Branching diffusion representation for nonlinear Cauchy problems and Monte Carlo approximation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Branching diffusion representation for nonlinear Cauchy problems and Monte Carlo approximation

Résumé

We provide a probabilistic representations of the solution of some semilinear hyperbolic and high-order PDEs based on branching diffusions. These representations pave the way for a Monte-Carlo approximation of the solution, thus bypassing the curse of dimensionality. We illustrate the numerical implications in the context of some popular PDEs in physics such as nonlinear Klein-Gordon equation, a simpli ed scalar version of the Yang-Mills equation, a fourth-order nonlinear beam equation and the Gross-Pitaevskii PDE as an example of nonlinear Schrodinger equations.
Fichier principal
Vignette du fichier
HLT-IVPnew.pdf (2.78 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01693300 , version 1 (26-01-2018)

Identifiants

Citer

Pierre Henry-Labordere, Nizar Touzi. Branching diffusion representation for nonlinear Cauchy problems and Monte Carlo approximation. 2018. ⟨hal-01693300⟩
176 Consultations
86 Téléchargements

Altmetric

Partager

More