Non reflection and perfect reflection via Fano resonance in waveguides - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Sciences Année : 2018

Non reflection and perfect reflection via Fano resonance in waveguides

Résumé

We investigate a time-harmonic wave problem in a waveguide. By means of asymptotic analysis techniques, we justify the so-called Fano resonance phenomenon. More precisely, we show that the scattering matrix considered as a function of a geometrical parameter ε and of the frequency λ is in general not continuous at a point $(ε, λ) = (0,λ_0$) where trapped modes exist. In particular, we prove that for a given $ε = 0$ small, the scattering matrix exhibits a rapid change for frequencies varying in a neighbourhood of $λ_0$. We use this property to construct examples of waveguides such that the energy of an incident wave propagating through the structure is perfectly transmitted (non reflection) or perfectly reflected in monomode regime. We provide numerical results to illustrate our theorems.
Fichier principal
Vignette du fichier
ChNa.pdf (1.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01694063 , version 1 (26-01-2018)

Identifiants

  • HAL Id : hal-01694063 , version 1

Citer

Lucas Chesnel, Sergei A Nazarov. Non reflection and perfect reflection via Fano resonance in waveguides. Communications in Mathematical Sciences, 2018. ⟨hal-01694063⟩
233 Consultations
153 Téléchargements

Partager

More