Rate of convergence for polymers in a weak disorder - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Analysis and Applications Année : 2017

Rate of convergence for polymers in a weak disorder

Résumé

We consider directed polymers in random environment on the lattice $Z^d$ at small inverse temperature and dimension $d \geq 3$. Then, the normalized partition function $W_n$ is a regular martingale with limit W. We prove that $n^{(d−2)/4} (W_n−W)/W_n $ converges in distribution to a Gaussian law. Both the polynomial rate of convergence and the scaling with the martingale $W_n$ are different from those for polymers on trees.
Fichier principal
Vignette du fichier
comets_liu_polymers_speed_of_conv_2017_05_JMAA_definitive.pdf (421.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01705859 , version 1 (09-02-2018)

Identifiants

Citer

Francis Comets, Quansheng Liu. Rate of convergence for polymers in a weak disorder. Journal of Mathematical Analysis and Applications, 2017, 455 (1), pp.312 - 335. ⟨10.1016/j.jmaa.2017.05.043⟩. ⟨hal-01705859⟩
256 Consultations
74 Téléchargements

Altmetric

Partager

More