A generalized Swendsen-Wang algorithm for Bayesian nonparametric joint segmentation of multiple images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

A generalized Swendsen-Wang algorithm for Bayesian nonparametric joint segmentation of multiple images

Résumé

A generalized Swendsen-Wang (GSW) algorithm is proposed for the joint segmentation of a set of multiple images sharing, in part, an unknown number of common classes. The class labels are a priori mod-eled by a combination of the hierarchical Dirichlet process (HDP) and the Potts model. The HDP allows the number of regions in each image and classes to be automatically inferred while the Potts model ensures spatially consistent segmentations. Compared to a classical Gibbs sampler, the GSW ensures a better exploration of the posterior distribution of the labels. To avoid label switching issues, the best partition is estimated using the Dahl's criterion.
Fichier principal
Vignette du fichier
Sodjo_icassp_2017.pdf (841 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01695104 , version 1 (06-02-2018)

Identifiants

Citer

Jessica Sodjo, Audrey Giremus, Nicolas Dobigeon, Jean-François Giovannelli. A generalized Swendsen-Wang algorithm for Bayesian nonparametric joint segmentation of multiple images. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar 2017, La Nouvelle Orléans, LA, United States. pp.1882-1886, ⟨10.1109/ICASSP.2017.7952483⟩. ⟨hal-01695104⟩
163 Consultations
155 Téléchargements

Altmetric

Partager

More