A fault tolerant architecture for data fusion: A real application of Kalman filters for mobile robot localization - Archive ouverte HAL
Article Dans Une Revue Robotics and Autonomous Systems Année : 2017

A fault tolerant architecture for data fusion: A real application of Kalman filters for mobile robot localization

Résumé

Multi-sensor perception have an important role in robotics and autonomous systems, as inputs for critical functions such as obstacle detection, localization, etc. This Multi-sensor perception begins to appear in critical applications, such as drones and ADAS (Advanced Driver Assistance Systems). However such complex systems are diffcult to validate entirely. In this paper we study these systems under an alternative dependability method: fault tolerance. We propose an approach to tolerate faults in multi-sensor data fusion based on the more classical method of duplication-comparison, and offering detection and recovery services. We detail an example implementation using Kalman filters data fusion for mobile robot localization. We demonstrate its effectiveness in this case study using real data and fault injection
Fichier principal
Vignette du fichier
Kaci_RAS_2017_halversion.pdf (11.81 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01706066 , version 1 (16-06-2021)

Identifiants

Citer

Kaci Bader, Benjamin Lussier, Walter Schön. A fault tolerant architecture for data fusion: A real application of Kalman filters for mobile robot localization. Robotics and Autonomous Systems, 2017, 88, pp.11-23. ⟨10.1016/j.robot.2016.11.015⟩. ⟨hal-01706066⟩
169 Consultations
212 Téléchargements

Altmetric

Partager

More