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Résumé

We consider directed polymers in random environment on the lattice Zd at small in-
verse temperature and dimension d ≥ 3. Then, the normalized partition function Wn is
a regular martingale with limit W . We prove that n(d−2)/4(Wn −W )/Wn converges in
distribution to a Gaussian law. Both the polynomial rate of convergence and the scaling
with the martingale Wn are different from those for polymers on trees.
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1 Polymer models and statement of the main result

1.1 Motivation

We consider directed polymers in random environment, given by a simple random walk on
the d-dimensional lattice in a space-time random potential. In a seminal paper, Derrida and
Spohn [12] perform a detailed analysis of polymers on the Cayley tree, or equivalently, the
branching random walk with a fixed branching number. Later the same model has been taken
up as an approximation and a toy model with explicit computations : in the physics literature,
we mention the pleasant, recent and documented survey [15], and also [11] for the statistics of
extremes on the hierarchical tree at zero temperature ; on the mathematical side, the authors
of [1] study the near-critical scaling window on the tree, the analogue of the intermediate
disorder regime where the rescaled lattice model on line converges to the KPZ continuum
random polymer [2, 7]. Not only a source of inspiration and guidance, this model, as well as
related random cascades, were also found to provide quantitative bounds on polymer models
on the lattice in [9, 26, 27].

In spite of these similarities, the two models behave quite differently in many aspects. In
the strong disorder phase, the free energy of the branching process is linear in the inverse
temperature β though it is strictly convex for the polymer on the lattice, see Theorem 1.5
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in [8] in the case of a Bernoulli environment. Also, the fluctuations are expected to be of a
completely different nature in the two models. In this paper, we consider the weak disorder
regime, and we show that the martingale convergence takes place at a polynomial rate, whereas
it is exponential in the corresponding supercritical Galton-Watson process [16, 17].

More precisely, it is shown in [16, 17] that, for a Galton-Watson process (Zn) with Z0 = 1,
m = EZ1 > 1 and EZ2

1 < ∞, the renormalized population size Wn = Zn/m
n is a regular

martingale with limit W such that

mn/2(W −Wn)→ aW 1/2G in distribution (1)

and

mn/2 (W −Wn)

W
1/2
n

→ aG in distribution, (2)

where a2 = VarZ1

m2−m , G is a Gaussian N (0, 1) distributed random variable independent of W .
Similarly, for branching random walks, the convergence of the Biggins martingale to its limit
is exponentially fast [20, 21] in the regular case. Recently the same question was studied for a
branching process in a random environment [19, 31], leading to similar conclusions.

In this paper, we consider random polymers on the lattice in a time-space dependent random
medium, deep inside the weak disorder regime. Similar to the supercritical case of a branching
process, weak disorder can be defined as the regime where the natural martingale is regular
[5, 22], or where the polymer is diffusive [10]. It holds in space dimension d ≥ 3 [23] and at
a temperature larger than some critical value which can be estimated by second moment and
entropy considerations [4, 6, 18]. In Theorem 1.1 below, we prove that, at large temperature,
the speed of convergence is polynomial but not exponential, and the limit scales with W or
Wn instead of their square root as in (1) and (2). Precisely, we show a central limit theorem
for the difference between the martingale and its limit : the ratio of the difference divided by
n−(d−2)/4 times the martingale is asymptotically normal.

In view of (1) and (2), this limit behavior has two remarkable and unexpected features.
The slowdown in the rate of convergence (compared to the branching case) is due to space
correlations coming from further intersections between paths on the lattice but not on the
tree. Also the unusual linear scaling in the martingale can be understood as coming from
fluctuations, and quadratic variations scale like the square of the martingale.

The result helps us for a deeper comprehension of the polymers model, and opens a way
for further limit theorems about it.

1.2 Notations

• The random walk : ({Sn}n≥0, Px) is a nearest neighbor, symmetric simple random walk on
the d-dimensional integer lattice Zd starting from x, d ≥ 3. We let P = P0 and we denote by
P [f ] =

∫
f dP the expectation of f with respect to P .

• The random environment : η = {η(n, x) : n ∈ N, x ∈ Zd} is an independent and identically
distributed (i.i.d.) sequence of real random variables (r.v.’s), non-constant, such that,

λ(β) := lnE[exp(βη(0, 0))] <∞ for all β ∈ R,

where we denote by E the expectation over the environment. The corresponding probability
measure will be denoted by P.
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• The partition function at inverse temperature β ∈ R

Wn := P [exp (βHn(S)− nλ(β))] with Hn(S) =
∑

0≤t≤n−1

η(t, St), n ≥ 1, (3)

is the normalization which makes the Gibbs measure Wn
−1 exp{βHn(S)− nλ(β)} dP a prob-

ability measure on the path space for a fixed realization of the environment. Note that we use
a slightly different definition than usual, including t = 0 but not t = n in the Hamiltonian
Hn. This makes no fundamental difference in the results (see Remark 1.2 below), but it yields

simpler formulas here : for two independent simple random walks S = (St) and S̃ = (S̃t), we

have CovP(Hn(S), Hn(S̃)) = Var(η(0, 0))Nn, where CovP denotes the covariance with respect
to P, Nn is the number of intersections of the paths S, S̃ up to time n :

Nn = Nn(S, S̃) :=
n−1∑
t=0

1St=S̃t , (4)

whose limit

N∞ = N∞(S, S̃) :=
∞∑
t=0

1St=S̃t (5)

has expectation given by the standard Green function (20). The sequence (Wn) depends on
the environment, and it is a positive martingale with respect to the filtration

Gn = σ{η(t, x); t ≤ n− 1, x ∈ Zd}, n ≥ 1. (6)

It is well known [5, 22] that

W = lim
n→∞

Wn exists a.s., with P(W > 0) = 0 or 1.

Moreover, the convergence holds in L2 for β in a neighborhood of 0, defined by

(L2) λ2 := λ(2β)− 2λ(β) < ln(1/πd), (7)

where πd is the return probability of the simple random walk,

πd := P{Sn = 0 for some n ≥ 1} ∈ (0, 1) (8)

by transience since d ≥ 3. Now, we give a short account of the main steps of the computation of

[5], which is useful for the sequel. We can expressW 2
n as a sumW 2

n = P⊗2
[
eβ[Hn(S)+Hn(S̃)]−2nλ(β)

]
over independent paths (so-called replicas), and we compute, using Fubini’s theorem and in-
dependence,

E[W 2
n ] = P⊗2

[
n−1∏
t=0

E eβ[η(t,St)+η(t,S̃t)]−2λ(β)

]

= P⊗2

[
n−1∏
t=0

(
eλ(2β)−2λ(β)1St=S̃t + 1St 6=S̃t

)]

= P⊗2

[
n−1∏
t=0

eλ21St=S̃t

]
= P⊗2

[
eλ2Nn

]
, (9)
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with Nn as in (4). As n→∞, Nn ↗ N∞ =
∑∞

t=0 1St=S̃t . Since the process (St− S̃) under P⊗2

has the same law as (S2t) under P and S2t+1 6= 0 P -a.s., Nn has the same law as the number
of visits to 0 of a simple random walk in time 2n, and N∞ is geometrically distributed with
”failure” probability πd :

P⊗2(N∞ = k) = πk−1
d (1− πd) for k ≥ 1. (10)

Therefore, by the monotone convergence theorem, as n→∞,

E[W 2
n ]↗ P⊗2

[
eλ2N∞

]
=

 (1− πd)eλ2
1− πdeλ2

if πde
λ2 < 1,

+∞ if πde
λ2 ≥ 1.

In this paper, we always assume (7), so that the martingale (Wn) is bounded in L2. By Doob’s
convergence theorem, Wn → W in L2 and then W > 0. In particular,

EW 2 =
(1− πd)eλ2

1− πdeλ2
and Var (W ) =

eλ2 − 1

1− πdeλ2
. (11)

1.3 A Gaussian limit and the rate of convergence

Before coming to our main result, we recall two convergence modes. Let (Yn) be a se-
quence of real random variables defined on a common probability space (Ω,F , P ), converging
in distribution to a limit Y .

– This convergence is called stable if for all B ∈ F with P (B) > 0, the conditional law of
Yn given B converges to some probability distribution depending on B.

– This convergence is called mixing if it is stable and the limit of conditional laws does not
depend on B – and therefore is the law of Y –.

The stable convergence allows to add extra variables : for any fixed r.v. Z on (Ω,F , P ), the
couple (Yn, Z) converges in law to some coupling of Y and Z on an extended space. The
mixing convergence means that Yn is asymptotically independent of all event A ∈ F . These
convergences were introduced by Rényi [28] ; we refer to [3] for a nice presentation with the
main consequences, and to [14] pp. 56-57 for an extended account on the connections with
martingale central limit theorem.

Theorem 1.1 For d ≥ 3, there exists some β0 > 0 such that, for |β| < β0,

n
d−2
4 (W −Wn)→ σ1WG in distribution (12)

and

n
d−2
4

(W −Wn)

Wn

→ σ1G in distribution, (13)

where σ1 is from (30), G is a Gaussian r.v. with law N(0, 1), which is independent of W .
Moreover, the convergence in (12) is stable, and the convergence in (13) is mixing.

The theorem calls for some comments. The value of β0 is defined by the conditions in Lemma
4.1, Lemma 2.3 (b) and Lemma 3.4. The result is quite different from (1)–(2). The speed

of convergence of Wn to its limit is n−
d−2
4 . The mixing convergence in (13) shows that the

random variable Gn defined in the left hand side of (13) is asymptotically independent of
each event A of the environmental probability space, in the sense that for all real y, we have
limn→∞ P ({Gn ≤ y} ∩ A) = P (G ≤ y)P (A). Our approach relies on a central limit theorem
for martingales.
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Remark 1.2 (Usual Hamiltonian) For the standard Hamiltonian collecting the environ-
ment at times 1, 2, . . . n,

W n := P

[
exp

(
β
∑

1≤t≤n

η(t, St)− nλ(β)

)]
= Wn+1 exp{−βη(0, 0) + λ(β)} ,

it is straightforward to see that, for d ≥ 3 and |β| < β0, W n → W := W exp{−βη(0, 0)+λ(β)},
that

n
d−2
4 (W −W n)→ σ1WG in distribution

and

n
d−2
4

(W −W n)

W n

→ σ1G in distribution,

with σ1 and G as above and G independent from W .

Organization of the paper : In Section 2 we start with algebraic computations of co-
variances and use Green function estimates to derive asymptotics. Of independent interest, a
specific form of central limit theorem for infinite martingale arrays is given in Lemma 3.1 of
Section 3, and used to prove Theorem 1.1. The proofs of intermediate lemmas are postponed
to Section 4. A key step consists in controling the sum of conditional variances in the quadratic
norm, so we implement the necessary algebra for a system of 4 replicas at the beginning of the
section.

2 The correlation structure

It is useful to introduce

Wn(x) = P
[
eβHn(S)−nλ(β)1Sn=x

]
, (14)

and to observe that, for m ≥ 0 including m =∞ with the convention W∞ = W ,

Wn+m =
∑
x

Wn(x)Wm ◦ θn,x, (15)

by Markov property. We view Wn as a function of η, we denote by θn,x the shift operator on
the environment, θn,xη : (t, y) 7→ η(n+ t, x+ y). We use θx = θ0,x as a short notation. Taking
m =∞ we see that

W −Wn =
∑
x

Wn(x)
(
W ◦ θn,x − 1

)
. (16)

For nearest-neighbor paths S, S̃ define τn the time delay of first intersection after time n ≥ 0,

τn(S, S̃) = inf{k ≥ 0 : Sn+k = S̃n+k},

with the convention that inf ∅ = +∞. We write τ = τ0, and we note that πd = P⊗2
0,0 (τ1 <∞).
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2.1 Covariance of the martingale limit and rate of convergence in L2

Recall that Var(W ) = eλ2 − 1
1− P⊗2

0,0 (τ1 <∞)eλ2
, cf. (11).

Proposition 2.1 Assume λ2 <
2
d

ln 1
πd

. Then,

Cov(W,W ◦ θx) = Var(W )× P⊗2
0,x (τ <∞) . (17)

Moreover,

‖W −Wn‖2
2 = Var(W )× P⊗2

0,0 (eλ2Nn1τn<∞), (18)

and, as n→∞ ,

‖W −Wn‖2
2 ∼ σ2 × n−(d−2)/2, (19)

with the constant σ2 from (28).

Proof. We first compute the covariance of W and W ◦ θx. Denote by Fn the σ-field generated
by Si, S̃i for 0 ≤ i ≤ n. By convergence in L2, we obtain as in (9),

Cov(W,W ◦ θx) = lim
m→∞

E
[
(Wm − 1)(Wm ◦ θx − 1)

]
= lim

m→∞
P⊗2

0,xE
[
(eβHm(S)−mλ(β) − 1)(eβHm(S̃)−mλ(β) − 1)

]
(Fubini)

= lim
m→∞

P⊗2
0,xE

[
eβHm(S)+βHm(S̃)−2mλ(β) − 1

]
= lim

m→∞
P⊗2

0,x

[
eλ2Nm

]
− 1

= P⊗2
0,x

[
(eλ2N∞ − 1)

]
= P⊗2

0,x

[
1τ<∞P

⊗2
0,x

[
(eλ2N∞ − 1)|Fτ

]]
= P⊗2

0,x (τ <∞)P⊗2
0,0

[
(eλ2N∞ − 1)

]
(strong Markov property)

which is the first claim since Var(W ) = P⊗2
0,0

[
eλ2N∞

]
− 1.

We next calculate the L2 norm of W −Wn. By (16),

‖W −Wn‖2
2 = E

(∑
x

Wn(x)(W ◦ θn,x − 1)
)2

= E
(∑

x,y

Wn(x)Wn(y)(W ◦ θn,x − 1)(W ◦ θn,y − 1)
)

=
∑
x,y

E[Wn(x)Wn(y)]E[(W ◦ θn,x − 1)(W ◦ θn,y − 1)] (independence)

= Var(W )
∑
x,y

E [Wn(x)Wn(y)]P⊗2
x,y (τ <∞) (by (17))

= Var(W )
∑
x,y

P⊗2
0,0

[
eλ2Nn1{Sn=x,S̃n=y}

]
P⊗2
x,y (τ <∞) (cf. (9))

= Var(W )× P⊗2
0,0 (eλ2Nn1τn<∞),
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by Markov property. This is (18).
We finally derive (19) using classical estimates for the Green function. Denote by

G(x) := P⊗2
0,x

[ ∞∑
n=0

1{Sn−S̃n=0}
]

= P⊗2
0,x (N∞) (20)

the Green function for the symmetrized walk (Sn − S̃n)n, and observe that it is equal on even
sites x (i.e., when ‖x‖1 = 0 mod 2) to the Green function of the simple random walk : for even
sites x

G(x) = Px
[ ∞∑
n=0

1Sn=0

]
,

since the process (Sn − S̃n) under P⊗2
0,x has the same law as (S2n) under Px and S2n+1 6= 0 Px

a.s. (for even sites x). For odd sites x, G(x) = 0, since in this case Sn− S̃n 6= 0 P⊗2
0,x a.s.. From

the geometric distribution of N∞ under P⊗2
0,0 , we have G(0) = (1− πd)−1. By Markov property

we have
P⊗2

0,x (τ <∞) = G(x)/G(0), x ∈ Zd,

and can use the classical estimates for the Green function, see e.g. [25, Theorem 4.3.1] : for
even sites x,

G(x) =
Kd
|x|d−2

+O
( 1

|x|d
)
, |x| → ∞, (21)

where Kd ∈ (0,∞) is a constant whose value is

Kd =
d Γ(d/2)

(d− 2)πd/2
. (22)

By the central limit theorem, we have the following convergence in distribution under P⊗2
0,0 to

a Gaussian vector :
n−1/2(Sn − S̃n)→ Z in distribution,

where Z is a Gaussian vector with mean 0 and covariance matrix 2
d
Id, Id being the d-

dimensional identity matrix. Thus, with (21),

n(d−2)/2G(Sn − S̃n)→ Kd
|Z|d−2

in distribution. (23)

We shall need the following two lemmas, whose proofs are postponed by the end of the
section.

Lemma 2.2 (Asymptotic independence) Under P⊗2 we have the following convergence
in distribution of random vectors :(

Nn, n
−1/2Sn, n

−1/2S̃n

)
−→ (N∞, Z1, Z̃1) in distribution,

where N∞, Z1, Z̃1 are independent, and where
– N∞ is geometrically distributed with parameter 1− πd (see (10)),

– Z1 and Z̃1 are Gaussian vectors with mean 0 and covariance matrix 1
d
Id.
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Lemma 2.3 (Boundedness in L1+δ) (a) For a > 0,

lim sup
n→∞

P⊗2
(∣∣∣Sn − S̃n√

n

∣∣∣−a1{Sn−S̃n 6=0}
)
<∞ if and only if a < d. (24)

(b) If λ2 <
2
d

ln 1
πd

, then for δ > 0 small enough,

lim sup
n→∞

P⊗2[eλ2Nnn
d−2
2 G(Sn − S̃n)]1+δ <∞. (25)

We first end the proof of Proposition 2.1. From Lemma 2.2, with Z = Z1 − Z̃1,

eλ2Nn × n
d−2
2 G(Sn − S̃n)

law−→ eλ2N∞ × Kd
|Z|d−2

. (26)

By Lemma 2.3(b), the sequence in the left-hand side of (26) is uniformly integrable, so that
the convergence in law implies the convergence of expectations, allowing to write

n
d−2
2 P⊗2

0,0 (eλ2Nn1τn<∞) = n
d−2
2 P⊗2

0,0

[
eλ2NnP⊗2

0,0 (τn <∞|Fn)
]

= G(0)−1P⊗2
0,0

[
eλ2Nn × n

d−2
2 G(Sn − S̃n)

]
−→ G(0)−1P⊗2

0,0

[
eλ2N∞

]
× E

[
Kd
|Z|d−2

]
. (27)

Together with (18), this ends the proof of (19), yielding the value

σ2 =
KdZd
G(0)

Var(W )E(W 2)

= KdZd(1− πd)2 × (eλ2 − 1)eλ2 × 1

(1− πdeλ2)2 , (28)

with Var(W ) from (11) and

Zd
def
= E

[
1

|Z|d−2

]
=

1

Γ(d/2)

(
d

4

)(d−2)/2

(29)

from the chi-square distribution. This proof of Proposition 2.1 is complete.

For later purposes, define

σ2
1 = KdZd(1− πd)× Var(W ), (30)

so that σ2 = σ2
1EW 2.

2.2 Proof of the lemmas

It remains to prove Lemmas 2.2 and 2.3.
Proof of Lemma 2.2. First observe that

sup
n≥m

P⊗2(Nn > Nm)→ 0 as m→∞,
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since Nn ↗ N∞ < ∞ a.s. Fix m ≥ 1 and f, g, g̃ continuous and bounded. For all n ≥ m, we
write

P⊗2
[
f(Nn)g

(
n−1/2Sn

)
g̃
(
n−1/2S̃n

)]
= P⊗2

[
f(Nn)g

(
n−1/2Sn

)
g̃
(
n−1/2S̃n

)
1Nn=Nm

]
+ ε(n,m)

= P⊗2
[
f(Nm)g

(
n−1/2Sn

)
g̃
(
n−1/2S̃n

)
1Nn=Nm

]
+ ε(n,m)

= P⊗2
[
f(Nm)g

(
n−1/2(Sn − Sm)

)
g̃
(
n−1/2(S̃n − S̃m)

)
1Nn=Nm

]
+ ε′(n,m)

= P⊗2
[
f(Nm)g

(
n−1/2(Sn − Sm)

)
g̃
(
n−1/2(S̃n − S̃m)

)]
+ ε”(n,m)

= P⊗2[f(Nm)]× P
[
g
(
n−1/2(Sn − Sm)

)]
× P

[
g̃
(
n−1/2(S̃n − S̃m)

)]
+ ε”(n,m) ,

where the equalities define the terms ε(n,m), ε′(n,m), ε′′(n,m) on their first occurrence. Here,

|ε(n,m)| ≤ ‖f‖∞‖g‖∞‖g̃‖∞P (Nn 6= Nm)

tends to 0 as m → ∞ uniformly in n ≥ m, ε′(n,m) − ε(n,m) → 0 as n → ∞ for all fixed
m, and supn≥m ε

′′(n,m) → 0 as m → ∞. The last equality comes from independence in the

increments of the random walks, and of the two random walks S and S̃. Hence, letting n→∞
and then m→∞, we get

P⊗2
[
f(Nn)g

(
n−1/2Sn

)
g̃
(
n−1/2S̃n

)]
→ P⊗2[f(N∞)]× P [g(Z1)]× P [g̃(Z̃1)].

Since N∞ is geometrically distributed with parameter 1− πd (see (10)), this ends the proof of
the lemma.

Remark 2.4 We could have taken another route to prove the lemma. The couple n−1/2(Sn, S̃n)
converges (mixing) to the Gaussian vector (Z1, Z̃1), see e.g. Theorem 2 in [3]. On the other
hand Nn → N∞ a.s. From the mixing consequence that we mentioned above Theorem 1.1
(which remains valid for random variables with values in Rd) it follows the convergence in

distribution of
(
n−1/2Sn, n

−1/2S̃n, N∞
)

to (Z1, Z̃1, N). It is not difficult to see that the sequence

(n−1/2Sn, n
−1/2S̃n, Nν) has the same limit in distribution. However, we have given the above

proof, which is short and instructive, for the sake of completeness.

Proof of Lemma 2.3. (a) The ”only if” part is evident by Fatou’s lemma since∣∣∣Sn − S̃n√
n

∣∣∣−a1{Sn−S̃n 6=0} → |Z|
−a in distribution

and E|Z|−a <∞ if and only if a < d.
Let’s show the ”if” part. Since the La-norm is increasing in a, we only need to prove the

finiteness of the lim sup for 0 < a < d sufficiently close to d. So we fix a ∈ (d − 1, d). By the
local central limit theorem (see e.g. [24, Theorem 1.2.1, p.14]) we know that

pn(x) := P⊗2(Sn − S̃n = x) = P (S2n = x)

9



satisfies

|pn(x)− p̄n(x)| ≤ c2n
−d/2|x|−2, with p̄n(x) = c1n

−d/2 exp{−d|x|
2

4n
}, (31)

where c1, c2 > 0 are constants. (In fact we have c1 = Cd, with Cd defined by (63).) Denote by
In the integral in (24). Then

In ≤
∑
x 6=0

( |x|√
n

)−a
p̄n(x) +

∑
x 6=0

( |x|√
n

)−a
c2n
−d/2|x|−2 := In,1 + In,2. (32)

In the following to avoid sums over non-integer valued numbers, we shall use the integer valued
L1 norm ‖x‖1 = |x1|+ · · ·+ |xd| for x = (x1, · · · , xd) ∈ Zd, instead of the Euclidean norm |x|,
and the elementary inequality ‖x‖1/d ≤ |x| ≤ ‖x‖1 valid for all x ∈ Zd.

For the first sum in (32), we have, for some constant c3 > 0,

In,1 ≤ c1d
an−d/2

∑
x 6=0

(‖x‖1√
n

)−a
exp{−‖x‖

2
1

4dn
}

= c1d
an−d/2

∑
r≥1

∑
‖x‖1=r

( r√
n

)−a
exp{− r2

4dn
}

≤ c1 c3 d
an−d/2

∑
r≥1

rd−1
( r√

n

)−a
exp{− r2

4dn
}

=
c1 c3 d

a

√
n

∑
r≥1

( r√
n

)−(a−d+1)

exp{− 1

4d
(
r√
n

)2},

where the next to last step holds as the number of x = (x1, ..., xd) ∈ Zd with |x1|+· · ·+|xd| = r
is bounded by 2(2r+1)d−1 ≤ c3r

d−1 (notice that each coordinate satisfies |xi| ≤ r, and while the
first d− 1 are chosen, the absolute value of the last coordinate is determined by the equation,
so that the last coordinate has at most 2 possibilities). As 0 < a− d+ 1 < 1, we have, for all
n ≥ 1,

In,1 ≤
c1 c3 d

a

√
n

( ∑
1≤r≤

√
n

(
r√
n

)−(a−d+1) +
∑
r>
√
n

exp{− 1

4d
(
r√
n

)2}
)

≤ c1 c3 d
a
( ∑

1≤r≤
√
n

∫ r√
n

r−1√
n

x−(a−d+1)dx+
∑
r>
√
n

∫ r√
n

r−1√
n

exp{−x
2

4d
}dx
)

≤ c4 := c1 c3 d
a
(∫ 1

0

x−(a−d+1)dx+

∫ ∞
0

exp{−x
2

4d
}dx
)
<∞.

Similarly, for the second sum in (32), we have,

In,2 ≤ c2 c3 d
a+2n−d/2

∑
r≥1

( r√
n

)−a
r−2rd−1

= c2 c3 d
a+2n(a−d)/2

∑
r≥1

r−(a+3−d)

which tends to 0 as n→∞ (since d−1<a<d). This ends the proof of Part (a) of Lemma 2.3.
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(b) Let Gn = Gn(Sn − S̃n) := n
d−2
2 G(Sn − S̃n) and λ′2 = (1 + δ)λ2. Recall from (21) that

G(x) ≤ c5|x|2−d. Then

P⊗2
[
(eλ2NnGn)1+δ

]
=

∑
z

P⊗2
[
eλ
′
2Nn ;Sn − S̃n = z

]
Gn(z)1+δ

≤ c5

∑
z 6=0

P⊗2
[
eλ
′
2Nn ;Sn − S̃n = z

] ∣∣∣n−1/2z
∣∣∣−(d−2)(1+δ)

+ c5P
⊗2
[
eλ
′
2Nn ;Sn − S̃n = 0

]
n(d−2)(1+δ)/2. (33)

Denote by Ln = sup{j = 0, . . . n : Sj − S̃j = 0} and T = inf{j ≥ 1 : Sj − S̃j = 0} the last
(before n) and the first hitting times of 0. Let δ > 0 be small enough such that λ′2 < log 1

πd
;

this is possible thanks to the condition (L2) (see (7)). Then

P⊗2
[
eλ
′
2Nn ;Sn − S̃n = 0

]
∼ eλ

′
2 [1− eλ′2πd]−2P⊗2[T = n] as n→∞, (34)

by Theorem 2.2 (case 2) in [13]. Since P⊗2[T = n] ≤ P⊗2(Sn − S̃n = 0) = O(n−d/2), this
implies that when (d− 2)(1 + δ) < d, the last term in (33) vanishes as n→∞, and yields, for
z 6= 0,

P⊗2
[
eλ
′
2Nn ;Sn − S̃n = z

]
=

n∑
j=0

P⊗2
[
eλ
′
2Nn ;Sn − S̃n = z, Ln = j

]
Markov

=
n∑
j=0

P⊗2
[
eλ
′
2Nj ;Sj−S̃j = 0

]
P⊗2

[
Sn−j−S̃n−j = z, Ln−j = 0

]
(34)

≤ c6

n∑
j=0

P⊗2[T = j]P⊗2
[
Sn−j−S̃n−j = z, Ln−j = 0

]
≤ c6

n∑
j=0

P⊗2[T = j]P⊗2
[
Sn−j−S̃n−j = z

]
= c6P

⊗2
[
Sn−S̃n = z

]
.

where the last step holds because we have Sj−S̃j = 0 on T = j, so that

P⊗2
[
Sn−S̃n = z

]
=

n∑
j=0

P⊗2[T = j, Sn−S̃n = z]

=
n∑
j=0

P⊗2[T = j, (Sn − Sj)−(S̃n − S̃j) = z]

=
n∑
j=0

P⊗2[T = j]P⊗2[Sn−j−(S̃n−j = z],

using the fact that the event [T = j] is independent of (Sn − Sj)−(S̃n − S̃j) which has the

same law as Sn−j−S̃n−j.
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Inserting the last bound on P⊗2
[
eλ
′
2Nn ;Sn − S̃n = z

]
into (33), we obtain for large n,

P⊗2
[
(eλ2NnGn)1+δ

]
= c5c6

[
1 +

∑
z 6=0

P⊗2
[
Sn − S̃n = z

] ∣∣∣n−1/2z
∣∣∣−(d−2)(1+δ)

]
,

which, according to (24), is bounded provided that (d− 2)(1 + δ) < d.

3 Proof of the Central Limit Theorem

In this section we give the proof of Theorem 1.1. Our proof is based on the following central
limit theorem for infinite martingale arrays, which is a slight extension of Corollaries 3.1 and
3.2 of the book by Hall and Heyde [14] (pp. 58-59 and p.64), but we could not find it in the
literature.

Lemma 3.1 For n ≥ 1, let {(Sn,i,Fn,i) : i ≥ 0} be an array of martingales defined on a
probability space (Ω,F , P ), with Sn,0 = 0 and

sup
n,i≥1

ES2
n,i <∞. (35)

Let Xn,i = Sn,i− Sn,i−1, i ≥ 1 be the martingale differences, and Sn,∞ = limi→∞ Sn,i be the a.s.
limit of (Sn,i, i ≥ 0). Suppose that :

(a) the conditional variance converges in probability : for a real random variable V ∈ [0,∞),

V 2
n,∞ :=

∞∑
i=1

E(X2
n,i|Fn,i−1) −→ V 2 in probability ; (36)

(b) the conditional Lindeberg condition holds :

∀ε > 0,
∞∑
i=1

E(X2
n,i1|Xn,i|>ε|Fn,i−1) −→ 0 in probability ; (37)

(c) the σ − fields are nested : Fn,i ⊂ Fn+1,i for all n, i ≥ 1.

Then
Sn,∞ −→ V G in distribution (38)

where G is a Gaussian variable with law N(0, 1) and independent of V ; if additionally V 6= 0
a.s., then

Sn,∞
Vn,∞

−→ G in distribution. (39)

Moreover, the convergence in (38) is stable, and the convergence in (39) is mixing.

Lemma 3.1 reduces to Corollaries 3.1 and 3.2 in [14] for a triangular array of martingales
differences, that is, when Xn,i = 0 for all i > kn, for some sequence of integers kn increasing
to ∞. As in the case of a triangular array, if V is measurable with respect to each Fn,i for
n, i ≥ 1 (e.g. when V is a constant), then the nested condition (c) can be removed, but the
convergence (38) may no longer be stable, and the convergence (39) may no longer be mixing
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(see the remarks in p.59 and p. 64 of [14] for a triangular array). Lemma 3.1 can be extended
in a clear way to two-sided martingale arrays {(Sn,i,Fn,i) : −∞ < i <∞} ; for a version using
conditions and norming in terms of

∑
iX

2
n,i, see Theorem 3.6 of [14] (p.77).

Proof of Lemma 3.1. We will see that Lemma 3.1 can be obtained from the corresponding
result for a triangular array of martingales. Let kn be positive integers increasing to ∞ such
that

E(Sn,∞ − Sn,kn)2 = E
∑
i>kn

X2
n,i → 0.

Then

V 2
n,kn :=

kn∑
i=1

E(X2
n,i|Fn,i−1)→ V 2 in probability

since V 2
n,∞−V 2

n,kn
=
∑

i>kn
E(X2

n,i|Fn,i−1)→ 0 in L1. Clearly, by condition (b), the conditional
Lindeberg condition for the triangular array {(Xn,i,Fn,i) : 0 ≤ i ≤ kn} holds, that is, (37)

holds with
∑∞

i=1 replaced by
∑kn

i=1. Therefore, by Corollaries 3.1 and 3.2 of [14] (pp.58-59 and
p. 64),

Sn,kn → V G in distribution (40)

and
Sn,kn
Vn,kn

→ G in distribution. (41)

Since Sn,∞−Sn,kn → 0 in L2 and hence in probability, (40) implies (38). As V 2
n,∞−V 2

n,kn
→ 0 in

probability (in fact in L1), when V > 0 a.s. we have V 2
n,∞/V

2
n,kn
→ 1 in probability. Therefore

(41) implies (39).

Lemma 3.1 is well suited for studying the rate of convergence of a martingale, as shown in
the following

Corollary 3.2 Let {(Si,Fi) : i ≥ 0} be a martingale defined on a probability space (Ω,F , P ),
with S0 = 0 and supi≥1ES

2
i < ∞. Let Xi = Si − Si−1, i ≥ 1 be the martingale differences,

S∞ = limi→∞ Si be the a.s. limit of (Si), and let

v2
n = E(S∞ − Sn)2 = E

∞∑
i=n+1

X2
i .

Suppose that vn > 0 and that :

(a) the conditional variance converges in probability : for a real random variable V ∈ [0,∞),

V 2
n :=

1

v2
n

∞∑
i=n+1

E(X2
i |Fi−1)→ V 2 in probability ; (42)

(b) the conditional Lindeberg condition holds :

∀ε > 0,
1

v2
n

∞∑
i=n+1

E(X2
i 1|Xi|>εvn|Fi−1)→ 0 in probability. (43)

13



Then
S∞ − Sn

vn
→ V G in distribution, (44)

where G is a Gaussian variable with law N(0, 1) and independent of V ; if additionally V 6= 0
a.s., then

S∞ − Sn
Vn

→ G in distribution. (45)

Moreover, the convergence in (44) is stable, and the convergence in (45) is mixing.

Proof. Corollary 3.2 is an immediate consequence of Lemma 3.1 applied to Xn,i = Xn+i
vn

for
i ≥ 1, Fn,i = Fn+i for i ≥ 0, and Xn,0 = 0.

Proof of Theorem 1.1. We can use Corollary 3.2 with 1/‖W −Wn‖2 for the norming, but,
since ‖W −Wn‖2 ∼ σn−(d−2)/4, we prefer to use the more explicit norming n(d−2)/4, together
with the spirit of the proof of Corollary 3.2. So we rely on the decomposition

n
d−2
4 (W −Wn) = n

d−2
4

∞∑
k=n

Dk+1, (46)

where
Dk+1 = Wk+1 −Wk, k ≥ n,

forms a sequence of martingale differences. To prove Theorem 1.1, by (46) and Lemma 3.1

applied to Xn,i = n
d−2
4 Dn+i for i ≥ 1, Fn,i = Gn+i for i ≥ 0 (recall (6)), and Xn,0 = 0, it suffices

to prove that :

(a) the following convergence about the conditional variance holds :

s2
n := n

d−2
2

∑
k≥n

EkD2
k+1 → σ2

1W
2 in probability, (47)

where Ek(·) = E(·|Gk) denotes the conditional expectation given Gk ;

(b) the following Lindeberg condition holds :

∀ε > 0, n
d−2
2

∑
k≥n

Ek
(
D2
k+11{n

d−2
4 |Dk+1|>ε}

)
→ 0 in probability. (48)

Actually, by Lemma 3.1, from (47) and (48) we conclude that (12) and (13) hold with the
norming 1/Wn in (13) replaced by 1/W . As Wn/W → 1 a.s. (and thus in probability), we can
change the factor 1/W to 1/Wn without changing the convergence in distribution.

To show the convergence (47) of the conditional variance, we will prove in the next section
the following

Lemma 3.3 There exists β0 > 0 such that for |β| < β0 and σ1 from (30), we have, as n→∞,

E(Wn −W )4 −→ 0, (49)

Es4
n − σ4

1EW 4
n −→ 0, (50)

E(s2
nW

2
n)− σ2

1EW 4
n −→ 0. (51)
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It follows from Lemma 3.3 that

E(s2
n − σ2

1EW 2
n)2 = Es4

n − 2σ2
1E(s2

nW
2
n) + σ4

1EW 4
n

−→ 0.

Therefore, s2
n − σ2

1W
2
n → 0 in L2. As W 2

n → W 2 in L2, it follows that s2
n → σ2

1W
2 in L2. We

thus obtain (47).

To show Lindeberg’s condition (48), we will prove the following convergence rate of ED4
k+1.

Lemma 3.4 For any q > 1, when |β| > 0 is small enough, we have

ED4
k+1 = O(k−d/q), k ≥ 1. (52)

The proof of the Lemma is postponed to the end of the paper.
Note that a sufficient condition for Lindeberg’s condition (48) to hold is clearly

n(d−2)
∑
k≥n

EkD4
k+1 → 0 in probability,

which is implied by

n(d−2)
∑
k≥n

ED4
k+1 → 0. (53)

By Lemma 3.4, when |β| > 0 is small enough, the left-hand side of (53) is smaller than
c nd−1−d/q for some constant c > 0, which tends to 0 by taking 1 < q < d/(d − 1), so that
Lindeberg’s condition (48) holds. (In fact one can check that it suffices to take |β| < β0 with
β0 > 0 determined in Lemma 4.1.) This ends the proof of Theorem 1.1, using Lemmas 3.3 and
3.4 whose proofs will be given in the next section.

Remark 3.5 The convergence (13) can also be proved using the decomposition

n
d−2
4 (W −Wn)

Wn

=
n
d−2
4

Wn

∞∑
k=n

Dk+1,

where (n
d−2
4 Dk+1/Wn, k ≥ n) remains a sequence of martingale differences. But proving (12)

requires a different route.

We end this section with a warm-up calculation : we recover the value of EW 2
n and (18)

from the martingale decomposition (46), i.e., using the conditional variance. This calculation
is instructive and it will be useful in the forthcoming computations. Write for short

hk(S) =
k−1∑
i=0

[βη(i, Si)− λ(β)].

Since Wk+1 −Wk = Pehk(S)(eβη(k,Sk)−λ(β) − 1),

(Wk+1 −Wk)
2 = P⊗2

[
ehk(S)(eβη(k,Sk)−λ(β) − 1)ehk(S̃)(eβη(k,S̃k)−λ(β) − 1)

]
,
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using Fubini’s theorem we have

EkD2
k+1 = κ2P

⊗2ehk(S)ehk(S̃)1{Sk=S̃k} (54)

with
κ2 = κ2(β) = eλ2 − 1. (55)

We compute s2
n from its definition in (47) :

s2
n = κ2n

d−2
2

∑
k≥n

P⊗2ehk(S)ehk(S̃)1Sk=S̃k
. (56)

Observe that

1{Sk=S̃k} =
eλ2(Nk+1−Nk) − 1

κ2

. (57)

We now check that, with s2
n from (56) and σ2 be defined by (28),

Es2
n → σ2.

This is a remake of (19), but, as we will see, from a different route. By Fubini we have

Es2
n = κ2n

d−2
2

∑
k≥n

P⊗2Eehk(S)ehk(S̃)1Sk=S̃k

= n
d−2
2 P⊗2

∑
k≥n

eλ2Nkκ21Sk=S̃k

= n
d−2
2 P⊗2

∑
k≥n

eλ2Nk(eλ2(Nk+1−Nk) − 1) (by (57))

= n
d−2
2 P⊗2(eλ2N∞ − eλ2Nn) (telescopic sum)

= n
d−2
2 P⊗2[P⊗2

(
eλ2(N∞−Nn) − 1

)
|Fn)eλ2Nn ]

= n
d−2
2 P⊗2[F (Sn − S̃n)eλ2Nn ],

where we can express

F (x) = P⊗2
0,x (eλ2N∞ − 1)

= P⊗2
0,x ((eλ2N∞ − 1)1τ<∞)

= P⊗2
0,x (τ <∞)P⊗2

0,0 (eλ2N∞ − 1)

=
G(x)

G(0)
(E(W 2)− 1). (58)

Therefore, by the same argument as in (27), we derive from the last 2 formulas,

Es2
n =

Var(W )

G(0)
P⊗2[n

d−2
2 G(Sn − S̃n)eλ2Nn ]

→ Kd
G(0)

Var(W )E
1

|Z|d−2
× P⊗2eλ2N∞

= KdVar(W )(1− πd)Zd × EW 2

which is equal to σ2.

16



4 Proof of the instrumental lemmas

In this section we give the proofs of Lemmas 3.3 and 3.4.

Proof of Lemma 3.3. We first give the proof of (49). For 4 independent paths S(i), i =
1, . . . 4, we need to count the number of intersections of 2, 3 or four of them. Denote by E4 the
set of elements of (Zd)4 with all 4 elements equal, by E3 the set of those with 3 equal lattice
sites and a different fourth, by E2,2 the set of those with 2 pairs of equal lattice sites but the
two are different, and by E2,0 the set of those with one pair being equal and different from the
two other ones. Let A be the corresponding set of indices, A = {4, 3, (2, 2), (2, 0)}, and define
for m ≥ 2, n < k ≤ ∞ and a ∈ A,

λm = λ(mβ)−mλ(β),

N
(a)
n,k =

∑
n≤t<k

1{(S(1)
t ,S

(2)
t ,S

(3)
t ,S

(4)
t )∈Ea}

,

Σn,k = λ4N
(4)
n,k + λ3N

(3)
n,k + 2λ2N

(2,2)
n,k + λ2N

(2,0)
n,k .

Then it is elementary to check that

E exp{
4∑
i=1

hn(S(i))} = exp Σ0,n, EW 4
n = P⊗4

(
eΣ0,n

)
. (59)

For all pair S, S̃ of paths and all 0 ≤ n < k ≤ ∞, put

Nn,k(S, S̃) =
∑
n≤t<k

1St=S̃t .

For simplicity we sometimes just write Nn,k for Nn,k(S, S̃) when there is no confusion. Note
that, for all a ∈ A,

N
(a)
n,k ≤

∑
1≤i<j≤4

Nn,k(S
(i), S(j)), (60)

and that λm ↘ 0 as |β| ↘ 0. Thus, for each t > 0, writing λ := 3λ2 + λ3 + λ4 and taking
|β| > 0 small enough such that λ < 1

6t
log 1

πd
, we have

P⊗4
(
etΣ0,∞

)
≤ P⊗4etλ

∑
1≤i<j≤4N0,∞(S(i),S(j))

≤ P⊗2e6tλN∞ < ∞ (61)

(recall the calculation after (10)), where the second inequality holds by Hölder’s inequality
E|f1 · · · f6| ≤ (E|f1|6)1/6 · · · (E|f6|6)1/6 and the fact that the number of pairs (i, j) with 1 ≤
i < j ≤ 4 is equal to 6. Therefore when |β| > 0 is small enough such that λ < 1

6
log 1

πd
, we have

sup
n≥1

EW 4
n = P⊗4

(
eΣ0,∞

)
≤ P⊗2e6λN∞ < ∞.

This shows that the martingale (Wn) is bounded in L4, so that it converges in L4, which gives
the assertion (49).
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We next give the proof of (50). We compute

Es4
n = κ2

2nd−2
∑
k,`≥n

P⊗4
[
Eehk(S(1))+hk(S(2))+h`(S

(3))+h`(S
(4))1

S
(1)
k =S

(2)
k
1
S
(3)
` =S

(4)
`

]
= T<(n) + T=(n) + T>(n),

where T=(n) [resp. T<(n), resp. T>(n)] is the contribution in the sum of the terms with k = `,
[resp. k < `, resp. k > `]. Thus,

T=(n) = κ2
2nd−2

∑
k≥n

P⊗4
[
eΣ0,k1

S
(1)
k =S

(2)
k
1
S
(3)
k =S

(4)
k

]
.

By symmetry, T<(n) = T>(n). We calculate T<(n) :

T<(n) = κ2
2nd−2P⊗4

[ ∑
`>k≥n

eΣ0,k+λ2Nk,`(S
(3),S(4))1

S
(1)
k =S

(2)
k
1
S
(3)
` =S

(4)
`

]

= κ2n
d−2P⊗4

[∑
k≥n

eΣ0,k1
S
(1)
k =S

(2)
k

∑
`>k

eλ2Nk,`(S
(3),S(4))κ21S(3)

` =S
(4)
`

]
(57)
= κ2n

d−2P⊗4

[∑
k≥n

eΣ0,k1
S
(1)
k =S

(2)
k

∑
`>k

eλ2Nk,`(S
(3),S(4))

(
eλ2N`,`+1(S(3),S(4)) − 1

)]

= κ2n
d−2P⊗4

[∑
k≥n

eΣ0,k1
S
(1)
k =S

(2)
k

∑
`>k

(
eλ2Nk,`+1(S(3),S(4)) − eλ2Nk,`(S(3),S(4))

)]

= κ2n
d−2P⊗4

[∑
k≥n

eΣ0,k1
S
(1)
k =S

(2)
k

(
eλ2Nk,∞(S(3),S(4)) − eλ2Nk,k+1(S(3),S(4))

)]
.

Therefore, using (57) and the expression of T=(n), we obtain

T<(n) = κ2n
d−2P⊗4

[∑
k≥n

eΣ0,k1
S
(1)
k =S

(2)
k

(
eλ2Nk,∞(S(3),S(4)) − 1

)]
− T=(n)

= κ2n
d−2P⊗4

[∑
k≥n

eΣ0,k1
S
(1)
k =S

(2)
k
P⊗2

(
eλ2Nk,∞(S(3),S(4)) − 1

∣∣Fk)]− T=(n)

(58)
=

Var(W )

G(0)
κ2 × nd−2P⊗4

[∑
k≥n

eΣ0,k1
S
(1)
k =S

(2)
k
G(S

(3)
k − S

(4)
k )

]
− T=(n)

= T<1 (n)− T=(n) ,

which serves also as the definition of T<1 (n). For 0 ≤ m ≤ n define

T<2 (m,n) =
Var(W )

G(0)
κ2 × nd−2

∑
k≥n

P⊗4
[
eΣ0,m+λ2Nk−m,k(S(1),S(2))1

S
(1)
k =S

(2)
k
G(S

(3)
k − S

(4)
k )
]
.

It is sufficient to study the limit of T<2 (m,n) for large n,m, since we will prove the following
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Lemma 4.1 Let β0 > 0 be such that, for some ε > 0 and all |β| < β0, P⊗4[e(d+ε)Σ0,∞ ] < ∞.
Then

lim
n→∞

T=(n) = lim
m→∞

lim sup
n→∞

∣∣T<1 (n)− T<2 (m,n)
∣∣ = 0.

Remark 4.2 The occurrence of the term Nk−m,k may be surprising. It is reminiscent of a

similar phenomenon in the local limit theorem for polymers [29, 30]. The constraint S
(1)
k = S

(2)
k

makes likely intersections between S(1) and S(2) just before time k, whereas it is likely that S(3)

and S(4) are far from them and far apart one from another.

With Lemma 4.1 we continue our proof. To analyse T<2 (m,n) we condition on the vectors

S(1,2) = S(1,2)
0,m := (S

(i)
t ; i = 1, 2, t = 0, . . .m− 1),

S(3,4) = S(3,4)
0,m := (S

(i)
t ; i = 3, 4, t = 0, . . .m− 1),

and use the independence of the paths S(i) to obtain that for fixed m, as n→∞,

T<2 (m,n) = Var(W )
G(0)

κ2n
d−2
∑

k≥n P
⊗4
[
eΣ0,mP⊗2

(
1
S
(1)
k =S

(2)
k
eλ2Nk−m,k(S(1),S(2))

∣∣S(1,2)
)

× P⊗2
(
G(S

(3)
k − S

(4)
k )
∣∣S(3,4)

)]
∼ Var(W )KdZd

G(0)
κ2n

d−2
∑

k≥n
1

k
d−2
2
P⊗4

[
eΣ0,mP⊗2

(
1
S
(1)
k =S

(2)
k
eλ2Nk−m,k(S(1),S(2))

∣∣S(1,2)
)]
.(62)

Indeed, using the independence between S
(i)
k − S

(i)
m−1 and S

(i)
m−1 and the fact that S

(i)
k − S

(i)
m−1

has te same law as S
(i)
k−m+1, we have,

P⊗2
(
G(S

(3)
k − S

(4)
k )
∣∣S(3,4)

)
= P⊗2

(
G((S

(3)
k − S

(3)
m−1)− (S

(4)
k − S

(4)
m−1) + (S

(3)
m−1 − S

(4)
m−1))

∣∣S(3,4)
)

= gk−m+1(S
(3)
m−1 − S

(4)
m−1),

where gk−m+1(x) = P⊗2G(S
(3)
k−m+1−S

(4)
k−m+1 + x), x ∈ Zd. It can be easily seen that (23), (24),

(25) still hold with Sn − S̃n replaced by Sn − S̃n + x for any fixed x ∈ Zd (with the same
argument). This shows that for any x ∈ Zd,

k
d−2
2 G(S

(3)
k − S

(4)
k + x)→ Kd

|Z|d−2
in distribution,

and that the sequence k
d−2
2 G(S

(3)
k − S

(4)
k + x) is L1+δ -bounded under P⊗2 (see (25) with

λ2 = 0), and is therefore uniformly integrable. With the uniform integrability, the convergence
in distribution implies the convergence of expectations. Thus for each fixed x ∈ Zd,

k
d−2
2 P⊗2G(S

(3)
k − S

(4)
k + x)→ KdZd.

It follows that as k →∞,

k
d−2
2 P⊗2

(
G(S

(3)
k − S

(4)
k )
∣∣S(3,4)

)
→ KdZd.

For each fixed m, the convergence is uniform over all possibles values of S(3,4), since the number
of possibles values is finite due to the fact that |S(i)

t | ≤ m for 0 ≤ t ≤ m − 1. Therefore for
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each ε > 0, there is kε > 0 such that for all k ≥ kε, k
d−2
2 P⊗2

(
G(S

(3)
k −S

(4)
k )
∣∣S(3,4)

)
lies between

KdZd − ε and KdZd + ε. This implies (62).

Now by Markov property of the random walks (S
(i)
t )t and time-reversal on the event {S(1)

k =

S
(2)
k }, writing

fk−m+1(s(1), s(2)) = P⊗2
(
1{S(1)

k−m+1+s(1)=S
(2)
k−m+1+s(2)}e

λ2
∑m
t=1 1{S(1)t =S

(2)
t }
)

= e−λ2P⊗21{S(1)
k−m+1+s(1)=S

(2)
k−m+1+s(2)}

(
eλ2N0,m+1

)
,

we have, when k −m > m ≥ 1,

P⊗2
(
1{S(1)

k =S
(2)
k }
eλ2Nk−m,k(S(1),S(2))

∣∣S(1,2)
)

= P⊗2
(
1{S(1)

k =S
(2)
k }
eλ2Nk−m,k(S(1),S(2))

∣∣S(i)
m−1, i = 1, 2

)
= P⊗2

(
1{S(1)

k −S
(1)
m−1+S

(1)
m−1=S

(2)
k −S

(1)
m−1+S

(1)
m−1}

e
λ2

∑k−1
t=k−m 1

{S(1)
k
−S(1)t =S

(2)
k
−S(2)t }

∣∣S(i)
m−1, i = 1, 2

)
= fk−m+1(S

(1)
m−1, S

(2)
m−1).

where the last step holds because the reverse random walk {S(i)
k − S

(i)
t : t = k − 1, · · · , k −

m, · · · ,m−1} has the same law as the initial random walk {S(i)
t : t = 1, · · · ,m, · · · , k−m+1}.

Now for each possible value (s(1), s(2)) of (S
(1)
m−1, S

(2)
m−1), by first conditioning on {S(i)

t : i =
1, 2, t = 0, · · · ,m} and by using the local limit theorem (see (31)), we see that for fixed m ≥ 1,
as k →∞,

kd/2fk(s
(1), s(2))→ CdP

⊗2
(
eλ2N0,m+1

)
with

Cd = 2
(
d/4π

)d/2
. (63)

It follows that for fixed m ≥ 1, as k →∞,

kd/2P⊗2
(
1{S(1)

k =S
(2)
k }
eλ2Nk−m,k(S(1),S(2))

∣∣S(1,2)
)

= kd/2fk−m+1(S
(1)
m−1, S

(2)
m−1)

→ CdP
⊗2
(
eλ2N0,m+1

)
, (64)

and the convergence is uniform over all possible values of (S
(1)
m−1, S

(2)
m−1) since the number of

possible values is finite. Therefore, for each ε > 0, there is kε > 0 such that for all k ≥ kε,
kd/2fk−m+1(S

(1)
m−1, S

(2)
m−1) lies between CdP

⊗2
(
eλ2N0,m+1

)
± ε. Thus, for fixed m ≥ 1, as k →∞,

it holds

k
d
2P⊗4

[
eΣ0,mP⊗2

(
1
S
(1)
k =S

(2)
k
eλ2Nk−m,k

∣∣S(1,2)
)]

= k
d
2P⊗4

[
eΣ0,mfk−m+1(S

(1)
m−1, S

(2)
m−1)

]
→ e−λ2CdP

⊗4
[
eΣ0,m

]
P⊗2

(
eλ2N0,m+1

)
. (65)

It follows that the sum in (62) can be estimated, for n→∞, by

nd−2
∑
k≥n

of (62) ∼ e−λ2P⊗4
[
eΣ0,m

]
CdP

⊗2
(
eλ2N0,m+1

)
nd−2

∑
k≥n

1

kd−1

→ e−λ2CdP
⊗4
[
eΣ0,m

]
P⊗2

(
eλ2N0,m+1

) 1

d− 2
.
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Collecting all this we conclude that the limit limn→∞ T
<
2 (m,n) exists, and further, that the

limits limm→∞ limn→∞ T
<
2 (m,n) and limn→∞ T

<(n) exist and are equal. Finally,

lim
n→∞

Es4
n = 2 lim

n→∞
T<(n)

(62)
= 2

KdZdCd(1−πd)
d− 2

κ2e
−λ2 × E(W 4)E(W 2)Var(W )

= σ4
1E(W 4). (66)

This concludes the proof of (50).

We then give the proof of (51). We estimate the cross term

Es2
nW

2
n = κ2n

d−2
2

∑
k≥n

P⊗4
[
eΣ0,n+λ2Nn,k(S(1),S(2))1

S
(1)
k =S

(2)
k

]

Using the identity 1
S
(1)
k =S

(2)
k

= e
λ2Nk,k+1(S

(1),S(2))−1
κ2

(see (57)), we obtain that

Es2
nW

2
n = n

d−2
2 P⊗4

[
eΣ0,n

∑
k≥n

(
eλ2Nn,k+1(S(1),S(2)) − eλ2Nn,k+1(S(1),S(2))

)]
= n

d−2
2 P⊗4

[
eΣ0,n(eλ2Nn,∞(S(1),S(2)) − 1)

]
(telescopic sum). By (58) and the argument preceding it, we know that

E
(
eλ2Nn,∞(S(1),S(2)) − 1)| S(i)

t , i = 1, 2, t = 0, · · · , n
)

=
G(S

(1)
n − S(2)

n )

G(0)
(E(W 2)− 1).

Therefore, taking first the conditional expectation given {S(i)
t , i = 1, 2, t = 0, · · · , n} in the

preceding expression of Es2
nW

2
n , we get

Es2
nW

2
n =

E(W 2)− 1

G(0)
n
d−2
2 P⊗4

[
eΣ0,nG(S(1)

n − S(2)
n )
]

→ E(W 2)− 1

G(0)
KdZdP

⊗4eΣ0,∞ = σ2
1EW 4,

where the last convergence can be proved as follows. Indeed, it can be easily seen that a similar
result like Lemma 2.2 holds for the asymptotic independence of Σ0,n and n−1/2S̃

(i)
n , 1 ≤ i ≤ 4 :

under P⊗4, we have the following convergence of random vectors :(
Σ0,n, n

−1/2S(1)
n , n−1/2S̃(2)

n , n−1/2S̃(3)
n , n−1/2S̃(4)

n

)
−→ (Σ0,∞, Z1, Z2, Z3, Z4) in distribution,

where Σ0,∞, Z1, Z2, Z3, Z4 are all independent, and each Zi is a Gaussian vector with mean 0
and covariance matrix 1

d
Id. This can be proved in a similar way as in the proof of Lemma 2.2,

and can also be derived by a general result on the mixing convergence as indicated in Remark
2.4. Also, the assertions (25) and (26) still hold with (Nn, Sn, S̃n) replaced by (Σ0,n, S

(1)
n , S̃

(2)
n ),

yielding that the sequence {n d−2
2 eΣ0,nG(S

(1)
n − S(2)

n } converges in law and in mean to eΣ0,∞ ×
Kd
|Z|d−2 . This gives the desired conclusion on Es2

nW
2
n , which ends the proof of (51).
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We now give the

Proof of Lemma 4.1. For the first limit, we put q = (d+ ε)/(d− 1 + ε) and we estimate

T=(n) = κ2
2nd−2

∑
k≥n

P⊗4
[
eΣ0,k1

S
(1)
k =S

(2)
k
1
S
(3)
k =S

(4)
k

]
Hölder
≤ κ2

2nd−2
∑
k≥n

P⊗4
[
e(d+ε)Σ0,k

]1/(d+ε)
P⊗2[S

(1)
k = S

(2)
k ]2/q

≤ Cnd−2
∑
k≥n

k−d/q

with C ∈ (0,∞) a constant, by the local limit theorem. Being of order n−ε/(d+ε), the last term
vanishes as n→∞.

We now prove the second limit, using arguments which are similar to the ones above. Since
the difference is non-negative, the term |T<1 (n)− T<2 (m,n)| is equal to

Cnd−2
∑
k≥n

P⊗4
[
eΣ0,m+λ2Nk−m,k(S(1),S(2))

{
eΣm,k−λ2Nk−m,k(S(1),S(2)) − 1

}
1
S
(1)
k =S

(2)
k
G(S

(3)
k −S

(4)
k )
]

= Cnd−2
∑
k≥n

P⊗4
[
eΣ0,m1

S
(1)
k =S

(2)
k
G(S

(3)
k −S

(4)
k )

P⊗4
{
eλ2Nk−m,k(S(1),S(2))

(
eΣm,k−λ2Nk−m,k(S(1),S(2)) − 1

) ∣∣S(i)
t , 1 ≤ i ≤ 4, t = m, k

}]
(67)

with C = Var(W )
G(0)

κ2, by first conditioning on the paths at times t = 1, . . .m and t = k. Indeed,

in (67) the internal conditional expectation given the paths at times t = m, k is the same as
the conditional expectation given the paths at times t = 1, · · · ,m, k, as shown by the following
fact : for any positive function f , writing St = (S

(i)
t , 1 ≤ i ≤ 4), we have, for 1 ≤ m < k and

for any st = (s
(i)
t , 1 ≤ i ≤ 4) with s

(i)
t ∈ Zd,

P⊗4 (f(St,m < t ≤ k)| St = st, t = 1, · · · ,m, k)

= P⊗4 (f(St,m < t ≤ k)| St = st, t = m, k)

= P⊗4 (f(St + sm, 0 < t ≤ k −m)| Sk−m = sk − sm)) .

This can be easily checked by the definition of the conditional expectation, using the fact that :
a) when Sm = sm, then Sk = sk if and only if Sk − Sm = sk − sm, b) on the event {Sm = sm},
we have St = St−Sm + sm for m < t ≤ k, c) the process {St−Sm : m < t ≤ k} is independent
of {St : t = 1, · · · ,m} and has the same law as {St : 0 < t ≤ k −m}.

The event

Bm,k =
{
|S(i)
t − S

(j)
t | ≥ m1/4, for i 6= j and t = m, and for {i, j} 6= {1, 2} and t = k

}
(where i, j = 1, · · · , 4, and for {i, j} 6= {1, 2} we include additionally the terms with t = k) has
probability larger than 1 − cm−d/4 for some constant c ∈ (0,∞), by the local limit theorem.
On this event, by transience, the intersections between the paths between times m and k−m
essentially come, when m and k are large, from those of S(1) and S(2) between times k − m
and m. Precisely,

lim
m→∞

lim sup
k→∞

sup
Bm,k

P⊗4
{

Σm,k 6= λ2Nk−m,k(S
(1), S(2))

∣∣S(i)
t , 1≤ i≤4, t=m, k

}
= 0.
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(Note that the event Σm,k = λ2Nm−k,k(S
(1), S(2)), the contrary of that in the previous line,

means that there are no intersections of S(i) and S(j) between times m and k for i ≥ 3 or
j ≥ 3, and no intersections of S(1) and S(2) between times m and k −m.) To see this, recall
that, for even x ∈ Zd, P⊗2

0,x (N0,∞ ≥ 1) = G(x)/G(0) = O(|x|2−d). Thus,

supBm,k P⊗4
{

Σm,k 6= λ2Nk−m,k(S
(1), S(2))

∣∣S(i)
t , 1≤ i≤4, t=m, k

}
≤ sup

Bm,k

P⊗4
{
∃(i, j) 6= (1, 2) : Nk−m,k(S

(i), S(j)) ≥ 1
∣∣S(i)

t , 1≤ i≤4, t=m, k
}

≤
∑

(i,j)6=(1,2)

sup
Bm,k

P⊗4
{
Nk−m,k(S

(i), S(j)) ≥ 1
∣∣S(i)

t , 1≤ i≤4, t=m, k
}

= O(|m|−(d−2)/4),

which implies our claim. (Here, to get the last line, we use time reversal to bound the conditional

expectation in the third line by the Green function evaluated at S
(i)
k − S

(j)
k , together with the

Green function estimate and the fact that |S(i)
k −S

(j)
k | ≥ m1/4 on Bm,k.) With the integrability

condition (61) and the inequality of Cauchy - Schwarz, this is enough to imply that

lim
m→∞

lim sup
k→∞

sup
Bm,k

P⊗4
{
eλ2Nk−m,k(S(1),S(2))(eΣm,k−λ2Nk−m,k(S(1),S(2)) − 1)

∣∣S(i)
t , 1≤ i≤4, t=m, k

}
= 0.

Plugging this in (67) and using the fact that nd−2
∑

k≥n P
⊗4[eΣ0,m+λ2Nk−m,k(S(1),S(2))1

S
(1)
k =S

(2)
k

] has

a finite limit, we conclude that the right-hand side of (67) vanishes as n→∞.

Proof of Lemma 3.4. With the notation introduced in the beginning of this section, we have
Dk+1 = Wk+1 −Wk = P

[
ehk(S)(eβη(k,Sk)−λ(β) − 1)

]
,

D4
k+1 = P⊗4

[
e
∑4
i=1 hk(S(i))

4∏
i=1

(eβη(k,S
(i)
k )−λ(β) − 1)

]
.

Using Fubini’s theorem and independence, we obtain

ED4
k+1 = P⊗4

[
Ee

∑4
i=1 hk(S(i))E

4∏
i=1

(eβη(k,S
(i)
k )−λ(β) − 1)

]
= P⊗4eΣ0,k(γ41(S

(1)
k ,S

(2)
k ,S

(3)
k ,S

(4)
k )∈E4

+ γ21(S
(1)
k ,S

(2)
k ,S

(3)
k ,S

(4)
k )∈E2,2

), (68)

where γ4 = E(eβη(0,0)−λ(β)−1)4 and γ2 = (E(eβη(0,0)−λ(β)−1)2)2. Notice that (S
(1)
k , S

(2)
k , S

(3)
k , S

(4)
k ) ∈

E2,2 if and only if one of the following cases occurs : (a) S
(1)
k = S

(2)
k 6= S

(3)
k = S

(4)
k , (b)

S
(1)
k = S

(3)
k 6= S

(2)
k = S

(4)
k , (c) S

(1)
k = S

(4)
k 6= S

(2)
k = S

(3)
k . Therefore by symmetry, we obtain

ED4
k+1 ≤ (γ4 + 3γ2)P⊗4eΣ0,k1

S
(1)
k =S

(2)
k
1
S
(3)
k =S

(4)
k
.

Hence, using Hölder’s inequality, for p, q > 1 with 1/p+ 1/q = 1, we have

ED4
k+1 ≤ (γ4 + 3γ2)(P⊗4epΣ0,k)1/p(P⊗2(S

(1)
k = S

(2)
k ))2/q.
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By the local limit theorem, P⊗2(S
(1)
k = S

(2)
k ) = O(k−d/2). Thus taking |β| > 0 small enough

such that P⊗4epΣ0,∞ <∞, we see that Eq. (52) holds. This ends the proof of Lemma 3.4.
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[31] Wang, H. ; Gao, Z. ; Liu, Q. (2011). Central limit theorems for a supercritical branching
process in a random environment. Statist. Probab. Lett. 81 539–547.

25


