Infimal convolution spatiotemporal PET reconstruction using total variation based priors - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2018

Infimal convolution spatiotemporal PET reconstruction using total variation based priors

Maïtine Bergounioux
Evangelos Papoutsellis
  • Function : Author
  • PersonId : 994086
Simon Stute
Clovis Tauber

Abstract

In this paper, we focus on spatiotemporal regularization of Positron Emission Tomography (PET) reconstruction. Through a minimization problem defined on a dynamic variational framework we consider regularizers based on total variation priors adapted to problems related to Poisson noise degradation. In particular, we consider spatiotemporal total variation and total generalized variation and their corresponding extensions to the infimal convolution regularization. The numerical solutions of the corresponding variational problems are performed using Primal-Dual Hybrid Gradient (PDHG) optimization methods under a diagonal preconditioning. We compare our numerical solutions with the standard Maximum Likelihood Expectation Maximization (MLEM) reconstruction for simulated dynamic brain data for different kind of radiotracers. Our results indicate that the infimal convolution approaches provide better reconstructions compared to the ground truth brain phantom.
Fichier principal
Vignette du fichier
BPST_JMIV.pdf (2.52 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01694064 , version 1 (26-01-2018)

Identifiers

  • HAL Id : hal-01694064 , version 1

Cite

Maïtine Bergounioux, Evangelos Papoutsellis, Simon Stute, Clovis Tauber. Infimal convolution spatiotemporal PET reconstruction using total variation based priors. 2018. ⟨hal-01694064⟩
378 View
244 Download

Share

Gmail Facebook X LinkedIn More