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ABSTRACT

A generalized Swendsen-Wang (GSW) algorithm is proposed for the
joint segmentation of a set of multiple images sharing, in part, an un-
known number of common classes. The labels are a priori modeled
by a combination of the hierarchical Dirichlet Process (HDP) and
the Potts model. The HDP allows the number of regions in each im-
age and classes to be automatically inferred while the Potts model
ensures spatially consistent segmentations. Compared to a classical
Gibbs sampler, the GSW ensures a better exploration of the posterior
distribution of the labels. To avoid label switching issues, the best
partition is estimated using the Dahl’s criterion.

Index Terms— Image segmentation, Bayesian nonparametrics,
Dirichlet Process, Swendsen-Wang algorithm, Potts model.

1. INTRODUCTION

In various computer vision applications ranging from medical engi-
neering to Earth observation, image classification has been shown
to be a crucial processing which still motivates numerous research
works. When analyzing a collection of J images, the information
shared among these images can be exploited by conducting a joint
segmentation. It is expected to provide more reliable classification
results than J individual classifications operated on each image sepa-
rately. More precisely, a joint segmentation consists in dividing each
image into m;.(j = 1,...,J) homogeneous regions and grouping
the regions that share common characteristics in K classes. The
number of classes is mostly considered known, but, for more flex-
ibility, the estimation of K can be also of interest. Estimating the
optimal number of classes can be formulated as a model order se-
lection. This issue has been addressed following various approaches
in the literature. One popular approach conducted within a Bayesian
framework consists in sampling the joint posterior distribution of the
labels and the number of classes by resorting to reversible jumps be-
tween spaces of different dimensions [1].

More recently, Bayesian nonparametric models have been advo-
cated to overcome the computational burden required by reversible
jump algorithms. In particular, the Dirichlet process (DP) [2] has
been shown to be well-suited for segmenting images without requir-
ing the prior knowledge of the number of classes. However, the DP
cannot model shared classes between the images to be segmented.
As an alternative, the hierarchical Dirichlet process (HDP) intro-
duced by Teh [3] can be considered. Benefiting from this formal-
ism, the number m;. of regions in each image (j = 1,...,J) and
the number K of classes can be estimated in a unsupervised Monte
Carlo sampling procedure.

This work has been supported by the BNPSI ANR project no. ANR-13-
BS-03-0006-01.

Beyond this automatic selection, a key feature which should be
ensured when designing a segmentation procedure is to promote the
homogeneity of the considered images. Within a statistical frame-
work, Markov random fields (MRF) [4, 5] have been a popular mod-
eling to ensure that neighboring pixels have higher probability to be
assigned to the same class. To address both order selection and spa-
tial smoothness, we proposed in [6] a prior model combining the
HDP and the Potts-MRF model to jointly segment of a collection
of several images. By adopting this approach, Bayesian inference
of the parameters of interest cannot be performed analytically and,
consequently, a Gibbs sampler has be derived. The method has been
applied on a toy example. However, resorting to this so-called HDP-
MRF model to analyze images of significantly higher size, e.g., ex-
tracted from the LabelMe database', leads to severe computational
issues when using the crude instance of Gibbs sampler developed in
[6]. This paper specifically proposes an algorithmic strategy to alle-
viate this difficulty by a threefold contribution. First, it implements a
pre-segmentation into super-pixels which reduces the complexity of
the problem. Then, it derives a generalized Swendsen-Wang (GSW)
[7] based algorithm for the HDP-MRF model. It consists in intro-
ducing link variables between pixels of the same regions; this link
variables do not modify the posterior distribution but they can be ef-
ficiently sampled jointly with the variables of interest, which speeds
up convergence. Finally, a Dahl’s criterion is considered to infer the
optimal partition within the sampled ones.

The sequel of the paper is organized as follows. Section 2 in-
troduces the proposed prior model. The HDP and Potts model are
described and the prior distributions are provided. In Section 3, the
GSW algorithm is detailed and the sampling equations are derived.
Results obtained on a set of several images are presented in Section
4 and concluding remarks are reported in Section 5.

2. BAYESIAN NONPARAMETRIC MODEL

2.1. Notations and observation model

Let us consider a set of J images Z; to be jointly segmented (j =
1,...,J). To reduce the computational cost due to sampling-based
exploration, a common approach consists in dividing each image Z;
(j = 1,...,J) into N super-pixels?. The observation associated
with the nth super-pixel (n = 1,..., N;) in image j is denoted y;,,
and assumed to be distributed according to a distribution f parame-
terized by 0, i.e., Yjn|0jn ~ f(Yjn|Ojn).

The region label associated with the nth super-pixel in the jth
image is denoted c;,. In an given image, a set of super-pixels that

Thttp://labelme.csail. mit.edu/Release3.0/
Note that the proposed algorithm is also valid if directly applied to the
pixels.



Fig. 1. Simplistic example of joint segmentation with J = 3 and
K = 5. The regions in each image are numbered and the colors
identify the classes. It can be noticed that there is a different number
of regions in each image and some regions in these images can be
assigned to the same class, such as region 5 in image 2 and region 4
in image 3, both assigned to class “white”.

are assigned the same region label value is referred to as a region. At
a higher level of the modeling, the class label of the ¢th region in the
jth image is denoted d;;. The images are assumed to share at most
K distinct classes where the kth class is defined as the collection of
all regions assigned the class label value k. An example is shown on
figure 1.

All super-pixels (7, n) assigned to the kthclass (k = 1,..., K)
share the same parameter vector 6, = ¢5. Thus, assuming prior
independence between the classes, the marginal distribution of the
super-pixels y = UK |y a,, can be written as

K
=118 [ | T Fwnlon | heonds,

k=1 (3,m)€AE
where y 4, = {y;n[(j,n) € Ay} is the set of super-pixels assigned
the kth class label with Ay = {(j,n)|djc;, = k} and h(-) is the
prior distribution of the parameters ¢ (k =1, ..., K).

2.2. Hierarchical Dirichlet process

Let G; denote the unknown probability distribution of the parame-
ter vectors 6;,, of the jth image (j = 1,...,J). Since the number
of classes is assumed to be unknown, the parameters 6, can take a
priori an infinite number of values. This naturally induces a nonpara-
metric prior modeling for G;. Here, several parameter vectors can
take the same value, hence G; should be discrete. A solution is to
assume that G; is distributed according to a Dirichlet process (DP).
The latter depends on a scalar parameter cg and a base measure Go:

Gj ~ DP(Oco,GQ) and Gj = ZTjt(squt (])
t=1

with 1);; the parameter vector of the tth region in the jth image.
More precisely, for all super-pixels n such that c;,, = t, we have
0in = ¥j¢. In (1), G; is an infinite sum of Dirac measures on the
1;i, weighted by 7;;. To allow classes to be shared, all the dis-
tributions G; should have common atoms ¢. The adopted solu-
tion consists of defining G as a discrete measure centered on these
atoms ¢y. These latter are unknown and assumed independently dis-
tributed according to a probability measure H with probability den-
sity function A as introduced in (2.1). Since the number of classes
K is supposed unknown, a DP is chosen as prior, i.e.,

Go ~DP(v,H) and Go=» mid,.
k=1

An interesting property with the above described model is that
the probability that the nth super-pixel in the jth image is assigned to

the tth region is proportional to the number v/;; of super-pixels in that
region. It can also be assigned to a new region ¢"°% proportionally
to ap:

Vit ift S mj.

ag  ift ="

Pr(cjn =tle; ™) o {

with ¢;" = {¢;n/|n" = 1,..., Nj,n’ # n}. When considering the
tth region in the jth image, two cases are also possible: it can either
be assigned to an existing class k& proportionally to m.; or to a new
one proportionally to -, where m., is the number of regions of all
the images assigned to class k, i.e.,

Pr(d;; = kld ") {m"“ ifh< K
~y if & = k™Y

where 7" = {dji/ |5 = 1,..., 05t = 1,...,my;(§,t') #
(j,t)}. The prior ¢ induced by the HDP for the set of region labels
c={c¢nlj=1,...,J;n=1,...,N,} and the set of class labels
d={dj|j=1,...,J;t =1,...,m;.} depends on the size of the
regions, the number of regions per class and the overall number of
regions denoted m... It can be written [3]:

J e [
ple,d) =[] { [WJF)QO)} Qg [1&1_[1 P(Vjt)] }

'Y x|
m7 [Er(m.k)] 2)

2.3. Potts model

The Potts model is a prior on the class labels [8]. With the Potts
model, the image is redefined using a neighboring system on the
pixels. This model allows the homogeneity of the classes to be pre-
served by favoring that a given pixel and its neighbors share the same
class. It can be noticed that, within a super-pixel formalism, two
super-pixels are defined as neighbors if they have a common ridge.
The Potts prior writes

J
ple,d) oc [ exp (Z ﬁﬁ(djcjn,djch)> ©)
j=1

n~q

where n ~ ¢ means that super-pixel g is a neighbor of n and §(-) is
the Kronecker symbol.

2.4. Joint prior distribution

The proposed prior distribution is
Pr(e,d) x ¢(c,d)p(c, d). 4)

It consists of a combination of a global penalization ¢ and a local
one p where ¢ ensures that the number of regions and classes do not
need to be a priori fixed and p favors spatial homogeneity.

3. SAMPLING SCHEME

In part due to the nonparametric nature of the posterior distribution,
no closed-form expressions of the Bayesian estimators can be de-
rived. To approximate these estimators, a Gibbs sampler was derived
in [6]. However, as noticed earlier, the Gibbs algorithm has poor
mixing properties, which motivates the proposed contribution. The
generalized Swendsen-Wang (GSW) algorithm described in what
follows aims at improving the exploration of the posterior distribu-
tion [9, 10].
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Fig. 2. Example of links sampled within the GSW algorithm. The
dashed lines delimit the regions in the images, the thick lines are
links and the colors represent the classes. On first line the partition
that can be obtained by assigning links only based on classes and the
last the links obtained based on the region labels.

3.1. Generalized Swendsen-Wang algorithm

The Swendsen-Wang algorithm introduced in [11] and generalized
in [12] is a sampler derived from the Potts model to ensure a more
efficient exploration of the posterior distribution of the labels. First,
groups of super-pixels are formed using a latent variables. They
are defined as follows: 7, = 1 if super-pixels n and ¢ in image
j are linked and 7j,, = 0 otherwise. Then, linked super-pixels
are grouped into spin-clusters and their labels are simultaneously
updated. Moreover, the introduction of this latent variables should
not modify the corresponding marginalized posterior distribution of
the labels, i.e., >, p(c,d,r|ly) = p(e,dly) withr = {r;_ [j =
1,...,J;mn,q = 1,...,N;}. Since two sets of labels have been
introduced in the context of joint segmentation considered in this
paper, namely ¢ and d, an important issue to addressed is to identify
conditionally to which of them the links should be sampled.

A first solution would consist of introducing the links with
respect to the class assignment. However, since different regions
can be assigned to the same class in an image, super-pixels of
different regions could be sampled jointly which is not desir-
able. As an alternative, the links can also be based on the re-
gion labels. Conditionally to the partition, the probability that
two super-pixels are not linked is written Pr(r;, = 0Olc,d) o
exp (-BA3(cjn, ¢jq)d(dje;,, » dje;, ), Where X is a parameter to be
adjusted. Since pixels in the same region necessarily belong to the
same class, 6(cjn, ¢jq)0(dje;,, » djc;,) = 1 only when ¢jn, = cjq. It
follows p(r|e, d) = p(r|e) and

Pr(rj,, = 1le) =1 — exp (=BAd(¢jn, ¢jq)) ®)

As long as only the partition matters, a GSW-based Gibbs sam-
pling consists in first sampling the links » ~ Pr(r|e,d,y), then
the region labels, ¢ ~ Pr(c|r,d,y) and finally the class labels
d ~ Pr(d|e, r,y). In the following, these conditional distributions
are detailed.

3.2. Sampling of the links

Regarding the conditional distribution of the links, it can be noticed
that conditionally to the partition, the links are independent of the
observations, Pr(r|c, d,y) = Pr(r|e). Thus, for all super-pixels,
the links can be independently sampled according to (5).

3.3. Sampling of the region label

Once the links have been sampled, linked super-pixels are grouped
into spin-clusters. Thanks to the Swendsen-Wang algorithm, the la-
bels of the regions are sampled simultaneously for all pixels in the
same spin-cluster. In the next paragraphs, the following notations are
adopted: for the /th spin-cluster in the jth image, the corresponding
set of super-pixels, the set of region labels and the set of observations
are denoted C)j; with size |Cji], ¢j; with ¢j; = {¢;jn|n € Cj;} and
Y, respectively.

According to the HDP prior, the super-pixels in Cj; can be as-
signed to an existing region or a new one. The conditional proba-
bility of having ¢;; = ¢t < my. is proportional to the probability
that the first super-pixel in C; is assigned to the ¢th region (yj_tj h,
then the second (Z/j_tjl + 1) till the last one (Vj_tjl +1Cul —1). It
is also proportional to the distribution of the observations attached
to C}; conditionally to the observations attached to super-pixels in
class djt’ f(yﬂ'yA;Jtl) = f(yjlv yA;'jtl )/f(yA;Jtl) with A;jf the
set of super-pixels iri class djt exceththe ones inJ spin-cluster Cj;.
Similarly, the probability of having c;; = t"*V is proportional to
ap X 1x -+ x (|C| = 1) and p(yj; | e = ", ¢, d,y™7")
obtained by integrating out within all possibilities for the class that
can be assigned to the new region. It follows

Pr(cji =t <my.lc ', d,ry) ©)
T +|Cal)
X ———— " " ex — A6(t, ¢
I‘(Vﬂl) P g BAG(t, ciq)

Jt qEVcl

fyj \yA;ﬂ)

where V¢, is the set of super-pixels neighbors of the super-pixels in
spin-cluster C; and
Pr(cy; = t""|c 7', d,r,y) )
oc a0 T(IC1]) plyjlen = ", e d,y™")

with

new _—jl —jl
p(yjl|cjl:t 7Cj7day J) (8)

-1
K

x Zm.kexp Z,Bé(djch,k) +
k=1

9€Vc,

> B0(dse; 1 B) | S (1Y ast) +77 (w0)

UShZe

K
E m.i €Xp
k=1

where f(y;) = [[TLcc,, f@nldrme)|h(@mew )dggnen. In the
case of a new region, the assigned class label is sampled following

juew

Pr(djmew = k|e,d7"") )

m.g eXp( Z /65(djch, k)) f(yjl |yA;Jl) ifk <K
qEVinew

v f(y0) if k= k"

3.4. Sampling of the class label

As for the region labels, the probability that the tth region in the
jth image can be assigned to an existing kth class is proportional to
the number m_,’ * of regions assigned to the kth class, omitting the



considered one. Conversely, it can be assigned to a new class with
probability proportional to v, leading to

Pr(d;: = k|e,d™7",y) (10)

m3 eXp< 2 B(djejq k)) F(Yjely i) itk < K
X qEVy k
v f(Y;0) if kb = k™Y

3.5. Deriving the Bayesian estimators

In a Bayesian framework, the best partition is generally estimated
using the marginal maximum a posteriori estimator. However,
when facing to the nonparametric Bayesian models, not only the
well-known label-switching problems may occur but the number of
classes varies within the exploration routine. A re-labeling is thus
needed, which may be computationally prohibitive. An alternative
consists of directly choosing the partition that maximizes the poste-
rior distribution. However, this strategy does not take into account
all the richness of the information described by the distribution of
interest. Motivated by numerous works in the statistical community
[13, 14], the approach adopted in this paper consists of computing
an optimal label assignment by selecting the best partition in the
sense that it minimizes a given loss function.

Let us denote & = {djc,,;j = 1,...,J;n = 1,..., N;} the
set of classes assigned to each super-pixels in the images with K, =
djc;,, - The optimal estimate & is chosen here as the one minimizing
an appropriate loss function associated with partitions and defined’
as [16].

. . 2
A= agmin Y (5(,@;13, k() — qj"q) an

kMe{n®, D} ;5
with
1 d (1) (4
Cjnq = Y 25(Rj”’ qu )
=1

and £ the vector k at the ith iteration of the HDP-GSW algorithm
and [ the total number of iterations.

4. RESULTS

The algorithm has been applied on three images (J = 3) of the
LabelMe database of size 256 x 256. Each image has been pre-
segmented in approximately 500 super-pixels using the SLIC algo-
rithm [17]. An observation for a super-pixel is defined as a his-
togram of 120-bins and f(yjn|0jn) = Mult(6;,) where Mult(.)
is the multinomial distribution.

For the prior model, h is chosen as a Dirichlet density, Dir(w7)
with 7 taken as the normalized sum of the histograms and w a scalar
parameter, here, o = 10*. It should be noted that o influences the
inference of the number of classes, the greater it is, the less classes
will be proposed. The hyperparameters are chosenas: o = 1,y = 1,
B =0.25and A = 10.

The figure 3 represents the logarithm of the non-normalized pos-
terior distribution of the labels of region and class corresponding to
each sample of the HDP-GSW algorithm (blue) and the standard
Gibbs for the HDP-Potts model (black). It can be seen that the ex-
ploration derived by the classical Gibbs algorithm is stuck in a local
maximum, contrary to the HDP-GSW one.

3Note that this definition is equivalent to the minimization-driven proce-
dure proposed in [15]

— HDP-Potts
— HDP-GSW

0 1000 2000 3000 4000 5000

Fig. 3. Logarithm of the non-normalized posterior distribution of
the labels corresponding to the samples obtained with the classical
Gibbs and HDP-GSW algorithms depending on the number of the
iteration.

H E
Fig. 4. On first line, the true images and on second line, the partition
obtained with the HDP-GSW algorithm

The best segmentation in terms of Dahl’s criterion is shown in
figure 4. The resulted segmentation take into account the shared
classes as expected. However, the images are over-segmented (K =
18), this may be due to the fact that the images have not been taken
in the same physic conditions (brightness, sensor, ...) and the his-
togram may not be the best attribute to characterize the classes.

5. CONCLUSION

An algorithm for segmenting jointly multiple images is proposed
to overcome the computational issues encountered while using the
HDP-Potts model introduced in [6]. It combines the HDP and the
GSW algorithm. While the HDP allows the number of classes to be
derived automatically, the Potts model ensures a spatial homogene-
ity in each image and the GSW improves the exploration scheme of
the posterior distribution of the labels. Obtained results shows that
the HDP-GSW algorithm exploration is more efficient than the clas-
sical HDP-Potts one, yet, the inference is sensitive to not only the
value of the hyperparameters but also to the way of describing the
observations. To overcome these issues, we are currently investigat-
ing on the one hand the use of sequential Monte Carlo samplers [18]
to adjust the hyperparameters while sampling the labels with the best
hyperparameters and on the other hand the use of more relevant and
robust descriptors of the classes (e.g. the texture).
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