every i ∈ I and every a ∈ Ai : dV (v, a) < M. (1)

This condition gives us PG(V ) ⊆ P1(V ) where:

P1(V ) = { η ∈ P(V ) | ∃v ∈ V :

∫
V

dV (v, a) dη(a) < +∞ }
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endowed with the metric:

d1(η1, η2) = sup
h:V→R, 1-Lipschitz

∫
V
h(a) d(η1 − η2)(a).

For technical reasons we work with closure convex hull of PG(V ) i.e. cov(PG(V )).

Definition 3.2. We say G = (I, λ, V, (Ai)i∈I , J) satisfies the unique minimiser condition, if for
every η ∈ cov(PG(V )), there exists Iη ⊆ I with λ(I \Iη) = 0, such that for all i ∈ Iη there is exactly
one a ∈ Ai minimizing J(·, η) in Ai.

Informally, the definition says facing to every distribution of actions, (almost) every player has
a unique best response.

For more detailed theorems about set valued maps, see [2].

Assumption 3.1. Here are the assumptions we consider for the non atomic anonymous games:

1. the correspondence A : I → V, A(i) = Ai is continuous and compact valued,

2. there is an extension J : V × cov(PG(V ))→ R which is lower semi-continuous,

3. the function Min : I × PG(V )→ R, Min(i, η) := mina∈Ai J(a, η) is continuous,

4. cov(PG(V )) is compact,

5. G satisfies the unique minimiser condition.

Theorem 3.1. Let G = (I, λ, V, (Ai)i∈I , J) be an anonymous game. Suppose the assumptions (3.1)
hold. Then G will admit at least a Nash equilibrium.

Assumptions (3.1)(1-4) provide enough continuity and compactness conditions we need for
the fixed point theorem. The assumption (3.1)(5) allows us to prove the existence of pure Nash
equilibrium; it is crucial as well for the uniqueness of equilibrium and convergence results in learning
procedures that we will propose. So we add it here as an assumption for being coherent in the
entire chapter. Before we start the proof let us provide some lemmas which will be used here and
in the rest of paper:

Lemma 3.1. Define the best response correspondence as follows

BR : I × cov(PG(V ))→ V, BR(i, η) = arg min
a∈Ai

J(a, η).

If the assumptions (3.1) hold, then for every η ∈ PG(V ) the correspondence BR(·, η) : I → V , that
is almost everywhere singleton, is almost everywhere continuous and hence measurable.

Proof. Fix η ∈ cov(PG(V )). According to the unique minimiser condition there exists Iη ⊆ I with
λ(I \ Iη) = 0, such that BR(i, η) is singleton for every i ∈ Iη. We will show the continuity of the
restricted best response function BR(·, η) : Iη → V which completes our proof. Consider i, in ∈ Iη
such that in → i. Set an = BR(in, η). The set {an}n∈N is pre-compact since A : I → V is a compact
valued correspondence and hence A({in}n∈N ∪ {i}) = ∪nAin ∪Ai is compact. Suppose ã ∈ V is an
accumulation point of {an}n∈N. So there is a sub-sequence {ank

}k∈N such that limk→∞ ank
= ã.
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We have ã ∈ Ai since the correspondence A : I → V is upper semi continuous and an ∈ Ain . By
definition J(an, η) = Min(in, η) which gives:

J(ã, η) ≤ lim inf
nk

J(ank
, η) = lim inf

nk

Min(ink
, η) = Min(i, η),

since the Min function is continuous. It yields ã = BR(i, η). So every accumulation point of
{an}n∈N should be BR(i, η) which shows an → BR(i, η).

Lemma 3.2. Define the best response distribution function Θ : cov(PG(V ))→ PG(V ) as follows:

Θ(η) = BR(·, η)]λ, for every η ∈ cov(PG(V )).

If the assumptions (3.1) hold then Θ is continuous.

Proof. Let ηn → η. If J = Iη ∩n∈N Iηn then we have λ(I \ J) = 0. One can show as for Lemma 3.1
that for every i ∈ J :

BR(i, ηn)→ BR(i, η).

Since the Ai’s are uniformly bounded for λ−almost every i ∈ J , the dominated Lebesgue conver-

gence theorem implies
∫
I dV (BR(i, ηn), BR(i, η)) dλ(i)→ 0. Thus Θ(ηn)

d1−→ Θ(η) since:

d1(Θ(ηn),Θ(η)) = sup
f :V→R, 1-Lipschitz

∫
V
f(v) d(Θ(ηn)−Θ(η))(v) =

sup
f :V→R, 1-Lipschitz

∫
I

(f(BR(i, ηn))− f(BR(i, η))) dλ(i) ≤
∫
I

dV (BR(i, ηn), BR(i, η)) dλ(i)→ 0.

Proof of Theorem 3.1. Consider the best response distribution function Θ defined in Lemma 3.2.
We have by definition

Θ(cov(PG(V ))) ⊂ PG(V ) ⊂ cov(PG(V )),

which implies that the image of Θ is pre-compact. Since Θ is continuous (Lemma 3.2) and
cov(PG(V )) is convex, by the Schauder’s fixed point theorem, there is η̃ ∈ cov(PG(V )) such that
Θ(η̃) = η̃. Since Θ(η̃) = BR(·, η̃)]λ ∈ PG(V ) so if we set Ψ̃(·) = BR(·, η̃) ∈ A then

Ψ̃]λ = η̃, Ψ̃(i) ∈ arg min
a∈Ai

J(a, η̃) for λ-almost every i ∈ I.

This means Ψ̃ is the desired Nash equilibrium.

3.3 Anonymous games with monotone cost

Here we give a definition of monotonicity and its additional consequences on the structure of the
game and its equilibria.
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Definition 3.3. The anonymous game G = (I, λ, V, (Ai)i∈I , J) has a monotone cost J if for any
η, η′ ∈ cov(PG(V )): ∫

V
|J(a, η)| dη′(a) < +∞,

and ∫
V

(
J(a, η)− J(a, η′)

)
d(η − η′)(a) ≥ 0.

We call J a strict monotone cost function if the later inequality holds strictly for η 6= η′.

This condition is usually interpreted as the aversion of players for choosing actions that are
chosen by many of players i.e. congestion avoiding effect.

Remark 3.1. If J is monotone and if Ψ̃ ∈ A is a Nash equilibrium, then for every Ψ ∈ A we have:

if η̃ = Ψ̃]λ , η = Ψ]λ :

∫
V
J(a, η) d(η − η̃)(a) ≥

∫
V
J(a, η̃) d(η − η̃)(a) ≥ 0.

Proof. Since J is monotone we have
∫
V (J(a, η)− J(a, η̃)) d(η − η̃)(a) ≥ 0 and so:∫

V
J(a, η) d(η − η̃)(a) ≥

∫
V
J(a, η̃) d(η − η̃)(a).

On the other hand ∫
V
J(a, η̃) d(η − η̃)(a) =

∫
I

(
J(Ψ(i), η̃)− J(Ψ̃(i), η̃)

)
dλ(i)

by the definition of push-forward measures. Since Ψ̃ is an equilibrium, for λ-almost every i ∈ I, we
have J(Ψ(i), η̃)− J(Ψ̃(i), η̃) ≥ 0, which gives our result.

The strict monotonicity yields the uniqueness of the Nash equilibrium in different frameworks,
e.g. Haufbauer, Sandholm [10], Blanchet, Carlier [4], Lasry, Lions [14]. In the following we show
that in non atomic anonymous games, the monotonicity and unique minimiser conditions are suf-
ficient for the uniqueness of the equilibrium.

Theorem 3.2. Consider a game G = (I, λ, V, (Ai)i∈I , J). Then the game G admits at most one
Nash equilibrium if J is monotone and G satisfies the unique minimiser condition.

Proof. Let Ψ1,Ψ2 ∈ A be two Nash equilibria. We will show that Ψ1(i) = Ψ2(i) for λ-almost every
i ∈ I. Set ηi = Ψi]λ for i = 1, 2. Since Ψ1 is an equilibrium, we have:∫

I
(J(Ψ1(i), η1)− J(Ψ2(i), η1)) dλ(i) ≤ 0,

since J(Ψ1(i), η1) ≤ J(Ψ2(i), η1) for λ-almost every i ∈ I. On the other hand:∫
I

(J(Ψ1(i), η1)− J(Ψ2(i), η1)) dλ(i) =

∫
V
J(a, η1) d(η1 − η2)(a),

from the definition since Ψi]λ = ηi for i = 1, 2. So∫
V
J(a, η1) d(η1 − η2)(a) ≤ 0 and (similarly)

∫
V
J(a, η2) d(η2 − η1)(a) ≤ 0.
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Summing up the last inequalities gives us:∫
V

(J(a, η1)− J(a, η2)) d(η1 − η2)(a) ≤ 0.

Hence by monotonicity of J we should have the equality in the previous inequalities. So for λ-
almost every i ∈ I, one has J(Ψ1(i), η1) = J(Ψ2(i), η1). Since Ψ1(i) ∈ Ai is the unique minimiser
of J(·, η1) on Ai so Ψ1(i) = Ψ2(i) for λ-almost every i ∈ I.

Remark 3.2. One can similarly show that if J is strictly monotone and not necessarily satisfies
the unique minimizer condition, then there exists at most one Nash equilibrium distribution.

4 Fictitious play in anonymous games

Here we introduce a learning procedure similar to the fictitious play and prove its convergence to
the unique Nash equilibrium under monotonicity condition.

Let G = (I, λ, V, (Ai)i∈I , J). For technical reasons, we suppose that assumptions (3.1) hold
throughout this section. Suppose G is being played repeatedly on discrete rounds n = 1, 2, . . .. At
every round, the players set their belief equals to the average of the action distribution observed in
the previous rounds and then react their best to such belief. At the end of the round players revise
their beliefs by a new observation. More formally, consider Ψ1 ∈ A, η̄1 = η1 = Ψ1]λ ∈ PG(V ) an
arbitrary initial belief. Construct recursively (Ψn, ηn, η̄n) ∈ A×PG(V )×cov(PG(V )) for n = 1, 2, . . .
as follows:

(i) Ψn+1(i) = BR(i, η̄n), for λ-almost every i ∈ I,
(ii) ηn+1 = Ψn+1]λ,

(iii) η̄n+1 = 1
n+1

∑n+1
k=1 ηk = n

n+1 η̄n + 1
n+1ηn+1.

(2)

One should notice that by assumption (3.1)(5) and Lemma 3.1 the expressions in (2)(i, ii) are
well defined. We will show now that this procedure converges to the Nash Equilibrium when G is
monotone.

Theorem 4.1. Consider a non atomic anonymous game G = (I, λ, V, (Ai)i∈I , J) satisfying as-
sumptions 3.1. Suppose the cost function J is monotone and there exists C > 0 such that for all
a, b ∈ V, η, η′ ∈ cov(PG(V )):

|J(a, η)− J(a, η′)− J(b, η) + J(b, η′)| ≤ C dV (a, b) d1(η, η′),

|J(a, η)− J(a, η′)| ≤ C d1(η, η′).
(3)

Construct (Ψn, ηn, η̄n) ∈ A×PG(V )×cov(PG(V )) for n ∈ N by applying the fictitious play procedure
proposed in (2). Then:

ηn, η̄n
d1−→ η̃

where η̃ ∈ PG(V ) is the unique Nash equilibrium distribution.

Inspired from [10], the proof requires several steps. The key idea is to use the quantities φn ∈ R
defined by

φn =

∫
V
J(a, η̄n) d(η̄n − ηn+1)(a), for every n ∈ N.

8



Since the best response distribution of η̄n is ηn+1, the quantity φn describes how much η̄n is far
from being an equilibrium. By using monotonicity and the regularity conditions, one gets

∀n ∈ N : φn+1 − φn ≤ −
1

n+ 1
φn +

εn
n
,

for suitable {εn}n∈N such that limn→∞ εn = 0. We show the later inequality is sufficient to prove
limn→∞ φn = 0 and then we conclude that the accumulation points of η̄n, ηn is the equilibrium
distribution η̃. As one will see, the unique minimiser assumption plays a key role in Lemma 4.2
and hence in our main result.

Lemma 4.1. Consider a sequence of real numbers {φn}n∈N such that lim infn φn ≥ 0. If there
exists a real sequence {εn}n∈N such that limn→∞ εn = 0 and :

∀ n ∈ N : φn+1 − φn ≤ −
1

n+ 1
φn +

εn
n
,

then limn→∞ φn = 0.

Proof. Let bn = nφn for every n ∈ N. We have:

∀ n ∈ N :
bn+1

n+ 1
− bn
n
≤ − bn

n(n+ 1)
+
εn
n
,

which implies bn+1 ≤ bn + (n + 1)εn/n ≤ bn + 2|εn|. Then we get bn ≤ b1 + 2
∑n−1

i=1 |εi| for n ∈ N
and so:

0 ≤ lim inf
n

φn ≤ lim sup
n

φn ≤ lim sup
n

b1 + 2
∑n−1

i=1 |εi|
n

= 0.

which proves limn→∞ φn = 0.

Lemma 4.2. Let (ηn)n∈N be defined by (2). Then

d1(η̄n, η̄n+1) = O(1/n), lim
n→∞

d1(ηn, ηn+1) = 0.

Proof. Let M > 0, v ∈ V be chosen from (1). For every 1-Lipschitz continuous map h : V → R we
have: ∣∣∣∣∫

V
h(a) d(η̄n+1 − η̄n)

∣∣∣∣ =
1

n+ 1

∣∣∣∣∫
V
h(a) d(ηn+1 − η̄n)(a)

∣∣∣∣
=

1

n+ 1

∣∣∣∣∫
V

(h(a)− h(v)) d(ηn+1 − η̄n)(a)

∣∣∣∣
≤ 1

n+ 1

(∫
V

dV (a, v) dηn+1(a) +
1

n

n∑
k=1

∫
V

dV (a, v) dηk(a)

)
.

(4)

By the definition we have:∫
V

dV (a, v) dηk(a) =

∫
V

dV (Ψk(i), v) dλ(i) ≤M, for every k ∈ N.
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So we can write ∣∣∣∣∫
V
h(a) d(η̄n+1 − η̄n)

∣∣∣∣ ≤ 2M

n+ 1
,

or d1(η̄n, η̄n+1) ≤ 2M
n+1 since h is an arbitrary 1−Lipschitz continuous function.

For the second part of the lemma, let us consider the best response distribution function Θ
defined in Lemma 3.2. Since Θ is continuous (Lemma 3.2) and cov(PG(V )) is compact, there exists
a non decreasing continuity modulus

ω : R+ → R+, lim
x→0+

ω(x) = 0

such that:
∀ η1, η2 ∈ cov(PG(V )) : d1(Θ(η1),Θ(η2)) ≤ ω(d1(η1, η2)).

Since for all n ∈ N we have η̄n ∈ cov(PG(V )) and Θ(η̄n) = ηn+1 we have

0 ≤ d1(ηn+1, ηn+2) = d1(Θ(η̄n),Θ(η̄n+1)) ≤ ω(d1(η̄n, η̄n+1)).

It gives our desired result since d1(η̄n, η̄n+1) = O(1/n).

The proof of previous lemma relies heavily on the unique minimizer assumption. Instead without
it, one cannot conclude that ηn, ηn+1 are close even if η̄n, η̄n+1 are so. Even for η̄n = η̄n+1, one
might have very different best responses ηn and ηn+1.

Proof of Theorem 4.1. Let {φn}n∈N be defined by:

φn =

∫
V
J(a, η̄n) d(η̄n − ηn+1)(a), for every n ∈ N.

We have φn ≥ 0 for all n ∈ N. Indeed, rewriting the definition of φn, we have:

φn =

∫
I

1

n

n∑
k=1

(J(Ψk(i), η̄n)− J(BR(i, η̄n), η̄n)) dλ(i),

and the positiveness comes from the definition of the best response. We now prove that exists
C > 0 such that:

φn+1 − φn ≤ −
1

n+ 1
φn + C

d1(ηn, ηn+1) + 1/n

n
, for every n ∈ N. (5)

Let us rewrite φn+1 − φn = A+B, where:

A =

∫
V
J(a, η̄n+1) dη̄n+1(a)−

∫
V
J(a, η̄n) dη̄n(a),

B =

∫
V
J(a, η̄n) dηn+1(a)−

∫
V
J(a, η̄n+1) dηn+2(a).

We have:

B ≤
∫
V
J(a, η̄n) dηn+2(a)−

∫
V
J(a, η̄n+1) dηn+2(a)

=

∫
V

(J(a, η̄n)− J(a, η̄n+1)) dηn+2(a)

≤
∫
V

(J(a, η̄n)− J(a, η̄n+1)) dηn+1(a) +
C

n
d1(ηn+1, ηn+2),
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since by (3) and Lemma 4.2 there exists C such that the function J(·, η̄n)− J(·, η̄n+1) : V → R is
a C/n−Lipschitz continuous function. Let us rewrite the expression A as follows:

A =

∫
V
J(a, η̄n+1) d(η̄n +

1

n+ 1
(ηn+1 − η̄n))(a)−

∫
V
J(a, η̄n) dη̄n(a)

=

∫
V

(J(a, η̄n+1)− J(a, η̄n)) dη̄n(a) +
1

n+ 1

∫
V
J(a, η̄n+1) d(ηn+1 − η̄n)(a)

≤
∫
V

(J(a, η̄n+1)− J(a, η̄n)) dη̄n(a) +
1

n+ 1

∫
V
J(a, η̄n) d(ηn+1 − η̄n)(a) +

C

n2

since by (3) and Lemma 4.2 we have |J(a, η̄n)− J(a, η̄n+1)| ≤ C d1(η̄n+1, η̄n) = O(1/n). So

A ≤
∫
V

(J(a, η̄n+1)− J(a, η̄n)) dη̄n(a)− φn
n+ 1

+
C

n2
.

Then if we set εn = C(d1(ηn+1, ηn+2) + 1/n), by using the above inequalities for A,B, we have :

A+B ≤
∫
V

(J(a, η̄n+1)− J(a, η̄n)) d(η̄n − ηn+1)(a)− φn
n+ 1

+
εn
n

= −(n+ 1)

∫
V

(J(a, η̄n+1)− J(a, η̄n)) d(η̄n+1 − η̄n)(a)− φn
n+ 1

+
εn
n

≤ − φn
n+ 1

+
εn
n
,

(6)

and the last inequality comes from the monotonicity assumption. By Lemmas 4.1 and 4.2, the
inequality (5) implies φn → 0. Let (η, η̄) ∈ PG(V ) × cov(PG(V )) be an accumulation point of the
set {(ηn+1, η̄n)}n∈N. We have η = Θ(η̄) due to the continuity of best response distribution function
Θ (Lemma 3.2) and the fact that ηn+1 = Θ(η̄n).

Take an arbitrary θ ∈ PG(V ). Since J is lower semi-continuous we have (see [1] section 5.1.1):∫
V
J(a, η̄) d(η̄ − θ)(a) ≤ lim inf

∫
V
J(a, η̄) d(η̄n − θ)(a) = lim inf

∫
V
J(a, η̄n) d(η̄n − θ)(a)

= lim inf

∫
V
J(a, η̄n) d(ηn+1 − θ)(a) + φn ≤ lim inf φn = 0

since ηn+1 = Θ(η̄n) and
∫
V J(a, η̄n) d(ηn+1 − θ)(a) ≤ 0 for every θ ∈ PG(V ). So:

∀ θ ∈ PG(V ) :

∫
V
J(a, η̄) d(η̄ − θ)(a) ≤ 0. (7)

We rewrite the above inequality as follows: since η̄ ∈ cov(PG(V )) by Corollary 8.1 we can disinte-
grate it with respect to (Ai)i∈I i.e. there are {η̄i}i∈I ⊆ P(V ) such that for λ−almost every i ∈ I
we have supp(η̄i) ⊂ Ai and for every integrable function h : V → R:∫

V
h(a) dη̄(a) =

∫
I

∫
Ai

h(a) d(η̄i)(a) dλ(i).

Specially for h = J(·, η) we have:∫
V
J(a, η̄) dη̄(a) =

∫
I

∫
Ai

J(a, η̄) d(η̄i)(a) dλ(i),
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and for all Ψ ∈ A:∫
V
J(a, η̄) d(Ψ]λ)(a) =

∫
I
J(Ψ(i), η̄) dλ(i) =

∫
I

∫
Ai

J(Ψ(i), η̄) d(η̄i)(a) dλ(i).

Combining the previous equalities with (7), gives us:

∀Ψ ∈ A :

∫
I

∫
Ai

(J(a, η̄)− J(Ψ(i), η̄)) d(η̄i)(a) dλ(i) =

∫
V
J(a, η̄) d(η̄ −Ψ]λ)(a) ≤ 0.

In particular if Ψ = BR(·, η̄) we have:∫
I

∫
Ai

(J(a, η̄)− J(BR(i, η̄), η̄)) d(η̄i)(a) dλ(i) ≤ 0,

which gives the equality by definition of best response action. So by unique minimizer we have
η̄i = δBR(i,η̄) for λ−almost every i ∈ I. It means η̄ = BR(·, η̄)]λ or η̄ = Θ(η̄). Hence η̄ = η and they
are both equal to η̃ ∈ PG(V ), the unique fixed point of Θ, or equivalently, the unique equilibrium
distribution.

5 Online mirror descent

Here we investigate the convergence to a Nash equilibrium by applying Online Mirror Descent
(OMD) in anonymous games. The form of OMD algorithm is closely related to the online opti-
mization and no regret algorithms. The reader can find a good explanatory note in [24]. The goal
of the algorithm is to act optimally in online manner by ”minimizing” a function that itself changes
at each step. In the game frameworks, the cost function changes due to change of the actions
chosen by adversaries in each round. As one can notice in the following, we need the structure of
vector space for the action sets.

5.1 Preliminaries

Before we propose the main OMD, let us review some definitions and lemmas.

Definition 5.1. Let (W, ‖ · ‖W ) be a normed vector space. For K > 0 we say that h : W → R is a
K−strongly convex function if

∀a1, a2 ∈W, ∀λ ∈ [0, 1] : h(λa1 + (1− λ)a2) ≤ λh(a1) + (1− λ)h(a2)−Kλ(1− λ)‖a1 − a2‖2W .

Definition 5.2. The Fenchel conjugate of a function h : W → R on a set A ⊆W is defined by:

h∗A : W ∗ → R ∪ {+∞} : h∗A(y) = sup
a∈A
〈y, a〉 − h(a), for all y ∈W ∗

and the related maximiser correspondence by:

QA : W ∗ → A : QA(y) = arg max
a∈A
〈y, a〉 − h(a), for all y ∈W ∗.

Remark 5.1. The corresponding QA is not empty if A is weakly closed and h is weakly lower
semi-continuous and coercive, i.e. lima→∞ h(a)/‖a‖W = +∞.
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If W be a Hilbert space (so W ∗ = W ) and h(a) = 1
2‖a‖

2
W then the correspondence QA will be

the classical projection on A:

QA(y) = arg max
a∈A
〈y, a〉W −

1

2
‖a‖2W = arg max

a∈A
−‖y − a‖2W = πA(y).

Lemma 5.1. Let h : W → R be a K−strongly convex function and A a convex subset of W . For
any y1, y2 ∈W ∗ let ai ∈ QA(yi), i = 1, 2. Then we have:

2K‖a1 − a2‖2W ≤ 〈y1 − y2, a1 − a2〉.

It implies ‖a1−a2‖W ≤ 1
2K ‖y1−y2‖W ∗. In particular if y1 = y2 then a1 = a2 i.e. the correspondence

QA(y) is either empty or single valued for every y ∈W ∗.

Proof. Since A is convex, for every ε ∈ (0, 1] we have (1− ε)a1 + εa2 ∈ A. By definition:

〈y1, a1〉 − h(a1) ≥ 〈y1, (1− ε)a1 + εa2〉 − h((1− ε)a1 + εa2),

and K−strongly convex condition for h gives:

h((1− ε)a1 + εa2) ≤ (1− ε)h(a1) + εh(a2)−Kε(1− ε)‖a1 − a2‖2.

So by combining the above inequalities:

〈y1, a1〉 − h(a1) ≥ 〈y1, (1− ε)a1 + εa2〉 − (1− ε)h(a1)− εh(a2) +Kε(1− ε)‖a1 − a2‖2,

which gives:
ε〈y1, a1 − a2〉 ≥ εh(a1)− εh(a2) +Kε(1− ε)‖a1 − a2‖2.

After dividing the both sides by ε and then tending ε→ 0+ we will get:

〈y1, a1 − a2〉 ≥ h(a1)− h(a2) +K‖a1 − a2‖2.

By exchanging the role of (a1, y1) and (a2, y2) we have:

〈y2, a2 − a1〉 ≥ h(a2)− h(a1) +K‖a2 − a1‖2.

It yields the desired result if we sum up the two last inequalities.

Definition 5.3. Let F : W → R be a convex function. We say that v ∈W ∗ is a sub-gradient of F
at a ∈W if:

∀ b ∈W : F (b)− F (a) ≥ 〈v, b− a〉,

and set ∂F (a) ⊆W ∗ the set of all sub-gradients at a.

One can notice that if F : W → R is differentiable (in sense of Fréchet) at a ∈ W , then
∂F (a) = {DF (a)}.
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5.2 OMD algorithm and convergence result

Consider an anonymous game G = (I, λ, V, (Ai)i∈I , J). Suppose that the following conditions hold:

• there is a normed vector space (W, ‖ · ‖W ) such that⋃
i∈I

Ai ⊆W ⊆ V,

and let h : W → R be a K−strongly convex function for a real K > 0.

• for every i ∈ I the action sets Ai are weakly closed in W and h is weakly lower semi-continuous
and coercive (and hence QAi is single valued by Remark 5.1),

• for every (a, η) ∈W ×PG(V ) the function J(·, η) : W → R is convex and exists a subgradient
y(a, η) ∈ ∂aJ(·, η) ⊆W ∗,

Let {βn}n∈N be a sequence of real positive numbers. Set an arbitrary initial measurable functions
Ψ0 ∈ A, η0 = Ψ0]λ, Φ0 : I →W ∗. The following procedure (8) is called the Online Mirror Descent
(OMD) on anonymous game G:

(i) Φn+1(i) = Φn(i)− βny(Ψn(i), ηn), for every i ∈ I
(ii) Ψn+1(i) = QAi(Φn+1(i)), for every i ∈ I
(iii) ηn+1 = Ψn+1]λ.

(8)

Theorem 5.1. Suppose one applies the OMD algorithm proposed in (8) for βn = 1
n . Suppose the

following conditions hold:

1. the game G satisfies assumptions (3.1),

2. for every i ∈ I the action sets Ai are convex and exists M > 0 such that for λ−almost every
i ∈ I we have ‖a‖W ≤M for all a ∈ Ai and we have R(M) := sup‖a‖≤M |h(a)| < +∞,

3. the map Φ0 : I →W ∗ is bounded,

4. the cost function J is monotone,

5. there exists δ > 0 such that for λ−almost every i ∈ I and all a ∈ Ai, η ∈ PG(V ),

‖y(a, η)‖W ∗ ≤ δ. (9)

Then ηn = Ψn]λ converges to η̃ = Ψ̃]λ where η̃ ∈ PG(V ) is the unique Nash equilibrium distribution.

Remark 5.2. For every y, z ∈W ∗ and any A ⊆W we have :

∀a ∈ QA(y) : h∗A(y)− h∗A(z) ≤ 〈y − z, a〉.

This is obvious since h∗A(y)− 〈y, a〉+ h(a) = 0 ≤ h∗A(z)− 〈z, a〉+ h(a).
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Proof of Theorem 5.1. Let Ψ̃ ∈ A be a Nash equilibrium profile. Define the real sequence {φn}n∈N
as follows:

∀n ∈ N : φn =

∫
I

(
h(Ψ̃(i)) + h∗Ai

(Φn(i))− 〈Φn(i), Ψ̃(i)〉
)

dλ(i).

By definition of Fenchel conjugate we know φn ≥ 0. For making the rest of argument well-defined,
we first show that φn is indeed finite. We have∫
I

(
h(Ψ̃(i)) + h∗Ai

(Φn(i))− 〈Φn(i), Ψ̃(i)〉
)

dλ(i) =

∫
I

(
h(Ψ̃(i))− h(Ψn(i))− 〈Φn(i), Ψ̃(i)−Ψn(i)〉

)
dλ(i)

since Ψn(i) = QAi(Φn(i)) for λ−almost every i ∈ I. Moreover,

| h(Ψ̃(i))− h(Ψn(i))− 〈Φn(i), Ψ̃(i)−Ψn(i)〉 | ≤ 2R(M) + 2‖Φn(i)‖W ∗M,

since ‖Ψ̃(i)‖W , ‖Ψn(i)‖W ≤M for λ−almost every i ∈ I. By (8)(i) we have:

∀n ∈ N : ‖Φn‖∞ ≤ δ(1 +
1

2
+ · · ·+ 1

n− 1
) + ‖Φ0‖∞

which yields |φn| <∞. Let us compute the difference φn+1 − φn:

φn+1 − φn =

∫
I

(
h∗Ai

(Φn+1(i))− h∗Ai
(Φn(i))− 〈Φn+1(i)− Φn(i), Ψ̃(i)〉

)
dλ(i)

So from Remark 5.2:

φn+1 − φn ≤
∫
I
〈Φn+1(i)− Φn(i),Ψn+1(i)− Ψ̃(i)〉 dλ(i)

= −βn
∫
I
〈y(Ψn(i), ηn),Ψn+1(i)− Ψ̃(i)〉 dλ(i)

= −βn
∫
I

(
〈y(Ψn(i), ηn),Ψn(i)− Ψ̃(i)〉+ 〈y(Ψn(i), ηn),Ψn+1(i)−Ψn(i)〉

)
dλ(i)

≤ −βnαn + Cβ2
n

where αn =
∫
I〈y(Ψn(i), ηn),Ψn(i)− Ψ̃(i)〉 dλ(i) and since by condition (9) we have:

|〈y(Ψn(i), ηn),Ψn+1(i)−Ψn(i)〉| ≤ δ‖Ψn+1(i)−Ψn(i)‖W

≤ δ

2K
‖Φn+1(i)− Φn(i)‖W ∗ = βn

δ

2K
‖y(Ψn(i), ηn)‖W ∗ ≤ βn

δ2

2K
.

By definition of the sub-gradient we have:

∀b ∈W : 〈y(a, ηn), a− b〉 ≥ J(a, ηn)− J(b, ηn).

So:

αn =

∫
I
〈y(Ψn(i), ηn),Ψn(i)− Ψ̃(i)〉 dλ(i) ≥

∫
I

(
J(Ψn(i), ηn)− J(Ψ̃(i), ηn)

)
dλ(i) =

∫
X
J(a, ηn) d(ηn − η̃)(a) ≥

∫
X
J(a, η̃) d(ηn − η̃)(a) = ψn ≥ 0,
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by Remark 3.1. Since βn = 1
n we have:

N∑
n=1

ψn
n
≤

N∑
n=1

αn
n

=
N∑
n=1

βnαn ≤
N∑
n=1

(
φn − φn+1 +

C

n2

)
= φ1 − φN+1 +

N∑
n=1

C

n2
< +∞ (10)

so
∑∞

n=1
ψn

n < +∞. We show then that |ψn+1 − ψn| = O(1/n). We remind from Lemma ?? that
this yields limn→∞ ψn = 0. We have

ψn+1 − ψn =

∫
X
J(a, η̃) d(ηn+1 − ηn)(a) =

∫
X

(J(Ψn+1(i), η̃)− J(Ψn(i), η̃)) dλ(i),

and from the definition of sub-gradient:

〈y(Ψn(i), η̃),Ψn+1(i)−Ψn(i)〉 ≤ J(Ψn+1(i), η̃)− J(Ψn(i), η̃) ≤ 〈y(Ψn+1(i), η̃),Ψn+1(i)−Ψn(i)〉

so |J(Ψn+1(i), η̃)− J(Ψn(i), η̃)| = O(1/n) which gives |ψn+1 − ψn| = O(1/n).
Since PG(V ) is pre-compact, there exist a sequence {ni}i∈N ⊆ N and η′ ∈ PG(V ) such that

limi→∞ ηni = η′. Since J(·, η̃) : V → R is lower semi-continuous, we have:∫
V
J(a, η̃) d(η′ − η̃)(a) ≤ lim inf

i

∫
V
J(a, η̃) d(ηni − η̃) = lim inf

i
ψni = 0,

which yields η′ = η̃ due to the Corollary 8.1 and the definition of Nash equilibrium distribution.
So every accumulation point of set {ηn}n∈N ⊆ PG(V ) is η̃ which gives limn→∞ ηn = η̃ since PG(V )
is pre-compact.

6 Application to first order MFG

6.1 Model

Let us show the first-order mean field games are special case of non atomic anonymous games
proposed in section 3. Set I = Rd with the usual topology, as the set of players and m0 ∈ P(I)
a given non atomic Borel probability measure on Rd. Let V = C0([0, T ],Rd) endowed with the
supremum norm ‖γ‖∞ = supt∈[0,T ] ‖γ(t)‖. For each player i ∈ Rd let Ai = Si,M ⊆ C0([0, T ],Rd)
where:

∀x ∈ Rd, M > 0 : Sx,M := {γ ∈ AC([0, T ],Rd) | γ(0) = x,

∫ T

0
‖γ̇(t)‖2 dt ≤M}, (11)

where AC([0, T ],Rd) denotes the set absolutely continuous function from [0, T ] to Rd. We will
explain later how to choose M > 0 properly.

Let H1([0, T ],Rd) defined as

H1([0, T ],Rd) =

{
γ ∈ AC([0, T ],Rd) |

∫ T

0
‖γ̇(t)‖2 dt < +∞

}
.

We denote P1(C0([0, T ],Rd)) be the set of Borel probability measures with finite first moment on
C0([0, T ],Rd). Set for every t ∈ [0, T ] the evaluation function et : C0([0, T ],Rd)→ Rd as et(γ) = γ(t).
The MFG cost function J : C0([0, T ],Rd)× P1(C0([0, T ],Rd))→ R is defined as follows:

J(γ, η) =

{∫ T
0 (L(γ(t), γ̇(t)) + f(γ(t), et]η)) dt+ g(γ(T ), eT ]η), if γ ∈ H1([0, T ],Rd)

+∞ otherwise,
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We call the anonymous game G = (Rd,m0, C0([0, T ],Rd), (Si,M )i∈Rd , J) a first-order mean field
game.

Remark 6.1. For every admissible profile of actions Ψ : I → C0([0, T ],Rd) that Ψ(i) ∈ Si,M , for
η = Ψ]m0 we have:

d1(et]η, es]η) ≤
∫

Γ
‖γ(t)− γ(s)‖dη(γ) ≤

√
|t− s|

∫
Γ

√∫ s

t
‖γ̇(r)‖2dr dη(γ) ≤

√
M |t− s|,

due to definition of M in (11). That means for every η ∈ PG(V ) the map t → et]η is 1
2−Holder

continuous.

Suppose that the following conditions hold for the data:

Assumption 6.1. Let

1. m0 has a compact support,

2. for every x ∈ Rd the map L(x, ·) : Rd → Rd is twice differentiable and there exists C > 0 such
that for all (x, v) ∈ Rd × Rd we have:

1

C
Id ≤ DvvL(x, ·) ≤ CId, ‖Lx(x, v)‖ ≤ C,

3. the functions f, g : Rd × P1(Rd) → R are continuous and for every m ∈ P1(Rd) the maps
f(·,m), g(·,m) : Rd → R are C1(Rd;R),

4. suppose that there exist C > 0 such that:

∀ x ∈ Rd,m ∈ P1(Rd) : ‖fx(x,m)‖ , ‖gx(x,m)‖ ≤ C.

Remark 6.2 ([7], Theorem 7.2.4). If conditions 6.1(2,3,4) hold, then there is at least one minimizer
of variational problem

min
γ∈AC([0,T ],Rd), γ(0)=x

∫ T

0
(L(γ(t), γ̇(t)) + f(γ(t), et]η)) dt+ g(γ(T ), eT ]η). (12)

The minimizer γ : [0, T ]→ Rd belongs to C1([0, T ],Rd), Lv(γ(t), γ̇(t)) is absolutely continuous and

d

dt
Lv(γ(t), γ̇(t)) = Lx(γ(t), γ̇(t)) + fx(γ(t), et]η), for almost every t ∈ [0, T ], (13)

with γ̇(T ) = −gx(γ(T ), eT ]η). In addition there is M > 0 such that ‖γ̇‖∞ ≤
√
M/T for every

solution of (13). This is the way we set M in (11) as a function of constants of data in 6.1(2,3,4).

The following remark asserts that the definition of action sets in (11) and conditions in 6.1(2,3)
imply the assumptions (3.1) for first order mean field game.

Remark 6.3. If K ⊆ Rd be compact such that supp(m0) ⊆ K, then

1. for x ∈ K we have ‖γ‖∞ ≤ maxy∈K ‖y‖+MT, for γ ∈ Sx,M , which gives the condition (1),
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2. the correspondence A : I → V, A(i) = Si,M is continuous and by Arzela-Ascoli Si,M is
compact for all i ∈ I,

3. the convexity of L(x, ·) implies that for every η ∈ P(V ) the function J(·, η) : C0([0, T ],Rd)→ R
is lower semi-continuous,

4. the function Min : I × PG(V )→ R, Min(i, η) := mina∈Ai J(a, η) is continuous,

5. by Arzela-Ascoli the following set:

S = SK,M = {γ ∈ C0([0, T ],Rd) | γ(0) ∈ K ,

∫ T

0
‖γ̇(t)‖2 dt ≤M}

is precomact in V . For every η ∈ cov(PG(V )) we have supp(η) ⊆ S, so cov(PG(V )) is tight
and hence it is pre-compact in (P1(V ),d1),

6. the minimiser of problem (12) is unique as is explained in section ??. Hence the unique
minimiser condition holds.

Corollary 6.1. The first-order MFGs defined above, satisfies the assumptions (3.1) and hence by
Theorem 3.1 has at least a Nash equilibrium Ψ̃ ∈ A. If we set η̃ = Ψ̃]m0 and et]η̃ = m̃t for all
t ∈ [0, T ], then for m0−almost every i ∈ Rd:

Ψ̃(i) = argminγ∈H1([0,T ],Rd), γ(0)=i

∫ T

0
(L(γ(t), γ̇(t)) + f(γ(t), m̃t)) dt+ g(γ(T ), m̃T ).

The measure η̃ is an equilibrium distribution in sense of (??). Under stronger assumptions, by fol-
lowing section ?? we can construct the first order MFG system solution (u,m) from the equilibrium
distribution η̃ as in (??).

We prove that the uniqueness of equilibrium is a consequence of the monotonicity of f, g and
the unique minimizer condition. This is the counterpart for the uniqueness result in [14].

Lemma 6.1. If f, g : Rd × P(Rd)→ R are monotone, then the MFG cost function will be so.

Proof. Let η1, η2 ∈ P(V ). If we define mi,t = et]ηi for i = 1, 2 and t ∈ [0, T ], we then have:∫
V

(J(γ, η1)− J(γ, η2)) d(η1 − η2)(γ) =

∫
V

(∫ T

0
(f(γ(t),m1,t)− f(γ(t),m2,t)) dt+ g(γ(T ),m1,T )− g(γ(T ),m2,T )

)
d(η1 − η2)(γ) = A+B

where

A =

∫ T

0

(∫
Rd

(f(x,m1,t)− f(x,m2,t)) d(m1,t −m2,t)(x)

)
dt ≥ 0

B =

∫
Rd

(g(x,m1,T )− g(x,m2,T )) d(m1,T −m2,T )(x) ≥ 0,

since the couplings f, g are monotone.

Corollary 6.2. The monotone first order MFG satisfying assumptions 6.1 possesses a unique
equilibrium.
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6.2 Fictitious play in monotone first order MFG

The fictitious play in first-order MFG takes such form: for initial profile of actions

Ψ1 ∈ A, η̄1 = η1 = Ψ1]λ ∈ P(V )

the players play as follows at round n = 1, 2, . . . :

(i) Ψn+1(i) = arg maxγ∈H1,γ(0)=i

∫ T
0 (L(γ(t), γ̇(t)) + f(γ(t), et]η̄n)) dt+ g(γ(T ), eT ]η̄n),

(ii) ηn+1 = Ψn+1]λ,

(iii) η̄n+1 = 1
n+1

∑n+1
i=1 ηi.

(14)
where (i) holds for m0−almost every i ∈ Rd . Here we apply the convergence result in fictitious
play (Section 3) for monotone first-order MFG. We suppose the assumptions 6.1 (and hence (3.1))
conditions hold.

Lemma 6.2. If f, g : m → f(·,m), g(·,m) are Lipschitz from P(Rd) to C1(Rd) then there is a
constant C > 0 such that:

|J(γ, η)− J(γ, η′)− J(γ′, η) + J(γ′, η′)| ≤ C ‖γ − γ′‖∞ d1(η, η′)

|J(γ, η)− J(γ, η′)| ≤ C d1(η, η′)

for every γ, γ′ ∈ H1([0, T ],Rd) and η, η′ ∈ P(V ).

Proof. Since f : m→ f(·,m) is Lipschitz from P(Rd) to C1(Rd) there is C > 0 such that:

‖f(·,m)− f(·,m′)‖C1 ≤ Cd1(m,m′), ‖g(·,m)− g(·,m′)‖C1 ≤ Cd1(m,m′)

which means that for every x, x′ ∈ Rd we have

|f(x,m)− f(x,m′)− f(x′,m) + f(x′,m′)| ≤ C‖x− x′‖d1(m,m′),

|f(x,m)− f(x,m′)| ≤ Cd1(m,m′).

Similar inequalities hold with respect to g. We have:

|J(γ, η)− J(γ, η′)− J(γ′, η) + J(γ′, η′)|

≤
∫ T

0
|f(γ(t), et]η)− f(γ(t), et]η

′) + f(γ′(t), et]η)− f(γ′(t), et]η
′)| dt

+|g(γ(T ), eT ]η)− g(γ(T ), eT ]η
′)− g(γ′(T ), eT ]η) + g(γ′(T ), eT ]η

′)|

≤ C
∫ T

0
‖γ(t)− γ′(t)‖ d1(et]η, et]η

′) dt+ ‖γ(T )− γ′(T )‖ d1(eT ]η, eT ]η
′)

≤ C
∫ T

0
‖γ − γ′‖∞ d1(η, η′) dt+ ‖γ − γ′‖∞ d1(η, η′) = (CT + 1) ‖γ − γ′‖∞ d1(η, η′),

and

|J(γ, η)− J(γ, η′)| ≤
∫ T

0
|f(γ(t), et]η)− f(γ(t), et]η

′)| dt+ |g(γ(T ), eT ]η)− g(γ(T ), eT ]η
′)|

≤ C
∫ T

0
d1(et]η, et]η

′) dt+ d1(eT ]η, eT ]η
′) ≤ (CT + 1) d1(η, η′).
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Corollary 6.3. If f, g : m → f(·,m), g(·,m) are Lipschitz, then by Lemma 6.2, the convergence
result of fictitious play (Theorem 4.1) holds for the first-order monotone MFG.

6.3 Online mirror descent in monotone first order MFG

Here we use the convergence result proved in section 4 for the first-order MFG with a monotone con-
vex cost function J . Let us suppose that the couplings f, g are monotone and L(·, ·), f(·,m), g(·,m)
are convex for every m ∈ P(Rd). It easily yields that J is monotone (by Lemma 6.1) and for every
η ∈ P(V ), the function J(·, η) : H1([0, T ],Rd)→ R is convex.

Remark 6.4. We propose an example of data L, f, g such that they are convex in x, v inputs.
Before we start the precise definition, let us point out that we can relax the condition 6.1(4) and
replace it with the following assumption. Suppose that there exists M > 0 in (11) such that for
all solution γ of Euler-Lagrange equation (13) with η ∈ PG(V ), we have ‖γ̇‖∞ ≤

√
M/T . This

assumption with the conditions (6.1)(1,2,3) give the existence of equilibrium as in Corollary 6.1.
For the example, set

L(x, v) =
1

2
‖v‖2, f(x,m) = α〈x,Emz〉, g(x,m) = β〈x,Emz〉,

for some α, β > 0 where Emz =
∫
Rd z dm(z). Set α, β,R > 0 with

αT 2R+ βTR+ sup
x∈supp(m0)

‖x‖ ≤ R.

and the constant M > 0 in (11) with M = T (αTR+ βR)2. For every η ∈ PG(V ) we have

for η-almost every γ: ‖γ(t)‖ ≤ sup
x∈supp(m0)

‖x‖+
√
MT ≤ sup

x∈supp(m0)
‖x‖+ αT 2R+ βTR ≤ R.

Hence for every η ∈ PG(V ):
sup

t∈[0,T ], x∈supp(et]η)
‖x‖ ≤ R. (15)

The Euler Lagrange equation (13) in this example read as

d

dt
γ̇(t) = αEet]ηz, for almost every t ∈ [0, T ], (16)

and γ̇(T ) = βEeT ]ηz, γ(0) ∈ supp(m0). That yields

sup
t∈[0,T ]

‖γ̇(t)‖ ≤ αTR+ βR, sup
t∈[0,T ]

‖γ(t)‖ ≤ R, (17)

for all η ∈ PG(V ) since (15) holds. That means for every η ∈ PG(V ) the optimal trajectories γ
satisfies (17) and hence ‖γ̇‖∞ ≤

√
M/T .

Let us set W = H1([0, T ],Rd) endowed with inner product:

∀ γ1, γ2 ∈W : 〈γ1, γ2〉W = 〈γ1(0), γ2(0)〉Rd +

∫ T

0
〈γ̇1(t), γ̇2(t)〉Rd dt.
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We clearly have ⋃
i∈I

Ai ⊆W ⊆ V,

and Ai are uniformly bounded in W for m0−almost every i ∈ I. For integrable functions F,D ∈
L2([0, T ],R) and G ∈ R we define y = [[F,D,G]] ∈W ∗ by:

〈y, γ〉 =

∫ T

0
(F (t) · γ(t) +D(t) · γ̇(t)) dt+G · γ(T ), for every γ ∈W

After a few computation we have:

〈y, γ〉 =

∫ T

0

(∫ T

t
F (s) ds+D(t) +G

)
· γ̇(t) dt+

(∫ T

0
F (s) ds+G

)
· γ0.

We can find γy ∈ W as a representation of y ∈ W ∗ i.e. for all γ ∈ H1([0, T ],Rd) we have
〈y, γ〉 = 〈γy, γ〉W . The representation γy corresponding to y should solve

γy(0) =

∫ T

0
F (s) ds+G,

d

dt
(γy)(t) =

∫ T

t
F (s) ds+D(t) +G. (18)

or

γy(t) =

∫ T

0
F (s) min(t, s) ds+

∫ t

0
D(s) ds+ (t+ 1)G+

∫ T

0
F (s) ds. (19)

By assumptions 6.1(2,3) and using dominated Lebesgue convergence theorem, we can conclude that
the function J(·, η) : W → R is differentiable for every η ∈ P(V ). So the sub-differential set is
singleton ∂J(·, η)(γ) = {DγJ(γ, η)} ⊆W ∗ and the derivative is calculated by:

∀ z ∈W : 〈DγJ(γ, η), z〉 = lim
ε→0

J(γ + εz, η)− J(γ, η)

ε

=

∫ T

0
(Lx(γt, γ̇(t)) · zt + Lv(γt, γ̇(t)) · żt + fx(γ(t), et]η) · zt) dt+ gx(γ(T ), eT ]η) · zT

or according to our representation:

DγJ(γ, η) = [[Lx(γ(·), γ̇(·)) + fx(γ(·), e(·)]η), Lv(γ(·), γ̇(·)), gx(γ(T ), eT ]η)]].

So by the computation in (19) the gradient ∇γJ(γ, η) ∈W is obtained as follows:

∇γJ(γ, η)(t) =

∫ T

0
(Lx(γs, γ̇s) + fx(γs, es]η)) min(t, s) ds+

∫ t

0
Lv(γs, γ̇s) ds

+ (t+ 1)gx(γ(T ), eT ]η) +

∫ T

0
(Lx(γs, γ̇s) + fx(γs, es]η)) ds.

(20)

Theorem 6.1. Suppose a first-order MFG satisfies the assumptions 6.1. If the cost function J is
monotone and convex w.r.t. first argument, then the online mirror descent algorithm proposed in
(8) for h : W → R, h(γ) = 1

2‖γ‖
2
H1 and βn = 1

n (n ∈ N), converges to the unique first-order mean
field game equilibrium.
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Proof. The function h : W → R, h(γ) = 1
2‖γ‖

2
H1 is 1

2−strongly convex function and lower semi-
continuous for the weak topology, so the mirror projection QAi will have singleton values.

The game satisfies the assumptions (3.1). Since the assumptions 6.1 hold, there is C ′ > 0 such
that:

∀γ ∈ H1, η ∈ PG(V ) : ‖DγJ(γ, η)‖W ∗ ≤ C ′(‖γ̇‖L2 + 1).

So all of the conditions in Theorem 5.1 are satisfied and the desired convergence result holds.

Remark 6.5. Since the space H1([0, T ],Rd) is Hilbert, we identify it by its dual space. Hence by
choice h(γ) = 1

2‖γ‖
2
H1 we have:

QAi(γ) = πAi(γ) =
min(‖γ̇‖L2 ,

√
M)

‖γ̇‖L2

(γ − γ0) + i.

by the choice of Ai. Then, the OMD algorithm have such form

(i) Φn+1(i) = Φn(i)− 1
n∇J(Ψn(i), ηn), for every i ∈ I

(ii) Ψn+1(i) =
min(‖Φ̇n+1(i)‖L2 ,

√
M)

‖Φ̇n+1(i)‖L2
(Φn+1(i)− Φn+1(i)0) + i, for every i ∈ I

(iii) ηn+1 = Ψn+1]λ.

(21)

or in explicit way it takes the following form: let γ̂0,x = 0 for every x ∈ Rd and:

γ̂n+1,x(t) = γ̂n,x(t)− 1

n

∫ T

0
(Lx(γn,x(s), γ̇n,x(s)) + fx(γn,x(s), es]ηn)) min(t, s) ds

− 1

n

∫ t

0
Lv(γn,x(s), γ̇n,x(s)) ds− t

n
gx(γn,x(T ), eT ]ηn),

γn+1,x = cn+1γ̂n+1,x + x, cn+1 =
min(‖ ˙̂γn+1,x‖L2 ,

√
M)

‖ ˙̂γn+1,x‖L2

,

ηn+1 = γn+1,·]λ.

(22)

7 Appendix

Here we extend the disintegration Theorem 5.3.1 in [1], and demonstrate its modification that is
used in the precedent proofs. Suppose I a Polish space and V a metric space. Let A : I → V
be a correspondence with A(i) = Ai. For a Borel probability measure λ ∈ P(I) we say η ∈ P(V )
disintegrates with respect to (Ai)i∈I if there are {ηi}i∈I ⊂ P(V ) such that for λ−almost every i ∈ I
we have supp(ηi) ⊆ Ai, and for every bounded measurable f : V → R:∫

V
f(a) dη(a) =

∫
I

∫
V
f(a) dηi(a) dλ(i).

Theorem 7.1. Suppose A : I → V be upper semi continuous. Let {ηn}n∈N ⊆ P1(V ) with ηn → η
in weak sense. If for every n ∈ N, ηn disintegrates with respect to (Ai)i∈I then the same holds true
for η.
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Proof. For every n ∈ N, define mn ∈ P(I×V ) as follows: for every bounded measurable f : I×V →
R let: ∫

I×V
f(i, a) dmn(i, a) =

∫
I

∫
V
f(i, a) dηin(a) dλ(i).

Obviously πI]mn = λ, πV ]mn = ηn where πI , πV are respectively projections of I × V on I, V .
Since {ηn} are tight and I is a Polish space, for every ε > 0, there is a compact set Iε ⊆ I,Kε ⊆ V
such that λ(I \ Iε), ηn(V \Kε) < ε for all n ∈ N. In addition

mn(Iε ×Kε) ≥ 1−mn(I × V \Kε)−mn(I \ Iε × V )

= 1− ηn(V \Kε)− λ(I \ Iε) ≥ 1− 2ε,

which means the set {mn}n∈N is tight too. Hence there exists m ∈ P(I × V ) and a subsequence
{mnk

}k∈N such that mnk
→ m. We directly have ηnk

= πV ]mnk
→ πV ]m which means πV ]m = η.

On the other hand, due to the disintegration theorem (see [1] Theorem 5.3.1) there are mi ∈ P(V )
for every i ∈ I, such that for every bounded measurable f : I × V → R:∫

I×V
f(i, a) dm(i, a) =

∫
I

∫
V
f(i, a) dmi(a) dλ(i).

So since the second marginal of m is η, we can write: for every bounded measurable f : I×V → R:∫
V
f(a) dη(a) =

∫
I

∫
V
f(a) dmi(a) dλ(i).

So what is left is to show that for λ−almost every i ∈ I we have supp(mi) ⊆ Ai. Set f : I×V → R
as f(i, a) = 1a∈Ai . We know the function f is upper semi continuous since the correspondence
A : I → V, A(i) = Ai is upper semi continuous. For every n ∈ N we have:∫

I×V
f(i, a) dmn(i, a) =

∫
I

∫
V
f(i, a) dηin(a) dλ(i) = 1.

Hence

1 = lim sup
k

∫
I×V

f(i, a) dmnk
(i, a) ≤

∫
I×V

f(i, a) dm(i, a) ≤ 1,

so
∫
I×V f(i, a) dm(i, a) = 1 which is equivalent to say for λ−almost every i ∈ I we have supp(mi) ⊆

Ai.

Corollary 7.1. Every element η ∈ cov(PG(V )) disintegrates with respect to (Ai)i∈I , λ ∈ P(I).

Proof. Let S ⊂ P(V ) be the set of all measures which disintegrates with respect to (Ai)i∈I . Clearly
S is convex and due to Theorem 8.1 it is closed. Also, we have PG(V ) ⊆ S since for all Ψ ∈ A we
have for every bounded measurable f : I × V → R:∫

V
f(a) d(Ψ]λ)(a) =

∫
I

∫
V
f(a) dδΨ(i)(a) dλ(i),

hence it gives cov(PG(V )) ⊆ S.
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[12] M. Huang, R. P. Malhamé, and P. E. Caines. Large population stochastic dynamic games:
closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communi-
cations in Information & Systems, 6(3):221–252, 2006. 1

[13] O. A. Ladyzhenskaia, V. A. Solonnikov, and N. N. Ural’tseva. Linear and quasi-linear equations
of parabolic type, volume 23. American Mathematical Soc., 1988. 1
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