
HAL Id: hal-01694064
https://hal.science/hal-01694064

Preprint submitted on 26 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Infimal convolution spatiotemporal PET reconstruction
using total variation based priors

Maïtine Bergounioux, Evangelos Papoutsellis, Simon Stute, Clovis Tauber

To cite this version:
Maïtine Bergounioux, Evangelos Papoutsellis, Simon Stute, Clovis Tauber. Infimal convolution spa-
tiotemporal PET reconstruction using total variation based priors. 2018. �hal-01694064�

https://hal.science/hal-01694064
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Infimal convolution spatiotemporal PET reconstruction
using total variation based priors.
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Abstract In this paper, we focus on spatiotemporal regularization of Positron
Emission Tomography (PET) reconstruction. Through a minimization problem
defined on a dynamic variational framework we consider regularizers based on to-
tal variation priors adapted to problems related to Poisson noise degradation. In
particular, we consider spatiotemporal total variation and total generalized varia-
tion and their corresponding extensions to the infimal convolution regularization.
The numerical solutions of the corresponding variational problems are performed
using Primal-Dual Hybrid Gradient (PDHG) optimization methods under a di-
agonal preconditioning. We compare our numerical solutions with the standard
Maximum Likelihood Expectation Maximization (MLEM) reconstruction for sim-
ulated dynamic brain data for different kind of radiotracers. Our results indicate
that the infimal convolution approaches provide better reconstructions compared
to the ground truth brain phantom.
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1 Introduction

Positron emission tomography (PET) is a nuclear imaging method that produce
functional images which depict metabolic processes in the human body [37]. After
injecting the patient with a radioactive substance, for instance a glucose analog
such as [18F]-FDG (fluorodeoxyglucose), it is distributed across the body and re-
tained by organs which contain the target molecule or functionality. Due to the
radioactive decay a positron is emitted and annihilated with an electron. At the
annihilation point two gamma rays are emitted in opposite directions and are
captured through a PET detector ring placed around the patient. These measure-
ments are in form of photon counts or coincidence events and can be presented
as projection matrices called sinograms. Due to the randomness in the photon
counting process, the sinogram images are corrupted by the so called photon noise.
It is often referred as Poisson noise, since the number of events recorded obeys
the Poisson probability distribution. PET image reconstruction is a tomographic
inverse problem that consists in using the projection data to find the image of
the spatial distribution of the radiotracer. Due to the noise, the reconstruction of
PET images is an ill-posed problem and its solution is unstable in the sense that
a small perturbation of the data can lead to an unpredictable change in the image
estimate. It is therefore necessary to use some form of regularization to constrain
the solution to physically acceptable values.

In this paper, we focus on dynamic PET imaging. Compared to static PET
imaging, the dynamic setting provides a spatiotemporal information of the dis-
tribution of a radiotracer. Kinetic variations of the radiopharmaceuticals are de-
scribed within organ of interest over time. In this case, PET data are a series
of frames, a stack of sinogram images that capture the radiotracer distribution
over the spatial and temporal domains. In order to describe the abrupt change
of the tracer activity, after its administration, it is common to use shorter time
intervals in the earlier stage of the scan. Therefore, one encounters dynamic PET
images with low number of photons per frame which tends to significantly noisier
images compared to static PET imaging. On the other hand, in the later frames,
larger time intervals are generally used since there is less radioactivity and lesser
radioactivity variations. This reduces the photon noise as more photon counts are
recorded. Given the noisy dynamic PET measurements g, our goal is to better re-
construct the spatiotemporal radioactive distribution u via a variational problem
defined as

argmin
u

H(g,Ru) +N (u).

The first term represents a distance term, determined by the statistics of the noise,
i.e., Poisson noise and the second term enforces a prior information on the regu-
larized solution u. In the forthcoming analysis we fix the distance term, referred
also as fidelity term, as the Kullback-Leibler divergence and compare different reg-
ularizers N (u) on dynamic PET data for different radiotracers. In terms of the
regularizers, we choose edge-preserving priors that are extended to a dynamic set-
ting. In the literature, the classical Total Variation (TV) regularization, [29], as
well as its recent extension, i.e., the Total Generalized Variation, [4] have been
applied to a plethora of imaging applications with respect to emission tomog-
raphy, PET reconstruction and in general to Poisson related problems. Here, we
mention a few of them that are related to both static and dynamic PET reconstruc-
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tion. For example, in [5,18], the TV penalization is combined with the standard
Expectation-Maximization (EM) algorithm, leading to alternating EM and TV
reconstruction steps. Moreover, in [14], a total variation minimization is applied
to parametric PET imaging, see also [38] for the dynamic case. Besides, the regu-
larization only on the image space, in [6], the authors propose a combine approach
of TV regularization for both the image and the sinogram space. We point out
also, the works of [27,34]. In [27], TV is applied to each time-frame and in [34] a
post-reconstruction to dynamic PET is proposed using anisotropic diffusion.

Although, TV regularizer can eliminate the noise while preserving the edges in
the image, it promotes solutions with piecewise constant structures and the well
known staircasing artifacts appear in smooth regions. One remedy to this artifact
is to extend to high order methods such as the TGV which also allows linear and
polynomial smoothness in addition to the preservation of edges. We refer the reader
to [13], [19], where TGV regularization is applied to Poisson related problems such
as PET deconvolution and a combined MRI-PET reconstruction respectively.

In our framework, we use the aforementioned TV and TGV regularizers that
are extended to a spatiotemporal form for dynamic PET reconstruction. In addi-
tion, motivated by the recent works of [16,30], we extend the latter priors to the
Infimal Convolution (IC) framework, equivalently we have the ICTV and ICTGV
regularizers defined as

N (u) =

ICTVβ,κ(u) = min
v

β1 TVκ(u− v) + β0 TV1−κ(v)

ICTGVβ,κ(u) = min
v

β1 TGVκ(u− v) + β0 TGV1−κ(v)

The TV and TGV regularizers are weighted by a positive vector κ = (κ, 1−κ), with
κ ∈ (0, 1) that balances the strength of the penalization between the spatial and
temporal domains, for instance the x,y and the t directions in a 2D+t dynamic
framework. The ICTV and ICTGV constitute a combination of TV and TGV
regularizers respectively, that are weighted symmetrically via κ. In addition, we
have a positive vector β = (β1, β0) that balances the two terms in the TV/TGV
regularizers in terms of the fidelity term H(g,Ru). As we present in the following,
the additional variable v provides a better reconstruction in the spatiotemporal
domain and it is able to reduce the artifacts that TV and TGV priors create.

Outline of the paper : In Section 2, we introduce the spatiotemporal framework
for dynamic PET reconstruction. We focus on the choice of priors used in our
variational problem as well as the corresponding fidelity term. We continue with a
brief summary of the proposed algorithm which computes numerically the solutions
via a primal-dual approach. In Section 4, we describe the numerical realization of
the saddle point form for the proposed regularizers. Finally, in Section 5, we discuss
our results for different PET radiotracers applied to simulated brain phantoms and
compare them with standard methods such as the MLEM reconstruction.

2 Spatiotemporal Variational Framework for PET reconstruction

In this section, we describe the spatiotemporal variational context suitable for
dynamic PET reconstruction. This is achieved by a minimization problem of an
energy functional E : RN×K → R i.e.,

argmin
u

E(u) with E(u) = H(g,Ru) +N (u). (1)
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Note that we focus on the finite dimensional case and we refer the reader to Section
4 for the details on the numerical approximation.

The corresponding solution of (1) is an image sequence, a collection of frames
that represents the radioactivity of the injected radiotracer denoted as u = (uj,k) ∈
RN×K , where N represents the spatial dimension (spatial bins) and K is the num-
ber of (temporal) frames. In the following, we describe the form of the fidelity
term in the dynamic PET setting as well as the proposed edge preserving priors.

2.1 Fidelity term

During the PET scan, the measurements are associated to a linear operator R that
incorporate the geometry of the acquisition and is described through the Radon
transform

Ru(θ, s) =

∫
y∈θ⊥

u(sθ + y) dy, (2)

where the integral is considered along the orthogonal subspace

θ⊥ =
{
x ∈ RN : x · θ = 0

}
, see [24] for more details. The equation (2) is applied

for every temporal bin and its discrete form is written as

(Ru)i,k :=
N∑
j=1

Ri,juj,k, 1 ≤ i, k ≤M,K (3)

where R = (Ri,j) is the system matrix corresponding to the discretized operator
R. The coefficients of this matrix express in fact probability values. For instance,
Ri,j is the probability of an emitted photon from voxel j to be recorded in the ith
tube of response (TOR) and when there is no intersection of the ith TOR to a
voxel j then Ri,j = 0.

In order to capture the physical process of the photon counting process during
PET acquisition, we assume that the measurements follow an independent Pois-
son distribution. In addition to the true coincidence events, one has to take into
account the random and scattered events denoted by [RD] and [SC] respectively.
The true coincidences occur when both photons from the annihilation point are
detected without any interaction or deflection within the coincidence time-window.
A scattered event occurs when at least one of the emitted photons is detected at
the wrong line of response due to a deflection. A random event happens when
two photons from different annihilation points are detected on the same detector
within the coincidence time window. Both random and scattered events increase
the statistical noise of the data and behave as a background noise. We denote the
input PET data e.g., the prompt events with g = (gi,k) ∈ RM×K , where M is the
dimension of the projection space and for every time frame k = 1, . . . ,K we have
that

gi,k ∼ P

(
γk
( N∑
j=1

DkRi,jui,k + [SC]i,k + [RD]i,k
))
, (4)

where P(λ) describes the Poisson distribution with parameter λ = Dk(Ru)i,k +

[SC]i,k + [RD]i,k. Here, (Dk)Kk=1 is the decay correction factor that depends on
the specific radiotracer and the frame duration (see Section 5). Moreover, γ =
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(γk)Kk=1 is a positive parameter that incorporates the temporal duration over two
consecutive frames, i.e.,

γk = ∆tk = tk+1 − tk, 1 ≤ k ≤ K − 1 (5)

In practice, as we observe in Table 1 in Section 5, the time duration over two
consecutive frames variates during a PET acquisition where shorter time intervals
are considered in the beginning and longer at the end. Hence, we have a non
uniform time discretization. In the following we denote η = (ηi,k) := [SC]i,k +
[RD]i,k.

The fidelity term related to the Poisson noise is known as the Kullback-Leibler

divergence, see for instance [3]. Recall that the generalized Kullback-Leibler diver-
gence for g = (gi,k) > 0 is

DKL(g, DRu+η)=


M,K∑
i,k=1

γk

(
gi,k log

gi,k
Dk(Ru)i,k+ηi,k

+Dk(Ru)i,k+ηi,k−gi,k
)
, ui,k ≥ 0

+∞, otherwise.

(6)
Note that η = (ηi,k) > 0. The fidelity term with respect to the minimization over
u is written as

H(g, DRu+η) =

M,K∑
i,k=1

γk

(
Dk(Ru)i,k−gi,k log

(
Dk(Ru)i,k+ηi,k

))
+I{u≥0}(u). (7)

where IC(z) is the indicator function of C, with IC(z) = 0 if z ∈ C and +∞
otherwise. The positivity constraint is necessary in order to guarantee that the
fidelity is well defined, since (Ru)i,k ≥ 0, if ui,k ≥ 0. The above distance term
is a direct consequence of the Bayesian approach and the maximum a-posteriori
probability (MAP) estimation of the negative log-likelihood function. Due to (4)
the conditional probability of g which obeys a Poisson distribution given an image
sequence u is

P(g|u) =

M,K∏
i,k=1

γk(Dk(Ru)i,k + ηi,k)gi,k e−γk(Dk(Ru)i,k+ηi,k)

gi,k!
. (8)

Now, we impose the probability density of u, which describes a geometric prior on
u and is expressed as a Gibbs type density, [3], i.e.,

P(u) = e−N (u).

Using the Bayes’ Theorem,

P(u|g) =
P(g|u)P(u)

P(g)
,

the MAP estimation of − log P(u|g) and neglecting the denominator term, we
conclude with (1), where the distance term is given in (7).
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2.2 Regularizers

The next step is the choice of the regularizer N (u). We present the edge preserving
priors that are used in this paper and are adapted for the spatiotemporal PET
reconstruction.

2.2.1 TV/TGV regularizers

For the spatiotemporal TV regularization, an additional temporal direction is con-
sidered and through two positive regularizing parameters it defines a trade-off
between spatial and temporal penalization. We let α = (α1, α2), where α1 > 0,
α2 ≥ 0 for the 2D+time framework and define

TVα(u) = ‖∇αu‖1 =
∑

γ|∇αu|, with

|∇αu| =
√

(α1∂xu)2 + (α1∂yu)2 + (α2∂tu)2.
(9)

Similarly to the fidelity term, we allow a non uniform time discretization for the
regularizer using the parameter γ, see (5). The parameters α1, α2 are not prede-
fined and require a specific tuning in order to find the optimal spatial and tem-
poral TV smoothing. If α2 = 0, then the TV regularizer acts only spatially and
no temporal information is considered. This first-order regularizer allows jump
discontinuities but introduces the staircasing effect. In the static case, this is a
result of piecewise constant approximations of smooth regions. Consequently, in
the dynamic setting except of the spatial staircasing, one witness staircasing along
the temporal direction where two consecutive frames for example are overlapping
with each other and certain structures appear falsy to some regions. A suitable
path towards an edge preserving and at the same time smooth reconstruction is
to combine first and second order derivatives, as in[2,15,25].

We examine the second order total generalized variation (TGV), presented
in [4], where an additional variable v finds an optimal balance between the first
and second derivative of a function. For the spatiotemporal TGV, we write the
following minimization problem

TGVα(u) = min
v
‖∇αu− v‖1 +

√
2 ‖Eαv‖1 . (10)

where Eαv = 1
2 (∇αv + ∇αvT ) denote the weighted α-symmetrized gradient. In

(10), the minimization is considered over vector fields v and the weights have been
fixed in front of the two norms of (10). In previous imaging applications related to
TGV, these parameters have been proven to give desirable results, see for instance
[21,16,20]. The intuition behind TGV is that in smooth regions, both on the
spatial as well as in the temporal domains, ∇2

αu is relatively small which forces
that ∇αu = v. Moreover, in piecewise constant regions, ∇2

αu = v is significantly
large and therefore is reasonable to have v = 0. In this way, the additional variable
v enables the regularized solution u to find an optimal structure in the piecewise
constant and smooth regions.
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2.2.2 An infimal convolution approach

In the dynamic PET measurements one has to choose between longer scans with
good counting statistics and shorter scans that are noisy but preserve temporal
resolution. Therefore, an usual and fair choice is to select shorter scans in the
beginning of the acquisition where there is an abrupt change of activity of the
radioactive tracer and longer scans at the end. In this setting, different parts of
the PET data may require either strong spatial regularization or strong temporal
regularization. One way to model this behaviour is using an infimal convolution
operation, see [8]. In the static case, the concept of the infimal convolution opera-
tion is to combine two different regularizers J1, J2 with different geometric priors
via a minimization problem, i.e.,

N (u) = inf
v
J1(u− v) + J2(v).

Using this approach, we can decompose our image into two components that pro-
motes different geometrical structures. For instance using first and second deriva-
tives, which capture piecewise constant and smooth structures respectively, see
[31].

In a recent work, the authors in [16] introduce the infimal convolution total
variation regularization extended to the video image processing framework. Com-
pared to the static case, they use the same TV geometrical prior but weighted
differently and either promote strong or weak spatiotemporal regularization. Let
κ = (κ, 1− κ), where κ ∈ (0, 1), then the infimal convolution total variation regu-
larization, denoted as ICTV, is

ICTVβ,κ(u) = min
v

β1 ‖∇κ(u− v)‖1 + β0

∥∥∇1−κv
∥∥

1

= min
v

β1 TVκ(u− v) + β0 TV1−κ(v)
(11)

where the positive parameter β = (β1, β0) is responsible for a proper balance be-
tween the terms of the ICTV functional and the corresponding fidelity term in (7).
Under the infimal convolution method, we can decompose the regularized solution
u into two components u− v and v which are penalized by a total variation prior
and capture different spatiotemporal regularity depending on the triple (β1, β0, κ).
As we observe in Section 5, finding an optimal balancing of these parameters, one
can achieve a higher quality reconstruction compared to the TV one, since a more
tailored treatment is forced via the additional variable v. In fact, we show that dif-
ferent degrees of temporal activity are captured through this robust decomposition
of v and u− v.

The reason behind the choice of κ is that we would like to enforce locally either
a strong or weak spatial-temporal regularization. Under the extreme cases, where
κ→ 0, 1, one applies only spatial regularization on the u− v component and only
strong temporal regularization on the v component and vice versa. Hence, we do
not treat the temporal noise on the u−v component and the spatial noise in the v
component. The restriction on the (0, 1) interval will allow an interchange between
these two components in terms of spatiotemporal smoothing.

In a recent paper, see [30], a natural extension of the ICTV regularizer is
proposed using a TGV regularizer instead and applied to dynamic MRI recon-
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struction. It is defined below as

ICTGVβ,κ(u) = min
v

β1 TGVκ(u− v) + β0 TGV1−κ(v). (12)

For the ICTGV regularizer, not only we can eliminate the spatiotemporal staircas-
ing but also benefit using the infimal convolution approach. In this situation the
decomposition on the v, u− v components relies on the TGV regularity instead
of TV. Hence, spatiotemporal smooth structures are promoted which is a more
reasonable assumption in the dynamic PET reconstruction.

Our goal is to examine the effect on these regularizers defined above, i.e.,

N (u) ∈
{

TVα(u), ICTVβ,κ(u),TGVα(u), ICTGVβ,κ(u)
}
. (13)

for different types of radiotracers in the dynamic PET reconstruction. In the follow-
ing section, we present a brief summary of the Primal-Dual numerical realization
of (1), see [9] under a diagonal preconditioning proposed in [26]. Finally, let us
mention that existence and uniqueness of the minimizer u for the problem (1)
using the fidelity term (7) and the regularizers in (13) is proved using the direct
method of calculus of variations. Since we deal with the discrete setting the proof
for existence is straightforward and we omit it. In terms of uniqueness, note that
the fidelity term is strictly convex since we assume that g = (gi,k) > 0.

3 An overview of the PDHG algorithm

In order to obtain a numerical solution of (1), we use the modified primal-dual
hybrid gradient (PDHGM) algorithm as proposed in [9] ; it can be identified as a
generalization of the PDHG algorithm found in [11]. In this section, we review the
basic concepts on the primal-dual framework and focus on the diagonal precondi-
tioning version presented in [26].

Let X and Y with dimX = n, dimY = m, two finite dimensional vector spaces
endowed with standard inner products 〈·, ·〉. Let K ∈ L(X,Y ) a continuous linear
operator with operator norm

‖K‖ = max
{
‖Kx‖Y : ‖x‖X ≤ 1

}
.

We define G : X → R ∪ {∞}, F : Y → R ∪ {∞} two linear convex functionals with
a simple structure in the sense that

x = (I + τ∂G)−1(x̂) = argmin
x

G(x) +
1

2τ
‖x− x̂‖2X (14)

i.e., the resolvent operator is easy to solve and has a closed-form solution. Our goal
is to write the general minimization problem

min
x∈X

G(x) + F(Kx) (15)

that describes (1) into a general saddle-point problem,

min
x∈X

max
y∈Y

〈Kx, y〉Y + G(x)−F∗(y), (16)



Spatiotemporal PET reconstruction 9

using the Fenchel duality (see [10] for example). Here F∗ denotes the convex
conjugate of F :

∀y0 ∈ Y F∗(y0) = sup
y∈Y
〈y, y0〉 − F(y) .

We recall that the dual maximization problem of (15) is

max
y∈Y

−G∗(−KT y)−F∗(y). (17)

The generic PDHG method is Algorithm 1, described below.

Algorithm 1 Generic PDHG

Require: Choose τ, σ two positive real numbers, θ ∈ (0, 1) and (x0, y0) ∈ X × Y
Update: xω , yω as

xω+1 = (I + τ∂G)−1 (xω − τKT yω)

xω+1 = xω+1 + θ(xω+1 − xω)

yω+1 = (I + σ∂F∗)−1

(
yω + σK(xω+1)

)

In general the efficiency of the PDHG methods relies on the splitting of the
initial problem (16) into subproblems that are easier to solve and have the form
described in Algorithm 1. Note that the solution of these subproblems can be
computed efficiently with high numerical precision using (14) for example. Here,
∂F∗, ∂G denote the subdifferential of F∗, G and the expressions (I + τ∂G)−1 and
(I + σ∂F∗)−1 are the resolvent operators of G and F∗ respectively. Under the
conditions that θ = 1 and τσ ‖K‖ < 1, one can show that Algorithm 1 converges,
see in [9, Theorem 1].

However, one of the main difficulties of these methods is the appropriate choice
of the primal-dual step sizes τ and σ. Indeed, this choice has an important im-
pact on the speed of the algorithm and in some cases, the computation of ‖K‖ is
quite difficult to obtain, due to its complicated structure. In order to handle these
issues, different methods have been proposed for a suitable tuning of these param-
eters, especially via an adaptive scheme which improves the convergence speed.
For instance, assuming additional conditions on F or G, the above algorithm can
be accelerated with an iterative update of θ, σ and τ , see [9,35]. In addition, the
authors in [12], introduce a linesearch approach where the primal-dual step sizes
are tuned adaptively so the primal and dual residuals of (15),(17) have roughly
the same value. In the same direction, we refer also to [16] and [22].

Algorithm 2 Preconditioned PDHG

Require: Choose T,Σ two symmetric positive definite matrices, θ ∈ [0, 1] and
(x0, y0) ∈ X × Y
Update: xω , yω as

xω+1 = (I + T∂G)−1 (xω − TKT yω)

xω+1 = xω+1 + θ(xω+1 − xω)

yω+1 = (I +Σ∂F∗)−1

(
yω +ΣK(xω+1)

)
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Here, we choose to follow the preconditioning technique for the PDHG algo-
rithm, see Algorithm 2. The convergence is guaranteed provided that θ = 1 and∥∥∥Σ1/2KT 1/2

∥∥∥ < 1, see [26, Theorem 1]. For the preconditioning of the symmetric,

positive definite matrices T and Σ, we use Lemma 2 in [26] where the correspond-
ing matrices have a diagonal structure defined as T = diag(τ ), τ = (τ1, . . . , τn)
and Σ = diag(σ), σ = (σ1, . . . , σm) with

τj =
1∑m

i=1 |Ki,j |2−α
and σi =

1∑n
j=1 |Ki,j |α

, (18)

for any α ∈ [0, 2]. The resolvent operators are now defined as

x = (I + T∂G)−1 (x̂) = argmin
x∈X

G(x) +
1

2
‖x− x̂‖2X with ‖x‖2X =

〈
T−1x, x

〉
(19)

y =
(
I +Σ∂F∗

)−1
(ŷ)= argmin

y∈Y
F∗(y)+

1

2
‖y − ŷ‖2Y with ‖y‖2Y =

〈
Σ−1y, y

〉
. (20)

Compared to other adaptive methods, it provides a significant improvement on
acceleration of these problems, see for instance [32]. Additionally, we avoid to
estimate the operator norm of K which in the case of PET reconstruction is quite
complicated, see Section 4.2. Moreover, it is quite simple to implement since only
one auxiliary parameter needs to be tuned, see (18). Finally, let us mention that
in the case of static PET reconstruction, this approach has been studied in [7]
and [32] with a total variation penalization. In the next section, we detail the
numerical implementation of our problem and discuss the saddle point forms for
each regularizer.

4 Numerical Implementation

Here, we focus on the numerical solution of the minimization problem (1) using
the regularizers and the fidelity terms defined in Section 2. We use the diagonal
preconditioning, described in the previous section. We first give an insight of the
spatiotemporal 2D+time discrete framework and continue with the saddle point
forms for each choice of the regularizer. A similar analysis can be extended to
3D+time setting.

4.1 Discrete Setting

We begin with the discretization of the 2D+time spatiotemporal domains of Ω ×
T and Σ × T which denotes the image and sinogram domains respectively. The
discrete domains Ω and Σ have the following grid forms

Ω = {(i, j) : i, j ∈ N, 1 ≤ i ≤ N1, 1 ≤ j ≤M1} ,

Σ =
{

(̂ı, ̂) : ı̂, ̂ ∈ N, 1 ≤ ı̂ ≤ N̂1, 1 ≤ ̂ ≤ M̂1

}
,

T = {k : k ∈ N, 1 ≤ k ≤ K} .

(21)

Here K is the number of frames, N̂1 the numbers of rays and M̂1 represents the
number of angles in the projection space. The solution u and the input dynamic



Spatiotemporal PET reconstruction 11

PET data g of (1) belongs to U = RN1×M1×K and Û = RN̂1×M̂1×K respectively.
We also define the corresponding sets needed for the definition of the discrete
gradient and symmetrized gradient operators associated to the TV and TGV reg-
ularizers as

V = U × U × U, W = U × · · · × U︸ ︷︷ ︸
6

.

Let α = (α1, α2) be a vector of parameters with α1 > 0 and α2 ≥ 0, penalizing the
spatial and temporal domains. The gradient operator is

∇α : U → V with ∇αu = (α1∂
+
x u, α1∂

+
y u, α2∂

+
t u)T ,

where ∂+
x , ∂

+
y , ∂

+
t are the forward finite difference operators with Neumann bound-

ary conditions. For the spatial and temporal domains, i.e., with respect to x, y and
t directions, we write

∂+
x u =

{
ui+1,j,k−ui,j,k

∆xi
, if 1 ≤ i < N1

0, if i = N1

, ∂+
y u =

{
ui,j+1,k−ui,j,k

∆yj
, if 1 ≤ j < M1

0, if j = M1.

∂+
t u =

{
ui,j,k+1−ui,j,k

∆tk
, if 1 ≤ k < K

0, if k = K.

Note that in the spatial domain the discrete step size along the x and y directions is
constant, i.e., ∆xi = ∆yj = xi+1−xi = yj+1−yj . In terms of temporal direction, we
have ∆tk = tk+1 − tk which is not necessarily constant. In fact, in our simulations
the time step size variates during the acquisition see Table 1 in Section 5. We
also define the divergence operator div1,α : V → U such that div1,α = −∇∗α: for
v = (v1, v2, v3) ∈ V , we write

div1,α(v) = α1(∂−x v
1 + ∂−y v

2) + α2∂
−
t v

3.

Here, the ∂−x , ∂
−
y , ∂

−
t are the corresponding backward finite differences operators,

i.e.,

∂−x u =


ui,j,k−ui−1,j,k

∆xi
, if 1 <i <N1−1,

u1,j,k

∆x1
, if i = 1,

−uN1−1,j,k

∆xN1−1
if i = N1.

, ∂−y u =


ui,j,k−ui,j−1,k

∆yj
, if 1 <j <M1−1,

ui,1,k
∆y1

, if j = 1,
−ui,M1−1,k

∆yM1−1
if j = M1.

∂−t u =


ui,j,k
∆tk

− ui,j,k−1

∆tk−1
, if 1 < k < K − 1,

ui,j,1
∆t1

, if k = 1,
−ui,j,K−1

∆tK−1
if k = K.

The symmetrized gradient, Eα : V → W is defined as Eα(v) = 1
2 (∇αv + ∇αvT )

where

Eα(v) =


α1∂
−
x v

1 α1∂
−
y v1 + α1∂

−
x v

2

2

α2∂
−
t v

1 + α1∂
−
x v

3

2
α1∂
−
y v

1 + α1∂
−
x v

2

2
α1∂
−
y v

2 α2∂
−
t v

2 + α1∂
−
y v

3

2
α2∂
−
t v

1 + α1∂
−
x v

3

2

α2∂
−
t v

2 + α1∂
−
y v

3

2
α2∂
−
t v

3


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and the divergence operator is defined as div2,α = −E∗α. Forw = (wi,j)1≤i,j≤3 ∈W
it writes

div2,α : W → V, div2,α(w) =


α1∂

+
x w

11 + α1∂
+
y w

12 + α2∂
+
t w

13

α1∂
+
x w

21 + α1∂
+
y w

22 + α2∂
+
t w

23

α1∂
+
x w

31 + α1∂
+
y w

32 + α2∂
+
t w

33

 ,
with w21 = w12, w31 = w13 and w32 = w23. For any v = (v1, v2, v3) ∈ V , we set

‖v‖1 =
∑
i,j,k

|v|i,j,k, ‖v‖∞ = max
i,j,k
|v|i,j,k with |v| =

(√
(v1)2+(v2)2+(v3)2

)
(22)

and for any w ∈W , we write

‖w‖1 =
∑
i,j,k

|w|i,j,k, ‖w‖∞ = max
i,j,k
|w|i,j,k with

|w| =
(√

w2
11 + w2

22 + w2
33 + 2w2

12 + 2w2
13 + 2w2

23

)
.

(23)

4.2 Saddle point forms

Our goal is to write the minimization problem

argmin
u∈U

H(g,Ru) +N (u) (24)

as a saddle point problem of the form

min
x∈X

max
y∈Y

〈Kx, y〉 − F∗(y) + G(x) (25)

in order to apply the PDHG algorithm.
We start with the fidelity term defined in (7):

H(g, DRu+ η) =
〈
γ(DRu− g log(DRu+ η)),1Û

〉
+ I{u≥0}(u), (26)

using the scalar product on the Σ × T domain, i.e.,

〈
g1, g2

〉
:=

N̂1,M̂1,K∑
ı̂,̂,k=1

γk(g1g2)̂ı,̂,k.

Here, 1Û is a 3D array of ones. We recall that the temporal non uniform discretiza-
tion ∆tk is incorporated in the positive parameter γ. Next, we need the dual form
of (26), which is obtained by computing of the convex conjugate of the following
function

h(x) :=
〈
γ(λ1x− g log(λ1x+ λ2)),1Û

〉
+ I{x≥0}(x).

where λ1, λ2 are positive weights, using that f(x) = sup
x∗
〈x, x∗〉 − f∗(x∗). In prac-

tice, λ1, λ2 represent the decay factor D = (Dk)Kk=1 and the noisy component η
respectively. We conclude that the convex conjugate of h is

h∗(x∗) =
∑

γg

(
log
( γλ1g

γλ1 − x∗
)
− 1

)
− λ2(

x∗

λ1
− γ) + I{x∗≥γλ1−g γλ1

λ2
}(x
∗), (27)
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where the multiplications are performed componentwise. For the total variation
regularization, N (u) = TVα(u) using the duality of the `1 norm and the above
computation, we derive the following saddle point form

min
u

max
φ1,φ2

〈∇αu,φ1〉 − I{‖·‖∞≤1}(
φ1

γ
) + 〈Ru,φ2〉 − H∗(g,φ2) + I{u≥0}(u), (28)

where H∗(g,φ2) := h∗(φ2). Note that the division φ1
γ is understood component-

wise with respect to the time direction i.e.,
φi,j,k
γk

. Overall, we obtain the following

setting related to (25), i.e.,

x = (u, 0)T ∈ U × U = X, y = (φ1,φ2) ∈ V × Û = Y,

F∗(y) = F∗(φ1,φ2) = I{‖·‖∞≤1}(
φ1
γ ) +H∗(g,φ2)

G(x) = G(u, 0) = I{u≥0}(u),

K =

[
∇α 0

R 0

]
KT =

[
−div1,α R∗

0 0

]
.

(29)

The approach is similar for the other two regularizers. We summarize below the
saddle point forms for ICTVβ,κ(u), TGVα(u) and ICTGVβ,κ(u) regularizers.
Starting with N (u) = ICTVβ,κ(u) the minimization problem (24) can be written
in the (25) form as

min
u,v

max
φ1,φ2,φ3

〈∇κ(u− v),φ1〉 − I{‖·‖∞≤β1}(
φ1

γ
) +

〈
∇1−κ,φ2

〉
− I{‖·‖∞≤β0}(

φ2

γ
) + 〈Ru,φ3〉 − H∗(g,φ3) + I{u≥0}(u),

(30)

x = (u,v)T ∈ U × U = X, y = (φ1,φ2,φ3)T ∈ V × V × Û = Y,

F∗(y) = F∗(φ1,φ2,φ3)=I{‖·‖∞≤β1}(
φ1
γ )+I{‖·‖∞≤β0}(

φ2
γ )+H∗(g,φ3)

G(x) = G(u,v) = I{u≥0}(u),

K =

∇κ −∇κ0 ∇1−κ

R 0

 ,KT =

[
−div1,κ 0 R∗

div1,κ div1,1−κ 0

]
.

(31)

For N (u) = TGVβ,α(u) we write that

min
u,w

max
φ1,φ2,φ3

〈∇αu−w,φ1〉 − I{‖·‖∞≤β1}(
φ1

γ
) + 〈Eαw,φ2〉

− I{‖·‖∞≤β0}(
φ2

γ
) + 〈Ru,φ3〉 − H∗(g,φ3) + I{u≥0}(u),

(32)



x = (u,w)T ∈ U × V = X, y = (φ1,φ2,φ3)T ∈ V ×W × Û = Y,

F∗(y)=F∗(φ1,φ2,φ3)=I{‖·‖∞≤β1}(
φ1
γ )+I{‖·‖∞≤β0}(

φ2
γ )+H∗(g,φ3)

G(x) = G(u,w) = I{u≥0}(u),

K =

∇α −I0 Eα
R 0

 , KT =

[
−div2,α 0 R∗

−I −div2,α 0

]
.

(33)
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and for ICTGVβ,κ(u) we conclude with

min
u,v
w1,w2

max
φ1,φ2,φ3
φ4,φ5

〈∇κ(u− v)−w1,φ1〉 − I{‖·‖∞≤β1}(
φ1

γ
)

+ 〈Eκw1,φ2〉 − I{‖·‖∞≤β1

√
2}(

φ2

γ
)

+
〈
∇1−κ(v)−w2,φ3

〉
− I{‖·‖∞≤β0}(

φ3

γ
)

+
〈
E1−κw2,φ4

〉
− I{‖·‖∞≤β0

√
2}(

φ4

γ
)

+ 〈Ru,φ5〉 − H∗(g,φ5) + I{u≥0}(u),

(34)



x = (u,v,w1,w2)T ∈ U × U × V ×W = X,

y = (φ1,φ2,φ3,φ4,φ5)T ∈ (V ×W )2 × Û = Y,

F∗(y) = F∗(φ1,φ2,φ3,φ4,φ5) = I{‖·‖∞≤β1}(
φ1
γ ) + I{‖·‖∞≤β1

√
2}(

φ2
γ )

+I{‖·‖∞≤β0}(
φ3
γ ) + I{‖·‖∞≤β0

√
2}(

φ4
γ ) +H∗(g,φ5)

G(x) = G(u,w) = I{u≥0}(u) and K =


∇κ −I −∇κ 0

0 Eκ 0 0

0 0 ∇1−κ −I
0 0 0 E1−κ
R 0 0 0

 .
(35)

4.3 Numerical Solution

Based on the algorithm presented in Section 3, we can precompute the diagonal
preconditioners T and Σ for each case of (29), (31), (33) and (35) and solve
the corresponding proximal maps (19) and (20). In particular, the proximal map
x = (I + T∂G)−1 (x̂) is a projection on the positive cone {x ≥ 0} and common for
all the regularizers. Indeed, for the (29) case, we write using Algorithm 2

u = (I + T∂G)−1(û)⇔ u = max{û, 0}, where

û = u− T (−div1,αφ1 + R∗φ2).

In terms of y = (I +Σ∂F∗)−1 (ŷ) we need to compute it separately based on
the definition of F∗. For instance in the (29) case, the functional F∗(y) can be
decoupled and obtain two closed formed solutions namely

[
φ1

φ2

]
= (I +Σ∂F∗)−1

[
φ̂1

φ̂2

]
⇔


φ1 = argmin

‖φ1‖∞≤1

1
2

∥∥φ1 − φ̂1

∥∥2

V

φ2 = argmin
φ2

1
2

∥∥∥φ2 − φ̂2

∥∥∥2

Û
+H∗(g,φ2)

,

where using Algorithm 2 we write[
φ̂1

φ̂2

]
=

[
φ1

φ2

]
+

[
Σ1 0
0 Σ2

] [
∇α 0
R 0

] [
u

0

]
.
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The first minimization problem corresponds to a projection on the `∞ ball, i.e.,

φ1 = argmin
‖φ1‖∞≤1

1

2

∥∥φ1 − φ̂1

∥∥2

V
⇔ φ1 =

φ̂1

max
{

1, |φ̂1|
γ

} . (36)

For the second minimization problem, we use [23, Lemma 3] and conclude to

φ2 = argmin
φ2

1

2

∥∥∥φ2 − φ̂2

∥∥∥2

Û
+H∗(g,φ2)⇔

φ2 = 0.5

(
φ̂2 +

λ2

λ1
Σ2 + λ1γ −

√
(φ̂2 +

λ2

λ1
Σ2 − λ1γ)2 + 4Σ2gγ

)
,

(37)

where λ2 = η, λ1 = (Dk)Kk=1, γ = (γk)Kk=1 and the multiplication/division is
understood componentwise. For ICTVβ,κ, TGVα and ICTGVβ,κ regularizers the
solution with respect to φ3 and φ5 variables respectively is the same as (37).

For the TGVα case the solution with respect to φ1, φ2 the solution is similar
to (36) taking into account the additional weights β1, β0 i.e.,

φ1 =
φ̂1

max
{

1, |φ̂1|
γβ1

} and
φ̂2

max
{

1, |φ̂2|
γβ0

}
Here, we have that φ2 ∈W . Similarly, we compute the solutions for the ICTGVβ,κ
regularizer.

4.4 Stopping Criteria

In order to compute an accurate saddle point solution and validate the convergence
of our algorithm, we use a primal-dual gap of (25) defined as

PDgap = F(Kx) + G(x) + F∗(−y) + G∗(−KT y). (38)

As the primal-dual gap approaches to zero, the solution gets asymptotically close
to the desired saddle point. To be more precise, we do not use the exact form of
(38) since we do not take into account some of the indicator functions that are
present, for instance I{‖·‖∞≤1}(φ1) or the positivity constraints related to (26),

(27). In fact these constraints are satisfied at each iteration and can be neglected,
see for instance [32]. However, we need to consider the convex conjugate of G, i.e.
the convex conjugate of the positive cone {x ≥ 0}. Hence, we have that

G(x) = I{x≥0}(x)⇒ G∗(x∗) = max
x≥0

〈
x, x∗

〉
=

{
0, if 〈x∗, x〉 ≤ 0

∞, otherwise,
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see [28]. For all the regularizers the modified primal-dual gaps are explicitly written
below

PDTV−gap = TVα +H(g,Ru) +H∗(g,φ2) +
∑

max(div1,α φ1 −RTφ2, 0)

PDTGV−gap = TGVα(u) +H(g,Ru)+H∗(g,φ3)+
∑

max(div1,α φ1−RTφ3, 0)

+
∑

max(φ1 + div2,α φ2, 0)

PDICTV−gap =ICTVβ,κ(u)+H(g,Ru)+H∗(g,φ3)+
∑

max(div1,κ φ1−RTφ3), 0)

+
∑

max(−div1,κ φ1 + div1,1−κ φ2, 0)

PDICTGV−gap =ICTGVβ,κ(u)+H(g,Ru)+H∗(g,φ5)+
∑

max div1,κ φ1−RTφ5), 0)

+
∑

max(φ1+div2,κ φ2, 0)+
∑

max(−div1,κ φ1+div1,1−κ φ3, 0)

+
∑

max(φ3 + div2,1−κ φ4, 0)

In order to be independent of the size of the input data, we rescale the primal-
dual gap by the dimension of the problem. We use the primal-dual gap in order to
verify the convergence of the algorithm. However, evaluating the primal-dual gap
increases the computational cost since it requires two additional computations of
the system matrix per iteration. Hence, we rather use a fixed number of iterations,
i.e., 2000 iterations as a stopping criterion, or alternatively a certain threshold ε

such that the relative error between two consecutive iterates satisfies∥∥∥uk+1 − uk
∥∥∥

2∥∥uk+1
∥∥

2

< ε.

In practice we noticed that after 1000 iterations the primal-dual gap is in the range
of [10−5, 10−2] and there is no significant difference among the iterations.

4.5 Quantitative criteria

The proposed regularizers involve parameters that need to be optimized to produce
the best reconstructions compared to the ground truth. In particular for the TV
and TGV regularizers one has to optimize α1 and α2 only, see (9), (10). In terms
of their infimal convolution extensions, three parameters need to be tuned, i.e.,
β1, β0 and κ, see (11), (12). For this purpose, we follow a trial-error approach on
large grid sizes where the parameters are optimized based on the highest average
of structural similarity index (SSIM) over all frames, see [36]. In addition, we
report the mean squared error (MSE) over all the brain regions, as well as on
some regions of interest (ROI) such as the striatum, cortex, thalamus and white
matter regions, see Figure 1. Let us mention that both MSE and SSIM criteria have
been tested in order to acquire the best reconstructions. However, we find that the
best reconstructions with respect to the lowest MSE allow more noisy structures
compared to SSIM. Here, we would like to mention that although 3 parameters
on the infimal convolutions case are difficult to optimize, we can benefit from the
symmetry of ICTV and ICTGV and reduce the total number of combination of
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(β1, β0, κ) For instance when β1 = β0 and we replace κ by 1 − κ. Similarly the
solution are the same for (β1, β0, κ) and (β0, β1, 1− κ).

Finally, we evaluate the relative bias defined as

bias =
1

#pixels

#pixels∑
i,j,k

(
|û− u|
|û|

)
i,j,k

(39)

where the number of pixels depends on the specific ROI, û denote the ground
truth and u the reconstructed image sequence. Apart from the aforementioned
priors, we present the standard Maximum Likehood Expectation Maximization
(MLEM) reconstruction and a post processed MLEM reconstruction with a Gaus-
sian filtering. A full width at half maximum (FWHM) of 12mm is used for all the
radiotracers. As a stopping criterion of the MLEM and the post filtered MLEM
reconstructions, we use a fixed number of iterations (200) and recover the one with
minimum MSE. Although this is out of the scope of this paper, we would like to
mention that besides the trial-error method for optimizing these parameters, one
can employ a bilevel optimization strategy such as in [1].

5 Numerical Experiments

In this section, the proposed regularizers are examined on simulated two dimen-
sional dynamic brain phantoms.

To simulate the acquisitions, we measured Time Activity Curves (TACs) in
three different acquisitions with the Siemens HRRT camera of healthy volunteers
injected with 11C-PE2I, 18F-FDG and 18F-DPA714. The TACs were measured on
ROIs delineated on a T1-weighted MRI, from PET images that were reconstructed
with PSF modeling. The HRRT camera was used for its relatively high resolution
in order to extract input TACs with minimal partial volume effect, see [33]. In
Figure 1, we present the mean activity on different regions of interest (ROI) with
respect of the acquisition time, used as an input to the simulation. Outside of the
brain was set to 0 and Artery and Vein were set from blood samples measurements.
Scatter and random fractions were also extracted from these three scans in order
to produce realistic simulations.

All numerical examples are implemented using MATLAB under GPU on a
Macbook pro with 16GB RAM and 2.2 GHz Intel Core i7 CPU.

5.1 Noisy Data Generation

In order to create two dimensional dynamic data, we fix a specific slice from the
3D+time volume as in Figure 2 and create a 2D+time array where the third
coordinate corresponds to the temporal dimension. The original 3D+time brain
phantom has been rescaled to a [0,1] pixel intensity interval. We first create the
noiseless dynamic sinograms via the forward model. This is performed using the
ground truth brain phantom and the system matrix R which describes the geomet-
ric properties of the PET scanner. Then, the noise-free sinograms are corrupted
with noise based on the prompt counts that follow Poisson distribution. In ad-
dition, we consider a uniform background noise that simulates the scattered and
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(a) PE2i (b) FDG

(c) DPA

Striatum

White

matterThalamus

Cerebral

Cortex

(d) Regions of interest (ROI

Fig. 1 Mean Time Activity Curves for the radiotracers PE2i, FDG and DPA for the ROI:
Striatum, Cortex, White matter, Thalamus

Fig. 2 Axial, Coronal, Sagittal views of PE2i radiotracer, t = 11min.

random events. Finally, based on the radiotracer, we use a decay correction on the
activity of each radiotracer, namely

Dt =
1− eλ∆t

λ∆t eλt1
(40)

where λ = ln2
τ1/2

, ∆t = t2 − t1 with t1, t2 are the starting and ending frame times.

For this numerical simulation no attenuation correction is considered. In Table 1,
we present all technical details for each radiotracer.
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Isotope Prompt Counts τ1/2 Duration (Frames)
PE2i 11C 31 000 000 1223 sec 5× 60, 5× 120, 2× 150, 8× 300 sec (20)
FDG 18F 47 767 000 6586.2 sec 5× 60, 5× 120, 2× 150, 8× 300 sec (20)
DPA 18F 22 349 700 6586.2 sec 6× 60, 7× 120, 14× 300 sec (27)

Table 1 Isotope, Counts, Half-life and time-frame configurations for the PE2i, FDG and DPA
tracers.

For the simulation of the system matrix R, we use the open-source Matlab tool-
box Image Reconstruction, see [17], designed in a C-compiled mex framework. The
Poisson noise is simulated using poisson m-file from this toolbox. The resolution of
the brain phantom is 128× 128 of 2.2mm pixels. The sinogram is discretized into
150 radial bins and 150 angles uniformly spaced over 180o with 2mm ray spacing.

5.2 PE2i/FDG/DPA radiotracers

Here, we briefly describe the functionality of each radiotracers used in our numer-
ical experiments. [11C]PE2i is a radiopharmaceutical for in vivo exploration of
the dopamine transporter (DAT). The DAT is involved in many dopamine-related
disorders including attention deficit hyperactivity disorder, Parkinson’s disease,
clinical depression or alcoholism. In vivo investigations in healthy humans have
demonstrated that PE2i has high striatal uptake. In our experiments, we consid-
ered this radiotracer as it has a very well identified ROI with specific uptake in
the striatum, and almost only non-specific fixation everywhere else in the brain.
[18F]FDG was also considered as it is the most widely used radiopharmaceutical
for clinical PET imaging. It is based on a glucose analog and can be used to assess
glucose metabolism. Many neurodegenerative diseases produce significant brain
functions alterations that are detectable in PET with [18F]FDG. The uptake of
[18F]FDG in the brain is higher in the grey matter compared to the white matter.
Finally, we considered a third radiotracer, the [18F]DPA-714, which is specific to
the translocator protein (TSPO), a biochemical marker of neuroinflammation. Full
understanding of the in vivo TSPO function in central and peripheral inflamma-
tory processes and other pathologies is yet a challenge. In this case, the thalamus is
the region that generally presents the highest specific binding in healthy controls.

In the following section, we present our results with respect to the PE2i, FDG
and DPA radiotracers.

5.3 Results: PE2i

For the sake of readability, results obtained on the PE2i radiotracer are separated
into two figures. The first one (Fig. 3) contains the results obtained with methods
that do not penalize the temporal domain, i.e. spatial TV, spatial TGV and classic
MLEM reconstructions. While the second one (Fig. 4) contains the results obtained
with the proposed spatiotemporal regularizers, i.e. spatiotemporal TV and TGV,
ICTV and ICTGV. In Figure 3, it can be observed a varying image quality across
the frames for all the spatial-only reconstruction methods. This is predictable as
a global regularization parameter is used, the noise is signal dependent and the
number of counts variates over the time in dynamic acquisitions. For instance, in
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the case of TV reconstruction, the solution clearly suffers from staircasing and loss
of contrast artifacts. Most of the thin structures in the cortex and thalamus regions
have disappeared due to loss of contrast. In the case of TGV reconstructions, the
method recovers sharper structures especially around the cortex and the striatum
regions. However, we observe that many of the contours are blurred. This is due to
the fact that the optimized regularizing parameter with respect to SSIM forces the
TGV prior to act mostly as a TV2 prior, see [21]. Finally, we would like to highlight
that although there are still some strong noise artifacts on the filtered version of
the MLEM reconstruction, it behaves better on the striatum and thalamus regions
in the late frames (25min). These visual results are confirmed by the quantitative
criteria that can be found in the last 4 lines of Tables 2 and 3. An analysis of the
striatum TAC confirms that the four methods based on spatial regularizers have
a close behaviour early in the acquisition, and that all of them have a tendency to
underestimate the true activity in these regions, see Figure 5.

Fig. 3 Dynamic PET simulations with PE2i radiotracer: only the spatial regularization and
the corresponding MLEM reconstructions.

Regarding the reconstructions for the proposed spatiotemporal regularizers
(Fig. 4), we deal with a simultaneous spatial-temporal regularization in order to
take into account the temporal variation. A visual comparison indicates that glob-
ally, all spatiotemporal methods produced better results than their spatial coun-
terparts. It also indicates that compared with the spatiotemporal TV and TGV
reconstructions, their corresponding infimal convolution versions behave better
and produce sharper reconstructions. In particular, we can observe that compared
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Fig. 4 Dynamic PET simulations with PE2i radiotracer: reconstruction methods with spa-
tiotemporal regularization.

to the ground truth, the results obtained with ICTV and ICTGV are more robust
and accurate to the activity across the acquisition time, see the TAC with respect
to the striatum in Figure 5.
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Fig. 5 Results obtained on dynamic PET simulations with PE2i radiotracer: Time Activity
Curves for the region of striatum.

This is also verified using the time-lines presented in Figure 6. This plots
concerns the spatiotemporal reconstructions for two reference lines presented in
the upper left corner in Figure 4. We notice that a spatiotemporal staircasing and
blurring appears for the TV and TGV reconstructions respectively. Furthermore,
using the infimal convolution regularizers we manage to reduce these artifacts.
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(a) Reference line: - - (b) Reference line: - .

Fig. 6 PE2i: Time-lines of the spatiotemporal reconstructions. The reference lines are shown
in Figure 4.

For the case of PE2i, ICTV is the one that produces reconstructions with less
noise and better contrast. This is justified from the comparison of the quality
measures in the Tables 2, 3. In terms of MSE, SSIM and bias, we obtain the best
scores and especially compared to ICTGV. We refer also to the MSE and SSIM
values per frame in Figures 7(a), 7(b). In addition, we have the lowest scores in the
striatum region for MSE and bias. Comparing the timelines of ICTV and ICTGV
in Figure 6 for both the striatum and white matter regions, we observe that for
the ICTV reconstruction the white matter region is closer to the ground truth
whereas we obtain a better contrast in the striatum region with ICTGV. Similar
behaviour can be observed for the TAC plot in Figure 5.

We continue with the interpretation of the infimal convolution components. In
the first time-frames of the TV and TGV reconstructions, we witness a significant
amount of noise that is not eliminated compared to the other two cases. This is due
to the fact that at the beginning of the acquisition the recorded photon counts
increase abruptly over a short period of time, specially in the first 5 minutes,
as it can be observed in the Figure 7(c). Therefore, the temporal variation for
these time-frames is significantly larger. In this situation, one can benefit using
the infimal convolution approaches. In Figure 8, we present the corresponding
decomposition for the ICTV(0.5,0.8),0.09 case for the first five consecutive frames.
In addition, we present the mean activity curves for the corresponding ICTV
reconstruction for two regions of interest, e.g., striatum and cortex in Figure 9.
This indicates a decomposition into the u− v and v components.

For visualization purposes, we consider a rescaled version of the v component.
One can observe that the u − v component depicts nearly the activity of the
specified region and stores morphological structures. On the other hand for the v
component, we have a weak temporal weight which enforces noisy variations along
the temporal direction to be captured. Equivalently, the v component depicts more
rapid intensity changes that are strong in the beginning (Fig. 8) of the acquisition
and decreases at the end, Figure 9.

Regarding the quantification of the radiotracer, which measures the impact of
the reconstruction method on the bias of image values compared to ground truth,
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(a) SSIM per time-frame (b) MSE per time-frame
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(c) Counts per time-frame

Fig. 7 PE2i: SSIM, MSE values and number of counts with respect to time.

we notice that the mean time activity curves especially in the striatum region are
better for the infimal convolution cases (Fig. 5). This is particularly important for
this radiotracer as striatum is the region that presents the highest specific uptake
and it is the region used in clinical practice to evaluate pathologies associated to
the dopamine transporter.

SSIM MSE (10−3) BIAS
TV(0.06,0.3) 0.9396 1.3181 0.3422

TGV(0.15,0.25) 0.9417 1.3281 0.3580

ICTV(0.5,0.8),0.09 0.9484 1.1251 0.3105

ICTGV(0.8,0.3),0.8 0.9466 1.1266 0.3201

TV(0.2,0) 0.9155 2.4955 0.3926

TGV(0.3,0) 0.9099 2.5429 0.4485

MLEM 0.7899 3.4633 0.5402
MLEM-Filt 0.8586 2.6265 0.4767

Table 2 PE2i: Comparison of SSIM, MSE and bias quality criteria for the whole brain.

5.4 Results: FDG

Results obtained with the FDG were comparable with the ones obtained in the
PE2i case. While the same time-frame protocol as in the PE2i case was used, see
Table 1, the number of counts increases with a different rate since the FDG is
an almost irreversible radiotracer. In addition, it does not decrease as its half-
life is much higher. The change of the prompt counts across time between the



24 Mäıtine Bergounioux et al.

Fig. 8 Dynamic PET simulations with PE2i radiotracer: Decomposition of ICTV(0.5,0.8),0.09

for the first 5 minutes. For visualization purposes we consider the rescaled version for v.

(a) Striatum (b) Cortex

Fig. 9 PE2i: The ICTV(0.5,0.8),0.09 decomposition into the u − v and v components for
the striatum and cortex regions. The mean intensity for the v component is rescaled for
visualization purposes.

FDG radiotracer can be compared in Figure 12(c) and in Figure 7(c) for the PE2i
radiotracer.

In the reconstructions with no temporal regularization, one observes noise arti-
facts in the early frames and low contrast between the white and gray matter, see
Figure 10. In the late frames, the contrast was better recovered but with relatively
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MSE (10−3)/BIAS ROI
TV(0.06,0.3) 8.3354/0.1621 1.7234/0.1543 1.3244/0.1684 1.2615/0.1646

TGV(0.15,0.25) 10.505/0.1747 1.2094/0.1438 1.0885/0.1575 1.1067/0.1584

ICTV(0.5,0.8),0.09 7.0436/0.1537 1.7702/0.1388 1.2056/0.1498 0.9940/0.1261

ICTGV(0.8,0.3),0.8 8.0809/0.1573 1.2176/0.1195 1.0645/0.1420 0.9314/0.1277

TV(0.2,0) 25.642/0.1987 3.9084/0.1682 1.2714/0.1285 2.4995/0.1493

TGV(0.3,0) 24.128/0.1907 2.8140/0.1542 1.5272/0.1389 2.4122/0.1586

MLEM 25.029/0.1861 4.3788/0.1803 3.7225/0.2128 2.8891/0.1908
MLEM-Filt 20.730/0.1698 2.8498/0.1536 2.2530/0.1716 2.4044/0.1709

Striatum Thalamus Cortex WM

Table 3 PE2i: Comparison of MSE and bias quality criteria for regions of interest.
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Fig. 10 Dynamic PET simulations with FDG radiotracer: only the spatial regularization and
the corresponding MLEM reconstructions.

poor spatial resolution. Again, for both the TV and TGV reconstructions, we en-
counter either a significant amount of staircasing and loss of contrast or blurring
effect in the whole brain area. We refer to the time activity curves in Figure 13, for
the regions of interest with the highest uptake, which in this case are the striatum
and the cortex. These kind of artifacts reflect to the values of the corresponding
quality measures reported in the Tables 4 and 5.

A visual comparison indicates that overall, the quality of images reconstructed
with spatiotemporal regularization (Fig. 11) is much higher than their spatial
counterparts. Noise is better controlled and the small contrast in the early frames
is nicely recovered. In the early frames, we can see noise artifacts in the TV and
TGV reconstructions, which are reduced in both cases of the infimal convolution,
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Fig. 11 Dynamic PET simulations with FDG radiotracer: reconstruction methods with spa-
tiotemporal regularization.
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Fig. 12 FDG: SSIM, MSE values and number of counts with respect to time.
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see for instance the SSIM and MSE values per time-frame in Figure 12. Note that
in the FDG case, for the whole acquisition time we have overall a smooth variation
of the ground truth activity. Therefore, high order regularizers such as TGV and
ICTGV are in favour in this case. In the late frames, we observe similar behaviour
among the TV/ICTV and TGV/ICTGV reconstructions since after 40th minute
the noise level does not variates significantly with respect to time, see Figure 12(c).
The quantitative results for all the reconstructions are presented in Tables 4, 5.

SSIM MSE (10−3) BIAS
TV(0.045,0.4) 0.9534 0.8787 0.2332

TGV(0.1,1) 0.9604 0.8132 0.2243

ICTV(1,0.7),0.03 0.9648 0.7593 0.2165

ICTGV(0.7,0.5),0.1 0.9686 0.6348 0.2062

TV(0.2,0) 0.9138 1.6369 0.3380

TGV(0.25,0) 0.9185 1.4988 0.3656

MLEM 0.8379 2.1210 0.4347
MLEM-Filt 0.9000 1.6007 0.4084

Table 4 FDG: Comparison of MSE and bias quality criteria for the whole brain.

MSE (10−3)/BIAS ROI
TV(0.045,0.4) 1.4186/0.1059 0.646/0.0756 1.1718/0.0941 0.8739/0.1111

TGV(0.1,1) 1.2196/0.1030 0.6105/0.0742 1.1514/0.0975 0.6730/0.1034

ICTV(1,0.7),0.03 1.2833/0.0981 0.5519/0.0675 1.0761/0.0845 0.6417/0.0794

ICTGV(0.7,0.5),0.1 1.0316/0.0836 0.4763/0.0593 0.9300/0.0724 0.5414/0.0740

TV(0.2,0) 3.6531/0.1317 2.8986/0.1302 2.0604/0.1085 1.5952/0.1231

TGV(0.25,0) 2.7182/0.1158 1.4961/0.0928 2.1229/0.1106 1.4406/0.1270

MLEM 3.5984/0.1383 2.7860/0.1297 3.8144/0.1518 1.6384/0.1377
MLEM-Filt 2.5685/0.1143 1.5662/0.0954 2.4927/0.1193 1.3407/0.1234

Striatum Thalamus Cortex WM

Table 5 FDG: Comparison of MSE and bias quality criteria for regions of interest.
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Fig. 13 Results obtained on dynamic PET simulations with FDG radiotracer: Time Activity
Curves for regions of interest.
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In the FDG dynamic PET simulations, all the best scores were obtained with
the ICTGV regularization, see Tables 4 and 5. Similar to the PE2i case, we present
the time-line plots in Figure 14. The corresponding reference lines are reported in
Figure 11 and are similar to the PE2i radiotracer since we focus again to the
striatum region. Note that there are staircasing issues in the ICTV reconstruction
and especially in the white matter regions. In terms of the TGV reconstruction,
we observe blurring effects that are reduced with ICTGV. Finally, in Figure 15,
we present the ICTGV(0.7,0.5),0.1 decomposition into the v and u−v components
for the first 5 frames as well as the decomposition for the whole sequence for the
mean activity of the striatum and cortex regions in Figure 16. Notice that noisy
structures are captured at the very first frames, but are not as apparent as in the
PE2i case, since in this case the change of prompt counts between time-frames is
less compared to the PE2i radiotracer.

(a) Reference line: - - (b) Reference line: - .

Fig. 14 FDG: Time-lines of the spatiotemporal reconstructions. The reference lines are shown
in Figure 11.

5.5 Results: DPA

The last set of experiments was conducted on simulations of dynamic PET images
with [18F]DPA-714. Compared to the two other types of simulations, the time-
frame configuration was set differently than in the two previous cases, see Table
1. The evolution of the number of counts across time was relatively similar to
the PE2i case, and one can observe a sudden change in the number of counts for
the first 5 minutes, see Figures 18(c) and 7(c). A visual and quantitative analysis
of the results lead to the conclusion that the infimal convolution reconstructions
and in particular the ICTGV are noticeably better again. The reconstruction with
only spatial regularizers were again worse than the other approaches and therefore
we only display the spatiotemporal reconstructions along with filtered MLEM, see
Figure 17. One can notice that the noise cannot be eliminated using the spatiotem-
poral TV and TGV regularizers, see also the SSIM and MSE values for the first
time-frames in Figure 18. For the ICTV reconstruction, there is still a staircasing
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Fig. 15 Dynamic PET simulations with FDG radiotracer: Decomposition of
ICTGV(0.7,0.5),0.1 for the first 5 minutes. For visualization purposes we consider the
absolute values for u− v and v.

(a) Striatum (b) Cortex

Fig. 16 FDG: The ICTGV(0.7,0.5),0.1 decomposition into the u − v and v components for
the striatum and cortex regions. The mean intensity for the v component is rescaled for
visualization purposes.

artifact especially in the cortex region, see also the time-lines plots in Figure 19.
The reference lines are focus on the thalamus region and appear in Figure 17.
In healthy subjects, thalamus and cortex are the regions that should present the
highest uptake. The ICTGV reconstructions leads to a result where this contrast
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is preserved and the thalamus and cortex are well identified. This is justified with
the TAC for the thalamus and cortex regions in Figure 20. Finally, we report all
the quantitative results in Tables 6 and 7, where for the ICTGV the best values
were obtained.
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Fig. 17 Dynamic PET simulations with DPA radiotracer: The spatiotemporal and the
MLEM-filtered reconstructions.

SSIM MSE (10−3) BIAS
TV(0.1,1) 0.9333 1.2995 0.3085

TGV(0.15,1.5) 0.9369 1.3658 0.3168

ICTV(14,1.5),0.003 0.9394 1.1260 0.2907

ICTGV(2,1.5),0.1 0.9397 1.0495 0.2906

TV(0.4,0) 0.8983 1.9324 0.4069

TGV(0.4,0) 0.8874 2.1019 0.4574

MLEM 0.7580 3.5197 0.5661
MLEM-Filt 0.8314 2.5058 0.4814

Table 6 DPA: Comparison of MSE and bias quality criteria for the whole brain.

6 Conclusion

In this paper, we deal with spatiotemporal variational regularization methods for
dynamic PET reconstruction. We extend the standard total variation and total
generalized variation regularizers in the dynamic framework and in addition, we
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MSE (10−3)/BIAS ROI
TV(0.1,1) 1.3170/0.1225 1.7956/0.1249 1.9099/0.1294 0.9007/0.1091

TGV(0.15,1.5) 1.5339/0.1300 1.4561/0.1159 2.2425/0.1390 0.9052/0.1169

ICTV(14,1.5),0.003 1.0533/0.0993 1.6182/0.1045 1.6093/0.1087 0.7151/0.0831

ICTGV(2,1.5),0.1 1.0058/0.0966 1.0720/0.0849 1.5308/0.1024 0.7410/0.0856

TV(0.4,0) 1.6892/0.1186 6.1348/0.1995 2.4684/0.1216 1.0207/0.0866

TGV(0.4,0) 1.7457/0.1253 3.1974/0.1333 3.0400/0.1374 1.3987/0.1138

MLEM 2.9163/0.1634 6.1558/0.1853 6.3402/0.2093 2.2793/0.1532
MLEM-Filt 2.2980/0.1463 3.8636/0.1433 4.1258/0.1650 1.7533/0.1329

Striatum Thalamus Cortex WM

Table 7 DPA: Comparison of MSE and bias quality criteria for regions of interest.
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Fig. 18 DPA: SSIM, MSE values and number of counts with respect to time.

consider their infimal convolution variants. In the fidelity term, we take into ac-
count the random and scattered events as well as the decay factor for specific radio-
tracers and the non-uniform time discretization along the temporal direction. The
corresponding minimization problem is solved numerically, with a preconditioned
primal-dual gradient technique proposed in [26]. For our numerical experiments,
we use simulated brain phantoms and test our proposed regularizers for three dif-
ferent radiotracers. We observe that spatiotemporal reconstructions are superior
to MLEM and also to the non-temporal reconstructions, where most of the brain
regions are either noisy or with staircasing and smoothing issues. Based on the
quantitative and qualitative comparative results, we emphasize on the significant
potential benefit of the infimal convolution for dynamic PET image reconstruction,
especially when the radioactivity changes abruptly over a short period of time. As
a future work, we aim to test the proposed regularizers on realistic data obtained
from a microPET for dynamic PET reconstruction on mice.
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(a) Reference line: - - (b) Reference line: - .

Fig. 19 DPA: Time-lines of the spatiotemporal reconstructions. The reference lines are shown
in Figure 17.
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Fig. 20 Results obtained on dynamic PET simulations with DPA radiotracer: Time Activity
Curves for regions of interest (thalamus and cortex).
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