Duality of random planar maps via percolation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Duality of random planar maps via percolation

Résumé

We discuss duality properties of critical Boltzmann planar maps such that the degree of a typical face is in the domain of attraction of a stable distribution with parameter $\alpha\in(1,2]$. We consider the critical Bernoulli bond percolation model on a Boltzmann map in the dilute and generic regimes $\alpha \in (3/2,2]$, and show that the open percolation cluster of the origin is itself a Boltzmann map in the dense regime $\alpha \in (1,3/2)$, with parameter \[\alpha':= \frac{2\alpha+3}{4\alpha-2}.\] This is the counterpart in random planar maps of the duality property $\kappa \leftrightarrow 16/\kappa$ of Schramm--Loewner Evolutions and Conformal Loop Ensembles, recently established by Miller, Sheffield and Werner. As a byproduct, we identify the scaling limit of the boundary of the percolation cluster conditioned to have a large perimeter. The cases of subcritical and supercritical percolation are also discussed. In particular, we establish the sharpness of the phase transition through the tail distribution of the size of the percolation cluster.
Fichier principal
Vignette du fichier
dualityperco.pdf (3.22 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01701690 , version 1 (06-02-2018)

Identifiants

  • HAL Id : hal-01701690 , version 1

Citer

Nicolas Curien, Loïc Richier. Duality of random planar maps via percolation. 2018. ⟨hal-01701690⟩
212 Consultations
76 Téléchargements

Partager

More